1
|
Gobbo A, Chen F, Zacchini S, Gou S, Marchetti F. Enhanced DNA damage and anti-proliferative activity of a novel ruthenium complex with a chlorambucil-decorated ligand. J Inorg Biochem 2024; 260:112703. [PMID: 39182331 DOI: 10.1016/j.jinorgbio.2024.112703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/17/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Triphenylphosphine substitution reactions of [RuCl(PPh3)2(tpm)]Cl, 1, featuring tris(pyrazolyl)methane (tpm) as ligand, with the chlorambucil-decorated pyridine ligand PyCA, 3-aminopyridine (PyNH2) and 4-pyridinemethanol (PyOH) afforded the corresponding pyridine complexes 2-4 in high yields. PyCA was preliminarily obtained via esterification of 4-pyridinemethanol with chlorambucil. The new compounds PyCA and 2-3 were characterized by IR and multinuclear NMR spectroscopy. Additionally, the structure of 3 was ascertained by single crystal X-ray diffraction. The in vitro anti-proliferative activity of 2-4 and PyCA was determined against a panel of cancer cell lines, outlining 2 as the most performing compound. Targeted studies were subsequently undertaken using 2 to elucidate mechanistic aspects, including the assessment of ruthenium cellular uptake, cell cycle arrest, production of reactive oxygen species (ROS), western blotting and DNA damage (comet test). Overall, data highlight that the anticancer activity provided by 2 primarily affects the mitochondria pathway with a potential additional contribution from DNA damage.
Collapse
Affiliation(s)
- Alberto Gobbo
- University of Pisa, Department of Chemistry, and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Feihong Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry "Toso Montanari", Via P. Gobetti 85, I-40129 Bologna, Italy
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry, and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| |
Collapse
|
2
|
Gobbo A, Pereira SAP, Mota FAR, Sinenko I, Glinkina K, Rocchi D, Guelfi M, Biver T, Donati C, Zacchini S, Saraiva MLMFS, Dyson PJ, Marchetti F. Anticancer potential of NSAID-derived tris(pyrazolyl)methane ligands in iron(II) sandwich complexes. Dalton Trans 2024. [PMID: 39072444 DOI: 10.1039/d4dt00920g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Tris(pyrazolyl)methane (tpm), 2,2,2-tris(pyrazolyl)ethanol (tpmOH) and its esterification derivatives with ibuprofen and flurbiprofen (tpmIBU and tpmFLU) were used as ligands to obtain complexes of the type [Fe(tpmX)2]Cl2 (1-4). The tpmIBU and tpmFLU ligands and corresponding complexes 3 and 4 were characterized by IR and multinuclear NMR spectroscopy, and the structure of tpmIBU was elucidated by single crystal X-ray diffraction. Complexes 1-4 were also assessed for their behaviour in aqueous media (solubility in D2O, octanol/water partition coefficient, stability in physiological-like conditions). The antiproliferative activity of ligands and complexes was determined on A2780, A2780cis and A549 cancer cell lines and the non-cancerous HEK 293T and BJ cell lines. The ligands and complexes were investigated for their ability to inhibit COX-2 (cyclooxygenase) and HNE (4-hydroxynonenal) enzymes. Complexes 3 and 4 exhibited cytotoxicity that may be attributed predominantly to their bioactive fragments, while DNA binding and enhancement of ROS production do not appear to play any significant role.
Collapse
Affiliation(s)
- Alberto Gobbo
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Sarah A P Pereira
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Fátima A R Mota
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Irina Sinenko
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Kseniya Glinkina
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Dario Rocchi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Massimo Guelfi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Tarita Biver
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Chiara Donati
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry "Toso Montanari", Via P. Gobetti 85, I-40129 Bologna, Italy
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| |
Collapse
|
3
|
Bertoncini B, Xiao Z, Zacchini S, Biancalana L, Gasser G, Marchetti F. Aminocarbyne-Alkyne Coupling in Diruthenium Complexes: Exploring the Anticancer Potential of the Resulting Vinyliminium Complexes and Comparison with Diiron Homologues. Inorg Chem 2024; 63:12485-12497. [PMID: 38912873 DOI: 10.1021/acs.inorgchem.4c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
New diruthenium complexes based on the scaffold Ru2Cp2(CO)2 (Cp = η5-C5H5) and containing a bridging vinyliminium ligand, [2a-d]CF3SO3, were synthesized through regioselective coupling of alkynes with an aminocarbyne precursor (85-90% yields). The reaction involving phenylacetylene proceeded with the formation of a diruthenacyclobutene byproduct, [4]CF3SO3 (10% yield). Complexes [2a-d]+ undergo partial alkyne extrusion in contact with alumina or CDCl3. All products were characterized by elemental analysis, infrared and multinuclear NMR spectroscopy, and single crystal X-ray diffraction in two cases. Complexes [2a-d]+ revealed an outstanding stability in DMEM cell culture medium at 37 °C (<1% degradation over 72 h). These complexes exhibited cytotoxicity in human colon colorectal adenocarcinoma HT-29 cells in the low micromolar range, with lower IC50 values than those obtained with the homologous diiron complexes previously reported. Evaluation of ROS (reactive oxygen species) production and O2 consumption rate (OCR) highlighted the higher potential of Ru2 complexes, compared to the Fe2 counterparts, to impact mitochondrial activity, with the heterometallic Ru2-ferrocenyl complex [2d]+ showing the best performance.
Collapse
Affiliation(s)
- Benedetta Bertoncini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Zhimei Xiao
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, I-40129 Bologna, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
4
|
Elsayed SA, Elnabky IM, Aboelnga MM, El-Hendawy AM. Palladium(ii), platinum(ii), and silver(i) complexes with 3-acetylcoumarin benzoylhydrazone Schiff base: Synthesis, characterization, biomolecular interactions, cytotoxic activity, and computational studies. RSC Adv 2024; 14:19512-19527. [PMID: 38895519 PMCID: PMC11184370 DOI: 10.1039/d4ra02738h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
New Pd(ii) (C1), Pt(ii) (C2), and Ag(i) (C3) complexes derived from 3-acetylcoumarin benzoylhydrazone (HL) Schiff base were synthesized and characterized by FTIR, 1H NMR, UV-visible spectroscopies along with elemental analysis (C, H, N), magnetic, molar conductivity measurements, and DFT calculations. The obtained results suggested that the ligand had different behaviors in the complexes: mono-negative tridentate (C1) and neutral tridentate (C2) as an ONO-donor and neutral bidentate (C3) as an ON-donor. Quantum chemistry calculations were performed to validate the stability of the suggested geometries and indicated that all the complexes possess tetra-coordinated metal ions. The binding affinity of all the compounds toward calf thymus (ctDNA), yeast (tRNA), and bovine serum albumin (BSA) was evaluated by absorption/emission spectral titration studies, which revealed the intercalative binding to ctDNA and tRNA and static binding upon complex formation with BSA. Molecular insights into the binding affinity of the characterized complexes were provided through conducting molecular docking analysis. Moreover, the cytotoxic activity (in vitro) of the compounds was screened against human cancerous cell lines and a non-cancerous lung fibroblast (WI38) one using cis-platin as a reference drug. The IC50 and selective index (SI) values indicated the higher cytotoxic activity of all the metal complexes compared to their parent ligand. Among all the compounds, the complex C2 showed the highest activity. These results confirmed the improvement of the anticancer activity of the ligand by incorporating the metal ions. In addition, flow cytometry results showed that complexes C1 and C2 induced cell cycle arrest at S and G1/S, respectively.
Collapse
Affiliation(s)
- Shadia A Elsayed
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - Islam M Elnabky
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - Mohamed M Aboelnga
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - Ahmed M El-Hendawy
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| |
Collapse
|
5
|
Safarkhani M, Moghaddam SS, Taghavimandi F, Bagherzadeh M, Fatahi Y, Park U, Radmanesh F, Huh YS, Rabiee N. Bioengineered Smart Nanocarriers for Breast Cancer Treatment: Adorned Carbon-Based Nanocomposites with Silver and Palladium Complexes for Efficient Drug Delivery. ACS OMEGA 2024; 9:1183-1195. [PMID: 38222665 PMCID: PMC10785617 DOI: 10.1021/acsomega.3c07432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Biocompatible and bioactive carbon-based nanocomposites are ingeniously designed and fabricated with the aim of enhancing drug delivery applicability in breast cancer treatment. Reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) are utilized as nanocarriers for increasing penetrability into cells and the loading capacity. What sets our study apart is the strategic incorporation of the two different complexes of silver (AgL2) and palladium (PdL2) with the carboxamide-based ligand C9H7N3OS (L), which have been synthesized and decorated on nanocarriers alongside doxorubicin (DOX) for stabilizing DOX by π-π interactions and hydrogen bonding. Although DOX is a well-known cancer therapy agent, the efficacy of DOX is hindered owing to drug resistance, poor internalization, and limited site specificity. Aside from stabilizing DOX on nanocarriers, our carbon-based nanocarriers are tailored to act as a precision-guided missile, strategically by adorning with target-sensitive complexes. Based on the literature, carboxamide ligands can connect to overexpressed receptors on cancerous cells and inhibit them from proliferation signaling. Also, the complexes have an antibacterial activity that can control the infection caused by decreasing white blood cells and necrosis of cancerous cells. A high-concentration cytotoxicity assay revealed that decorating PdL2 on a DOX-containing nanocarrier not only increased cytotoxicity to breast cancerous cell lines (MDA-MB-231 and MCF-7) but also revealed higher cell viability on a normal cell line (MCF-10A). The drug release screening results showed that the presence of PdL2 led to 72 h correlate release behavior in acidic and physiological pH profiles, while the AgL2-containing nanocomposite showed an analogue behavior for just 6 h and the release of DOX continued and after about 100 h hit the top.
Collapse
Affiliation(s)
- Moein Safarkhani
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 402-751, Republic of Korea
- Department
of Chemistry, Sharif University of Technology, Tehran 11155-9465, Iran
| | | | - Fahimeh Taghavimandi
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 402-751, Republic of Korea
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, Tehran 11155-9465, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 1416753955, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 1416753955, Iran
| | - Uichang Park
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 402-751, Republic of Korea
| | - Fatemeh Radmanesh
- Uro-Oncology
Research Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
- Department
of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology,
ACECR, Tehran 16635-14, Iran
| | - Yun Suk Huh
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 402-751, Republic of Korea
| | - Navid Rabiee
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
6
|
Ooi TC, Nordin FJ, Rahmat NS, Abdul Halim SN'A, Sarip R, Chan KM, Rajab NF. Genotoxicity and apoptotic effect of silver(I) complexes with mixed-ligands of thiosemicarbazones and diphenyl(p-tolyl)phosphine on malignant melanoma cells, SK-MEL-28. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 886:503581. [PMID: 36868695 DOI: 10.1016/j.mrgentox.2022.503581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Complexes of coinage metals can potentially be used as alternatives to platinum-based chemotherapeutic drugs. Silver is a coinage metal that can potentially improve the spectrum of efficacy in various cancers treatment, such as malignant melanoma. Melanoma is the most aggressive form of skin cancer that is often diagnosed in young and middle-aged adults. Silver has high reactivity with skin proteins and can be developed as a malignant melanoma treatment modality. Therefore, this study aims to identify the anti-proliferative and genotoxic effects of silver(I) complexes with mixed-ligands of thiosemicarbazones and diphenyl(p-tolyl)phosphine ligands in the human melanoma SK-MEL-28 cell line. The anti-proliferative effects of a series of silver(I) complex compounds labelled as OHBT, DOHBT, BrOHBT, OHMBT, and BrOHMBT were evaluated on SK-MEL-28 cells by using the Sulforhodamine B assay. Then, DNA damage analysis was performed in a time-dependent manner (30 min, 1 h and 4 h) by using alkaline comet assay to investigate the genotoxicity of OHBT and BrOHMBT at their respective IC50 values. The mode of cell death was studied using Annexin V-FITC/PI flow cytometry assay. Our current findings demonstrated that all silver(I) complex compounds showed good anti-proliferative activity. The IC50 values of OHBT, DOHBT, BrOHBT, OHMBT, and BrOHMBT were 2.38 ± 0.3 μM, 2.70 ± 0.17 μM, 1.34 ± 0.22 μM, 2.82 ± 0.45 μM, and 0.64 ± 0.04 μM respectively. Then, DNA damage analysis showed that OHBT and BrOHMBT could induce DNA strand breaks in a time-dependent manner, with OHBT being more prominent than BrOHMBT. This effect was accompanied by apoptosis induction in SK-MEL-28, as evaluated using Annexin V-FITC/PI assay. In conclusion, silver(I) complexes with mixed-ligands of thiosemicarbazones and diphenyl(p-tolyl)phosphine exerted anti-proliferative activities by inhibiting cancer cell growth, inducing significant DNA damage and ultimately resulting in apoptosis.
Collapse
Affiliation(s)
- Theng Choon Ooi
- Biomedical Science Program, Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Fariza Juliana Nordin
- Biomedical Science Program, Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Nur Sakina Rahmat
- Biomedical Science Program, Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | | | - Rozie Sarip
- Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Kok Meng Chan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Biomedical Science Program, Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Campanella B, Braccini S, Bresciani G, De Franco M, Gandin V, Chiellini F, Pratesi A, Pampaloni G, Biancalana L, Marchetti F. The choice of μ-vinyliminium ligand substituents is key to optimize the antiproliferative activity of related diiron complexes. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2023; 15:6901513. [PMID: 36515681 DOI: 10.1093/mtomcs/mfac096] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Diiron vinyliminium complexes constitute a large family of organometallics displaying a promising anticancer potential. The complexes [Fe2Cp2(CO)(μ-CO){μ-η1:η3-C(R3)C(R4)CN(R1)(R2)}]CF3SO3 (2a-c, 4a-d) were synthesized, assessed for their behavior in aqueous solutions (D2O solubility, Log Pow, stability in D2O/Me2SO-d6 mixture at 37°C over 48 h) and investigated for their antiproliferative activity against A2780 and A2780cisR ovarian cancer cell lines and the nontumoral one Balb/3T3 clone A31. Cytotoxicity data collected for 50 vinyliminium complexes were correlated with the structural properties (i.e. the different R1-R4 substituents) using the partial least squares methodology. A clear positive correlation emerged between the octanol-water partition coefficient and the relative antiproliferative activity on ovarian cancer cell lines, both of which appear as uncorrelated to the cancer cell selectivity. However, the different effects played by the R1-R4 substituents allow tracing guidelines for the development of novel, more effective compounds. Based on these results, three additional complexes (4p-r) were designed, synthesized and biologically investigated, revealing their ability to hamper thioredoxin reductase enzyme and to induce cancer cell production of reactive oxygen species.
Collapse
Affiliation(s)
- Beatrice Campanella
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Simona Braccini
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Michele De Franco
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Valentina Gandin
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Federica Chiellini
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Alessandro Pratesi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
8
|
Murakami HA, Uslan C, Haase AA, Koehn JT, Vieira AP, Gaebler DJ, Hagan J, Beuning CN, Proschogo N, Levina A, Lay PA, Crans DC. Vanadium Chloro-Substituted Schiff Base Catecholate Complexes are Reducible, Lipophilic, Water Stable, and Have Anticancer Activities. Inorg Chem 2022; 61:20757-20773. [PMID: 36519680 DOI: 10.1021/acs.inorgchem.2c02557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A hydrophobic Schiff base catecholate vanadium complex was recently discovered to have anticancer properties superior to cisplatin and suited for intratumoral administration. This [VO(HSHED)(DTB)] complex, where HSHED is N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine and the non-innocent catecholato ligand is di-t-butylcatecholato (DTB), has higher stability compared to simpler catecholato complexes. Three new chloro-substituted Schiff base complexes of vanadium(V) with substituted catecholates as co-ligands were synthesized for comparison with their non-chlorinated Schiff base vanadium complexes, and their properties were characterized. Up to four geometric isomers for each complex were identified in organic solvents using 51V and 1H NMR spectroscopies. Spectroscopy was used to characterize the structure of the major isomer in solution and to demonstrate that the observed isomers are exchanged in solution. All three chloro-substituted Schiff base vanadium(V) complexes with substituted catecholates were also characterized by UV-vis spectroscopy, mass spectrometry, and electrochemistry. Upon testing in human glioblastoma multiforme (T98g) cells as an in vitro model of brain gliomas, the most sterically hindered, hydrophobic, and stable compound [t1/2 (298 K) = 15 min in cell medium] was better than the two other complexes (IC50 = 4.1 ± 0.5 μM DTB, 34 ± 7 μM 3-MeCat, and 19 ± 2 μM Cat). Furthermore, upon aging, the complexes formed less toxic decomposition products (IC50 = 9 ± 1 μM DTB, 18 ± 3 μM 3-MeCat, and 8.1 ± 0.6 μM Cat). The vanadium complexes with the chloro-substituted Schiff base were more hydrophobic, more hydrolytically stable, more easily reduced compared to their corresponding parent counterparts, and the most sterically hindered complex of this series is only the second non-innocent vanadium Schiff base complex with a potent in vitro anticancer activity that is an order of magnitude more potent than cisplatin under the same conditions.
Collapse
Affiliation(s)
- Heide A Murakami
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Canan Uslan
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Allison A Haase
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jordan T Koehn
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adriana Pires Vieira
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - D Jackson Gaebler
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - John Hagan
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Cheryle N Beuning
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Nicholas Proschogo
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia.,Sydney Analytical, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Debbie C Crans
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
9
|
Pradhan AK, Shyam A, Dutta A, Mondal P. Quantum Chemical Investigation on Hydrolysis of Orally Active Organometallic Ruthenium(II) and Osmium(II) Anticancer Drugs and Their Interaction with Histidine. J Phys Chem B 2022; 126:9516-9527. [PMID: 36378950 DOI: 10.1021/acs.jpcb.2c05062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Influence of the metal center on hydrolysis of organometallic anticancer complexes containing an N-phenyl-2-pyridinecarbothioamide (PCA) ligand, [M(η6-p-cymene)(N-phenyl-2-pyridinecarbothioamide)Cl]+ (M = RuII, 1A, and OsII, 2A), as well as their N-fluorophenyl derivatives [M(η6-p-cymene)(N-fluorophenyl-2-pyridinecarbothioamide)Cl]+ (M = RuII, 1B, and OsII, 2B) have been investigated using the DFT method in aqueous medium. The activation energy barriers for the hydrolysis of 1A (21.5 kcal/mol) and 1B (20.7 kcal/mol) are found to be significantly lower than those of their corresponding osmium analogs 2A (28.6 kcal/mol) and 2B (27.5 kcal/mol). DFT evaluated results reveal the inertness of Os(II)-PCA complex toward the hydrolysis that rationalizes the experimental observations. However, the incorporation of fluoride substituent slightly decreases the activation energy for the hydrolysis of Ru(II)- and Os(II)-PCA. In addition, the interaction of hydrolyzed Ru(II)-PCAs (1AH and 1BH) and Os(II)-PCAs (2AH and 2BH) complexes with the histidine (Hist) have also been investigated. The aquated 1BH and 2BH show an enhanced propensity toward the interaction with histidine, and their activation Gibbs free energies are calculated to be 15.9 and 18.9 kcal/mol, respectively. ONIOM (QM/MM) study of the resulting aquated complexes inside histone protein shows the maximum stability of the 2BH complex having a binding energy of -43.6 kcal/mol.
Collapse
Affiliation(s)
| | - Abhijit Shyam
- Department of Chemistry, Assam University, Silchar-788011, Assam, India.,Department of Chemistry, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, Karimganj-788723, Assam, India
| | - Abhijit Dutta
- Department of Chemistry, Patharkandi College, Karimganj-788724, Assam, India
| | - Paritosh Mondal
- Department of Chemistry, Assam University, Silchar-788011, Assam, India
| |
Collapse
|
10
|
Cervinka J, Gobbo A, Biancalana L, Markova L, Novohradsky V, Guelfi M, Zacchini S, Kasparkova J, Brabec V, Marchetti F. Ruthenium(II)-Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis. J Med Chem 2022; 65:10567-10587. [PMID: 35913426 PMCID: PMC9376960 DOI: 10.1021/acs.jmedchem.2c00722] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
While ruthenium arene complexes have been widely investigated
for
their medicinal potential, studies on homologous compounds containing
a tridentate tris(1-pyrazolyl)methane ligand are almost absent in
the literature. Ruthenium(II) complex 1 was obtained
by a modified reported procedure; then, the reactions with a series
of organic molecules (L) in boiling alcohol afforded novel complexes 2–9 in 77–99% yields. Products 2–9 were fully structurally characterized. They are
appreciably soluble in water, where they undergo partial chloride/water
exchange. The antiproliferative activity was determined using a panel
of human cancer cell lines and a noncancerous one, evidencing promising
potency of 1, 7, and 8 and
significant selectivity toward cancer cells. The tested compounds
effectively accumulate in cancer cells, and mitochondria represent
a significant target of biological action. Most notably, data provide
convincing evidence that the mechanism of biological action is mediated
by the inhibiting of mitochondrial calcium intake.
Collapse
Affiliation(s)
- Jakub Cervinka
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biochemistry, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Alberto Gobbo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.,Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Massimo Guelfi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biophysics, Palacky University in Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
11
|
Rukk NS, Kabernik NS, Buzanov GA, Kuzmina LG, Davydova GA, Belus SK, Kozhukhova EI. Complexes of Zinc(II)- and Copper(II) Perchlorates with Nicotinamide: Synthesis, Structure, Cytotoxicity. RUSS J INORG CHEM+ 2022. [PMCID: PMC9467429 DOI: 10.1134/s0036023622080228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interaction of zinc(II)- and copper(II) perchlorate hexahydrates with nicotinamide (Nia – nicotinamide, niacinamide, 3-pyridinecarboxamide, C5H4NС(O)NH2) has been studied. It has been demonstrated that complex compounds [Zn(Nia)2(H2O)4](ClO4)2 (1) and [Cu(Nia)2(H2O)2](ClO4)2 ⋅ 2H2O (2) are formed in aqueous media at the molar ratio M(ClO4)2 ⋅ 6H2O : Nia = 1 : 2. Both compounds are the ionic ones. Geometry of complex cation (1) may be represented as a distorted octahedron in which nicotinamide molecules are in the trans-position. The same position of ligands is found for planar complex cation (2). Cytotoxicity of the prepared compounds (MTT assay) has been determined with respect to dental pulp stem cells (DPSC) and breast cancer cell line MCF-7. Antiproliferative activity has been studied relative to 10 cancer cell lines, complex compound (1) being the most toxic for C6, Panc-1, U251 cell lines (survivability below 15%).
Collapse
Affiliation(s)
- N. S. Rukk
- MIREA—Russian Technological University (Lomonosov Institute of Fine Chemical Technologies), 119571 Moscow, Russia
| | - N. S. Kabernik
- MIREA—Russian Technological University (Lomonosov Institute of Fine Chemical Technologies), 119571 Moscow, Russia
| | - G. A. Buzanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - L. G. Kuzmina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - G. A. Davydova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - S. K. Belus
- NRC Kurchatov Institute—IREA, 107076 Moscow, Russia
| | | |
Collapse
|
12
|
Arunadevi N, Kanchana P, Hemapriya V, Mehala M, Swathika M, Chung IM, Prabakaran M. A two-step strategy to synthesis new aminoguanidinium complexes: cytotoxic effect and perspectives. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Natarajan Arunadevi
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India
| | - Ponnusamy Kanchana
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India
| | - Venkatesan Hemapriya
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India
| | - Mayilsamy Mehala
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India
| | - Manoharan Swathika
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, South Korea
| | - Mayakrishnan Prabakaran
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, South Korea
| |
Collapse
|
13
|
Ferraro G, Merlino A. Metallodrugs: Mechanisms of Action, Molecular Targets and Biological Activity. Int J Mol Sci 2022; 23:ijms23073504. [PMID: 35408863 PMCID: PMC8998277 DOI: 10.3390/ijms23073504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, I-80126 Naples, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, I-80126 Naples, Italy
| |
Collapse
|
14
|
Schoch S, Iacopini D, Dalla Pozza M, Di Pietro S, Degano I, Gasser G, Di Bussolo V, Marchetti F. Tethering Carbohydrates to the Vinyliminium Ligand of Antiproliferative Organometallic Diiron Complexes. Organometallics 2022; 41:514-526. [PMID: 35308582 PMCID: PMC8924928 DOI: 10.1021/acs.organomet.1c00519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/23/2022]
Affiliation(s)
- Silvia Schoch
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Dalila Iacopini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | | | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | | | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
15
|
New trinuclear nickel(II) complexes as potential topoisomerase I/IIα inhibitors: in vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02005-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Schoch S, Braccini S, Biancalana L, Pratesi A, Funaioli T, Zacchini S, Pampaloni G, Chiellini F, Marchetti F. When ferrocene and diiron organometallics meet: triiron vinyliminium complexes exhibit strong cytotoxicity and cancer cell selectivity. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00534d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Robust and versatile cationic triiron complexes, obtained from the assembly of ferrocenyl with a di-organoiron structure, display an outstanding cytotoxicity profile, which may be related to redox processes provided by the two metallic components.
Collapse
Affiliation(s)
- Silvia Schoch
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Simona Braccini
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Alessandro Pratesi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Tiziana Funaioli
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry “Toso Montanari”, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Federica Chiellini
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
17
|
Gobbo A, Pereira SAP, Biancalana L, Zacchini S, Saraiva MLMFS, Dyson PJ, Marchetti F. Anticancer ruthenium( ii) tris(pyrazolyl)methane complexes with bioactive co-ligands. Dalton Trans 2022; 51:17050-17063. [DOI: 10.1039/d2dt03009h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New anticancer RuII-tpm complexes are presented, including a synthetic strategy to tether bioactive molecules to the metallic scaffold.
Collapse
Affiliation(s)
- Alberto Gobbo
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Sarah A. P. Pereira
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry “Toso Montanari”, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - M. Lúcia M. F. S. Saraiva
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
18
|
Metal Complexes or Chelators with ROS Regulation Capacity: Promising Candidates for Cancer Treatment. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010148. [PMID: 35011380 PMCID: PMC8746559 DOI: 10.3390/molecules27010148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are rapidly eliminated and reproduced in organisms, and they always play important roles in various biological functions and abnormal pathological processes. Evaluated ROS have frequently been observed in various cancers to activate multiple pro-tumorigenic signaling pathways and induce the survival and proliferation of cancer cells. Hydrogen peroxide (H2O2) and superoxide anion (O2•-) are the most important redox signaling agents in cancer cells, the homeostasis of which is maintained by dozens of growth factors, cytokines, and antioxidant enzymes. Therefore, antioxidant enzymes tend to have higher activity levels to maintain the homeostasis of ROS in cancer cells. Effective intervention in the ROS homeostasis of cancer cells by chelating agents or metal complexes has already developed into an important anti-cancer strategy. We can inhibit the activity of antioxidant enzymes using chelators or metal complexes; on the other hand, we can also use metal complexes to directly regulate the level of ROS in cancer cells via mitochondria. In this review, metal complexes or chelators with ROS regulation capacity and with anti-cancer applications are collectively and comprehensively analyzed, which is beneficial for the development of the next generation of inorganic anti-cancer drugs based on ROS regulation. We expect that this review will provide a new perspective to develop novel inorganic reagents for killing cancer cells and, further, as candidates or clinical drugs.
Collapse
|
19
|
Malik MA, Raza MK, Mohammed A, Wani MY, Al-Bogami AS, Hashmi AA. Unravelling the anticancer potential of a square planar copper complex: toward non-platinum chemotherapy. RSC Adv 2021; 11:39349-39361. [PMID: 35492449 PMCID: PMC9044439 DOI: 10.1039/d1ra06227a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022] Open
Abstract
Coordination compounds from simple transition metals are robust substitutes for platinum-based complexes due to their remarkable anticancer properties. In a quest to find new metal complexes that could substitute or augment the platinum based chemotherapy we synthesized three transition metal complexes C1-C3 with Cu(ii), Ni(ii), and Co(ii) as the central metal ions, respectively, and evaluated them for their anticancer activity against the human keratinocyte (HaCaT) cell line and human cervical cancer (HeLa) cell lines. These complexes showed different activity profiles with the square planar copper complex C1 being the most active with IC50 values lower than those of the widely used anticancer drug cisplatin. Assessment of the morphological changes by DAPI staining and ROS generation by DCFH-DA assay exposed that the cell death occurred by caspase-3 mediated apoptosis. C1 displayed interesting interactions with Ct-DNA, evidenced by absorption spectroscopy and validated by docking studies. Together, our results suggest that binding of the ligand to the DNA-binding domain of the p53 tumor suppressor (p53DBD) protein and the induction of the apoptotic hallmark protein, caspase-3, upon treatment with the metal complex could be positively attributed to a higher level of ROS and the subsequent DNA damage (oxidation), generated by the complex C1, that could well explain the interesting anticancer activity observed for this complex.
Collapse
Affiliation(s)
- Manzoor Ahmad Malik
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
- Department of Chemistry, University of Kashmir Srinagar Jammu and Kashmir India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Arif Mohammed
- Department of Biology, College of Science, University of Jeddah Jeddah 21589 Saudi Arabia
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah Jeddah 21589 Saudi Arabia
| | | | - Athar Adil Hashmi
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| |
Collapse
|
20
|
Orysyk SI, Baranets S, Borovyk PV, Palchykovska LG, Zborovskii YL, Orysyk VV, Likhanov AF, Platonov MO, Kovalskyy DB, Shyryna TV, Danylenko Y, Hurmach VV, Pekhnyo VI, Vovk MV. Mononuclear π-complexes of Pd(II) and Pt(II) with 1-allyl-3-(2-hydroxyethyl)thiourea: Synthesis, structure, molecular docking, DNA binding ability and genotoxic activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Bresciani G, Busto N, Ceccherini V, Bortoluzzi M, Pampaloni G, Garcia B, Marchetti F. Screening the biological properties of transition metal carbamates reveals gold(I) and silver(I) complexes as potent cytotoxic and antimicrobial agents. J Inorg Biochem 2021; 227:111667. [PMID: 34826692 DOI: 10.1016/j.jinorgbio.2021.111667] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 12/29/2022]
Abstract
We report a screening study aimed to assess for the first time the air- and water-stability and the biological potential of simple metal-carbamates. These molecular metallic species are based on elements belonging to the groups 4-5, 7-9 and 11, and tin, and are easily available from inexpensive reagents. Complexes [Ag(O2CNEt2)] (13-Ag) and [Au(O2CNMe2)(PPh3)] (14-Au) resulted substantially stable in aqueous media and exhibited a potent in vitro cytotoxicity. Especially 13-Ag revealed a significant selectivity against the A549 lung adenocarcinoma and the A2780 ovarian cancer cell lines with respect to the noncancerous HEK293 cell line. Generation of ROS (reactive oxygen species) and mitochondrial membrane depolarization were recognized for 13-Ag and 14-Au; notwithstanding, the cell death mechanism is different in the two cases: apoptosis and cell cycle arrest in G0/G1 phase for 13-Ag; necroptosis and cell cycle arrest in S phase for 14-Au. Both 13-Ag and 14-Au are endowed with antibacterial activity, which is relatively stronger for 13-Ag towards Gram negative and for 14-Au towards Gram positive strains, respectively.
Collapse
Affiliation(s)
- Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Natalia Busto
- University of Burgos, Department of Chemistry, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Valentina Ceccherini
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Marco Bortoluzzi
- University of Venezia "Ca' Foscari", Department of Molecular Science and Nanosystems, Via Torino 155, I-30170 Mestre (VE), Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Begoña Garcia
- University of Burgos, Department of Chemistry, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| |
Collapse
|
22
|
Svoboda J, Zolal A, Králík F, Eigner V, Ruml T, Zelenka J, Syslová K. Trans-palladium complexes with 1-adamantanamine and various halide ions: Synthesis, characterization, DNA and protein binding and in vitro cytotoxicity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Golub P, Antalik A, Veis L, Brabec J. Machine Learning-Assisted Selection of Active Spaces for Strongly Correlated Transition Metal Systems. J Chem Theory Comput 2021; 17:6053-6072. [PMID: 34570505 DOI: 10.1021/acs.jctc.1c00235] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Active space quantum chemical methods could provide very accurate description of strongly correlated electronic systems, which is of tremendous value for natural sciences. The proper choice of the active space is crucial but a nontrivial task. In this article, we present a neural network-based approach for automatic selection of active spaces, focused on transition metal systems. The training set has been formed from artificial systems composed of one transition metal and various ligands, on which we have performed the density matrix renormalization group and calculated the single-site entropy. On the selected set of systems, ranging from small benchmark molecules up to larger challenging systems involving two metallic centers, we demonstrate that our machine learning models could predict the active space orbitals with reasonable accuracy. We also tested the transferability on out-of-the-model systems, including bimetallic complexes and complexes with ligands, which were not involved in the training set. Also, we tested the correctness of the automatically selected active spaces on a Fe(II)-porphyrin model, where we studied the lowest states at the DMRG level and compared the energy difference between spin states or the energy difference between conformations of ferrocene with recent studies.
Collapse
Affiliation(s)
- Pavlo Golub
- J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Andrej Antalik
- J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Libor Veis
- J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Jiri Brabec
- J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
24
|
Hybrid organoruthenium(II) complexes with thiophene-β-diketo-benzazole ligands: Synthesis, optical properties, CT-DNA interactions and anticancer activity. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Nabiyeva T, Roufosse B, Odachowski M, Baumgartner J, Marschner C, Verma AK, Blom B. Osmium Arene Germyl, Stannyl, Germanate, and Stannate Complexes as Anticancer Agents. ACS OMEGA 2021; 6:19252-19268. [PMID: 34337263 PMCID: PMC8320079 DOI: 10.1021/acsomega.1c02665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Herein, we describe the synthesis, full spectroscopic characterization, DFT (density functional theory) calculations, and single-crystal X-ray diffraction analyses of a series of osmium arene σ-germyl, germanate, σ-stannyl, and stannate complexes, along with their cytotoxic (anticancer) investigations. The known dimer complexes [OsCl2(η6-C6H6)]2 (1) and [OsCl2(η6-p-cymene)]2 (2) were reacted with PPh3 to form the known mononuclear complex [OsCl2(η6-p-cymene)(PPh3)] (3) and the new complex [OsCl2(η6-C6H6)(PPh3)] (6); complex 3 was reacted with GeCl2·(dioxane) and SnCl2 to afford, by insertion into the Os-Cl bond, the neutral σ-germyl and stannyl complexes [OsCl(η6-p-cymene)(PPh3)(GeCl3)] (7) and [OsCl(η6-p-cymene)(PPh3)(SnCl3)] (11), respectively, as a mixture of enantiomers. Similarly, the reaction of complex 6 with GeCl2·(dioxane) afforded [OsCl(η6-C6H6)(PPh3)(GeCl3)] (9). Complex 2, upon reaction with 1,1-bis(diphenylphosphino)methane (dppm), formed a mixture of [OsCl2(η6-p-cymene)(κ1-dppm)] (4) and [Os(η6-p-cymene)(κ2-dppm)Cl]+Cl- (5) when prepared in acetonitrile and a mixture of 4 and the dinuclear complex [[OsCl2(η6-p-cymene)]2(μ-dppm)] (0) when prepared in dichloromethane. By utilizing either isolated 4 or a mixture of 4 and 5, the synthesis of κ2-dppm germanate and stannate salts, [OsCl(η6-p-cymene)(κ2-dppm)]+GeCl3 - (8) and [OsCl(η6-p-cymene)(κ2-dppm)]+SnCl3 - (10), were accomplished via halide-abstracting reactions with GeCl2·(dioxane) or SnCl2, respectively. All resulting complexes were characterized by means of multinuclear NMR, FT-IR, ESI-MS, and UV/Vis spectroscopy. X-ray diffraction analyses of 4, 8, 9, 10, and 11 were performed and are reported. DFT studies (B3LYP, basis set LANL2DZ for Os, and def2-TZVPP for Sn, Ge, Cl, P, C, and H) were performed on complex 9 and the benzene analogue of complex 11, 11-benzene, to evaluate the structural changes and the effects on the frontier molecular orbitals arising from the substitution of Ge for Sn. Finally, complexes 3 and 7-11 were investigated for potential anticancer activities considering cell cytotoxicity and apoptosis assays against Dalton's lymphoma (DL) and Ehrlich ascites carcinoma (EAC) malignant cancer cell lines. The complexes were also tested against healthy peripheral blood mononuclear cells (PBMCs). All cell lines were also treated with the reference drug cisplatin to draw a comparison with the results obtained from the reported complexes. The study was further corroborated with in silico molecular interaction simulations and a pharmacokinetic study.
Collapse
Affiliation(s)
- Tomiris Nabiyeva
- Maastricht
Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan, 1, P.O.
Box 616, 6200 MD Maastricht, The Netherlands
| | - Basile Roufosse
- Maastricht
Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan, 1, P.O.
Box 616, 6200 MD Maastricht, The Netherlands
| | - Matylda Odachowski
- Maastricht
Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan, 1, P.O.
Box 616, 6200 MD Maastricht, The Netherlands
| | - Judith Baumgartner
- Institut
für Anorganische Chemie, Technische
Universität Graz, Stremayrgasse 9, A-8010 Graz, Austria
| | - Christoph Marschner
- Institut
für Anorganische Chemie, Technische
Universität Graz, Stremayrgasse 9, A-8010 Graz, Austria
| | - Akalesh Kumar Verma
- Department
of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati 781001, India
| | - Burgert Blom
- Maastricht
Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan, 1, P.O.
Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
26
|
Braccini S, Rizzi G, Biancalana L, Pratesi A, Zacchini S, Pampaloni G, Chiellini F, Marchetti F. Anticancer Diiron Vinyliminium Complexes: A Structure-Activity Relationship Study. Pharmaceutics 2021; 13:1158. [PMID: 34452119 PMCID: PMC8398472 DOI: 10.3390/pharmaceutics13081158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022] Open
Abstract
A series of 16 novel diiron complexes of general formula [Fe2Cp2(CO)(μ-CO){μ-η1:η3-C(R')C(R″)CN(R)(Y)}]CF3SO3 (2-7), bearing different substituents on the bridging vinyliminium ligand, was synthesized in 69-95% yields from the reactions of diiron μ-aminocarbyne precursors with various alkynes. The products were characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy; moreover the X-ray structures of 2c (R = Y = CH2Ph, R' = R″ = Me) and 3a (R = CH2CH=CH2, Y = R' = Me, R″ = H) were ascertained by single-crystal X-ray diffraction studies. NMR and UV-Vis methods were used to assess the D2O solubility, the stability in aqueous solution at 37 °C and the octanol-water partition coefficients of the complexes. A screening study evidenced a potent cytotoxicity of 2-7 against the A2780 cancer cell line, with a remarkable selectivity compared to the nontumoral Balb/3T3 cell line; complex 4c (R = Cy, Y = R' = R″ = Me) revealed as the most performant of the series. The antiproliferative activity of a selection of complexes was also assessed on the cisplatin-resistant A2780cisR cancer cell line, and these complexes were capable of inducing a significant ROS production. Moreover, ESI-MS experiments indicated the absence of interaction of selected complexes with cytochrome c and the potentiality to inhibit the thioredoxin reductase enzyme (TrxR).
Collapse
Affiliation(s)
- Simona Braccini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Giorgia Rizzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Stefano Zacchini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy;
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| |
Collapse
|
27
|
Synthesis, structure and anticancer properties of new biotin- and morpholine-functionalized ruthenium and osmium half-sandwich complexes. J Biol Inorg Chem 2021; 26:535-549. [PMID: 34173882 DOI: 10.1007/s00775-021-01873-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Ruthenium (Ru) and osmium (Os) complexes are of sustained interest in cancer research and may be alternative to platinum-based therapy. We detail here three new series of ruthenium and osmium complexes, supported by physico-chemical characterizations, including time-dependent density functional theory, a combined experimental and computational study on the aquation reactions and the nature of the metal-arene bond. Cytotoxic profiles were then evaluated on several cancer cell lines although with limited success. Further investigations were, however, performed on the most active series using a genetic approach based on RNA interference and highlighted a potential multi-target mechanism of action through topoisomerase II, mitotic spindle, HDAC and DNMT inhibition.
Collapse
|
28
|
Navarro-Peñaloza R, Vázquez-Palma AB, López-Sandoval H, Sánchez-Bartéz F, Gracia-Mora I, Barba-Behrens N. Coordination compounds with heterocyclic ester derivatives. Structural characterization and anti-proliferative activity. J Inorg Biochem 2021; 219:111432. [PMID: 33873052 DOI: 10.1016/j.jinorgbio.2021.111432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
A series of new coordination compounds of cobalt(II), copper(II) and zinc(II) with heterocyclic ester derivatives (ethyl 4-methyl-5-imidazole-carboxylate (emizco), 1-(2-(phenylsulphonyl)ethyl)-4-imidazole carboxylate (semizco)) and methyl 5-(propylthio)-2-benzimidazolecarbamate (albendazole, abz) were synthesized. They were fully characterized by different techniques such as IR, UV-Vis-NIR, elemental analysis, molar conductivity and magnetic susceptibility. Additionally, X-ray crystal structures of semizco and its [Co(semizco)2Cl2]·2CH3CN 10, [Co(smmizco)2Br2]·2CH3CN 11 and [Cu(semizco)2Br2] 15 coordination compounds are analyzed. These compounds present lone pair SO⋯π interactions between the sulfone and the imidazolic ring. These ligands showed three coordination modes: monodentate, through an imidazolic nitrogen atom, or a bidentate chelating mode by a nitrogen and an oxygen atom from the ester group. The different coordination modes and the number of coordinated ligands gave rise to tetrahedral and octahedral compounds, or for [Cu(semizco)(μ-Br)Br]n·0.5H2O 7 a square base pyramidal geometry. A cytotoxic study was carried out with the free ligands and their copper(II) and zinc(II) halide coordination compounds on HeLa (cervix-uterine), MCF-7 (breast), HCT-15 (colon), PC3 (prostate) human carcinoma cell lines and L929 mouse fibroblast (healthy cells). A TUNEL assay (terminal deoxynucleotidyl transferase dUTP nick end labeling) was performed with the most active copper(II) compounds to determine if cell death was by apoptosis.
Collapse
Affiliation(s)
- Rubí Navarro-Peñaloza
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Adriana B Vázquez-Palma
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Horacio López-Sandoval
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Francisco Sánchez-Bartéz
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Isabel Gracia-Mora
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Norah Barba-Behrens
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico.
| |
Collapse
|
29
|
Li LY, Fei BL, Wang P, Kong LY, Long JY. Discovery of novel dehydroabietic acid derivatives as DNA/BSA binding and anticancer agents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118944. [PMID: 33007643 DOI: 10.1016/j.saa.2020.118944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
To explore the biological properties of rosin derivatives, two dehydroabietic acid derivatives N-(5-dehydroabietyl-1,3,4-thiadiazole)-yl-pyridine-2-carboxamide (DTPC) and di-N-(5-dehydroabietyl-1,3,4-thiadiazole)-yl-pyridine-2,6-carboxamide (DDTPC) with 1,3,4-thiadiazole, pyridine and amide moieties were designed and synthesized according to superposition principle of activity group. They interact with calf thymus DNA (CT DNA) via intercalation based on the results of circular dichroism (CD) and fluorescence spectroscopy, DNA denaturation and viscosity studies. Fluorescence and CD spectral experiments indicate that they might be transported and stored by protein like bovine serum albumin (BSA). MTT assay was further carried out to examine their cytotoxicity, they both showed selective cytotoxicity and DTPC exhibited better cytotoxicity. The antiproliferative effect of DTPC toward A431 cell line was stronger than that of clinically used cisplatin and oxaliplatin. In addition, the cytotoxicity of DTPC and DDTPC was closely related with their DNA binding ability.
Collapse
Affiliation(s)
- Lin-Ying Li
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Bao-Li Fei
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Pingping Wang
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ling-Yan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jian-Ying Long
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
30
|
da Silva CFN, Chrispim PBH, Possato B, Portapilla GB, Rohrabaugh TN, Ramos LCB, Santana da Silva R, de Albuquerque S, Turro C, Nikolaou S. Anticancer and antitrypanosomal activities of trinuclear ruthenium compounds with orthometalated phenazine ligands. Dalton Trans 2020; 49:16440-16452. [PMID: 32776028 DOI: 10.1039/d0dt01035a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trinuclear ruthenium complexes with orthometalated phenazines of general formula [Ru3(μ3-O)(μ2-OAc)5(L)(py)2]PF6 (L = dppn, benzo[i]dipyrido[3,2-a:2',3'-c]phenazine, 1; dppz, dipyrido[3,2-a:2',3'-c]phenazine, 2; CH3-dppz, 7-methyldipyrido[3,2-a:2',3'-c]phenazine, 3; Cl-dppz, 7-chlorodipyrido[3,2-a:2',3'-c]phenazine, 4) were investigated for their cytotoxic activity toward the B16F10 murine melanoma and the L929 non-cancer cell lines and against Trypanosoma cruzi (2-4). This study also reports a multi-technique investigation into how complexes 1-4 interact with DNA and human serum albumin, HSA. At concentrations ranging from 2 to 50 μM, all the complexes reduced B16F10 murine melanoma cell viability by over 50%. Complex 4 had the highest cytotoxic effect in the series, diminishing B16F10 cell viability to 38% at 2 μM, with an overall order for anticancer activity of 4 > 2 > 3 > 1. Complexes 2-4 showed remarkable activity in inhibiting epimastigote and amastigote forms of T. cruzi. Complex 2 showed better antitrypanosomal activity than the reference drug (IC50 = 1.19 μM and IC50 = 0.25 μM for epimastigote and amastigotes forms, respectivily). Ethidium bromide (EB) displacement assays showed that DNA intercalation progressively increases with the extension of the π-conjugation of the cyclometalating ligand and the presence of substituents in the phenazinic portion (1 > 4-3 > 2), showing that complex 1 is a stronger intercalator than EB itself (Kapp > 107 M-1). Viscosity measurements followed the same trend. Cytotoxicity against cancer cells and antitrypanosomal activity follow the same order, which is different to the tendency of DNA intercalation, suggesting DNA is not the main target of these complexes. Compound 1-4 showed very high affinity with HSA (Kb ∼109 M-1). Circular dichroism results also showed that the complexes alter significantly the secondary structure of the HSA, lowering the α-helix % from 86.2 (pure protein) to less than 5% for compounds 1, 2 and 4 at 2.8 μM. These findings demonstrated the important role of phenazines for the biological activity of triruthenium compounds.
Collapse
Affiliation(s)
- Camila Fontes Neves da Silva
- LABIQSC2 (Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação), Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schutte-Smith M, Marker SC, Wilson JJ, Visser HG. Aquation and Anation Kinetics of Rhenium(I) Dicarbonyl Complexes: Relation to Cell Toxicity and Bioavailability. Inorg Chem 2020; 59:15888-15897. [PMID: 33084304 DOI: 10.1021/acs.inorgchem.0c02389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aquation reactions of four rhenium(I) dicarbonyl complexes, [Re(CO)2(NN)(PR3)(Cl)], where NN = 1,10-phenanthroline (Phen) and 2,9-dimethyl-1,10-phenanthroline (DMPhen) and PR3 = 1,3,5-triaza-7-phosphaadamantane (PTA) and 1,4-diacetyl-1,3,7-triaza-5-phosphabicylco[3.3.1]nonane (DAPTA). Additionally, the anation reactions of the corresponding aqua complexes with Cl- were investigated. Single crystals of [Re(CO)2(DMPhen)(PTA)(Cl)]·DMF and [Re(CO)2(DMPhen)(DAPTA)(Cl)] were obtained, and their structures were determined using X-ray diffraction. The Re-Cl interatomic distances are 2.4991(13) and 2.4922(6) Å, respectively, indicating a mild trans influence effect of the phosphine ligands. The rate constants, kaq, for the aquation reactions of these complexes spanned a range of (3.7 ± 0.3) × 10-4 to (15.7 ± 0.3) × 10-4 s-1 with the two Phen complexes having rate constants that are 2.5 times greater than those of the DMPhen complexes at 298 K. Similarly, the second-order anation rate constants (kCl) of the resulting aqua complexes, [Re(CO)2(NN)(PR3)(H2O)]+, with Cl- ions at 298 K varied between (2.99 ± 0.05) × 10-3 and (6.79 ± 0.09) × 10-3 M-1 s-1. Likewise, these rate constants for the Phen complexes were almost 2 times faster than those of the DMPhen complexes. The pKa values of the four aqua complexes were determined to be greater than 9.0 for all of the complexes with [Re(CO)2(Phen)(PTA)(H2O)]+ having the highest pKa value of 9.28 ± 0.03. From the pKa values and the ratios of the aquation and anation rate contants, which give thermodynamic Cl- binding constants, the speciation of the rhenium(I) complexes in blood plasma, the cytoplasm, and the cell nucleus were estimated. The data suggest that the aqua complexes would be the dominant species in all three environments. This result may have important implications on the potential biological activity of these complexes.
Collapse
Affiliation(s)
| | - Sierra C Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hendrik G Visser
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa 9301
| |
Collapse
|
32
|
Tu S, Fei BL, Wang P, Kong LY, Long JY, Li DD. DNA and BSA binding study of an optically pure rosin derivative and its two copper(II) complexes. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1817414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shuangyan Tu
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Bao-Li Fei
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Pingping Wang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ling-Yan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Jian-Ying Long
- College of Science, Nanjing Forestry University, Nanjing, China
| | - Dong-Dong Li
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
33
|
Nunes P, Correia I, Marques F, Matos AP, Dos Santos MMC, Azevedo CG, Capelo JL, Santos HM, Gama S, Pinheiro T, Cavaco I, Pessoa JC. Copper Complexes with 1,10-Phenanthroline Derivatives: Underlying Factors Affecting Their Cytotoxicity. Inorg Chem 2020; 59:9116-9134. [PMID: 32578983 DOI: 10.1021/acs.inorgchem.0c00925] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interpretation of in vitro cytotoxicity data of Cu(II)-1,10-phenanthroline (phen) complexes normally does not take into account the speciation that complexes undergo in cell incubation media and its implications in cellular uptake and mechanisms of action. We synthesize and test the activity of several distinct Cu(II)-phen compounds; up to 24 h of incubation, the cytotoxic activity differs for the Cu complexes and the corresponding free ligands, but for longer incubation times (e.g., 72 h), all compounds display similar activity. Combining the use of several spectroscopic, spectrometric, and electrochemical techniques, the speciation of Cu-phen compounds in cell incubation media is evaluated, indicating that the originally added complex almost totally decomposed and that Cu(II) and phen are mainly bound to bovine serum albumin. Several methods are used to disclose relationships between structure, activity, speciation in incubation media, cellular uptake, distribution of Cu in cells, and cytotoxicity. Contrary to what is reported in most studies, we conclude that interaction with cell components and cell death involves the separate action of Cu ions and phen molecules, not [Cu(phen)n] species. This conclusion should similarly apply to many other Cu-ligand systems reported to date.
Collapse
Affiliation(s)
- Patrique Nunes
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Ciências e Engenharia Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - António Pedro Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Margarida M C Dos Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cristina G Azevedo
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José-Luis Capelo
- LAVQ, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Hugo M Santos
- LAVQ, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Sofia Gama
- Department of Analytical Chemistry, Faculty of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Teresa Pinheiro
- Institute for Bioengineering and Biosciences and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Isabel Cavaco
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal.,Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
34
|
Heydari R, Motieiyan E, Aliabadi A, Abdolmaleki S, Ghadermazi M, Yarmohammadi N. Synthesis, crystallographic studies, electrochemical and in vitro cytotoxicity properties of two Mn(II) and U(IV) complexes containing dipicolinic acid and 4-dimethylaminopyridine. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
The Zn( S-pr-thiosal) 2 complex attenuates murine breast cancer growth by inducing apoptosis and G1/S cell cycle arrest. Future Med Chem 2020; 12:897-914. [PMID: 32267176 DOI: 10.4155/fmc-2019-0215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: We investigated the antitumor effects of zinc(II) complex with S-propyl thiosalicylic acid [Zn(S-pr-thiosal)2] in 4T1 murine breast cancer model. Results: The Zn(S-pr-thiosal)2 complex reduced primary tumor growth in vivo and induced tumor cell apoptosis. The Zn(S-pr-thiosal)2 complex disrupted the balance between pro- and antiapoptotic Bcl-2 family members in 4T1 cells and induced G1/S cell cycle arrest. The Zn(S-pr-thiosal)2 complex increased the percentage of p16, p21 and p27 positive 4T1 cells. There was a significantly decrease in expression of STAT3 and its targets c-Myc and cyclin D3 in 4T1 cells treated with the Zn(S-pr-thiosal)2 complex thus contributing to G1/S cell cycle arrest and/or apoptosis. Conclusion: Our data suggest that the Zn(S-pr-thiosal)2 complex restricted tumor growth through induction of mitochondrial-driven apoptosis and suppression of cell cycle progression.
Collapse
|
36
|
Abbas S, Rashid F, Ulker E, Zaib S, Ayub K, Ullah S, Nadeem MA, Yousuf S, Ludwig R, Ali S, Iqbal J. Anticancer evaluation of a manganese complex on HeLa and MCF-7 cancer cells: design, deterministic solvothermal synthesis approach, Hirshfeld analysis, DNA binding, intracellular reactive oxygen species production, electrochemical characterization and density functional theory. J Biomol Struct Dyn 2020; 39:1068-1081. [DOI: 10.1080/07391102.2020.1726818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Saghir Abbas
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
- Department of Chemistry, Quaid-I-Azam University Islamabad, Islamabad, Pakistan
| | - Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Emine Ulker
- Department of Chemistry, Faculty of Arts & Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, Pakistan
| | - Sana Ullah
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Sammer Yousuf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ralf Ludwig
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Rostock, Germany
| | - Saqib Ali
- Department of Chemistry, Quaid-I-Azam University Islamabad, Islamabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
37
|
Agonigi G, Biancalana L, Lupo MG, Montopoli M, Ferri N, Zacchini S, Binacchi F, Biver T, Campanella B, Pampaloni G, Zanotti V, Marchetti F. Exploring the Anticancer Potential of Diiron Bis-cyclopentadienyl Complexes with Bridging Hydrocarbyl Ligands: Behavior in Aqueous Media and In Vitro Cytotoxicity. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gabriele Agonigi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Maria Giovanna Lupo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Monica Montopoli
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Francesca Binacchi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Tarita Biver
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | - Beatrice Campanella
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Valerio Zanotti
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
38
|
Novel nickel(II), palladium(II), and platinum(II) complexes having a pyrrolyl-iminophosphine (PNN) pincer: Synthesis, crystal structures, and cytotoxic activity. J Inorg Biochem 2020; 205:111015. [PMID: 32032825 DOI: 10.1016/j.jinorgbio.2020.111015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/29/2022]
Abstract
A pyrrolyl-iminophosphine (PNNH) which would act as a potential terdentate ligand has been prepared by Schiff base reaction. Complexes [M(PNN)X] (M = Ni; X = Cl (1), Pd; X = Cl (2), Br (3), I (4), M = Pt; X = Cl (5)) were prepared. The title complexes were characterized by various spectroscopic (IR, 1H, 13C, and 31P NMR) and elemental analyses. The molecular structures of 1, 2, and 5 have been established by single-crystal X-ray crystallography, demonstrating a distorted square planar geometry comprising two 5-membered metallacyclic rings. Complexes 1 and 2 were found to crystallize in the orthorhombic while complex 5 crystallizes in the monoclinic. Cytotoxicities of the complexes along with PNNH were evaluated against A549 (lung), SK-OV-3 (ovarian), SM-MEL-2 (skin), and HCT15 (colon) human cancer cell lines by sulforhodamine B assay. Notably, the palladium(II) complex (2) shows the highest activity. Apoptosis activity along with the caspase inhibitor Z-VAD (Z-Val-Ala-Asp-fluoromethyl ketone) assay of 2 and 5 against A549 and HCT15 cancer cell lines were investigated to learn a mechanistic pathway for the observed cytotoxicity, practically eliminating an apoptotic cell-death route. Complexes 2 and 5 were studied to DNA cleavage assay and molecular docking simulation. The DNA (pcDNA3.0) cleavage experiment evaluates complex 5 interacting with DNA, more effectively, in comparison to complex 2. Molecular docking simulation of 2 and 5 toward DNA and GRP78 (glucose-regulated protein 78) was performed to predict binding sites of ligand-receptors and a plausible mechanistic aspect of metallodrug-action.
Collapse
|
39
|
Schoch S, Batchelor LK, Funaioli T, Ciancaleoni G, Zacchini S, Braccini S, Chiellini F, Biver T, Pampaloni G, Dyson PJ, Marchetti F. Diiron Complexes with a Bridging Functionalized Allylidene Ligand: Synthesis, Structural Aspects, and Cytotoxicity. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Silvia Schoch
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lucinda K. Batchelor
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tiziana Funaioli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Simona Braccini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Federica Chiellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Tarita Biver
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
40
|
Synthesis, characterization, DFT study, DNA/BSA-binding affinity, and cytotoxicity of some dinuclear and trinuclear gold(III) complexes. J Biol Inorg Chem 2019; 24:1057-1076. [PMID: 31489480 DOI: 10.1007/s00775-019-01716-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/28/2019] [Indexed: 01/22/2023]
Abstract
In this study, we have synthesized a series of dinuclear and trinuclear gold(III) complexes of the general formula [Au2(N-N)Cl6] (1-3) for dinuclear and [Au3(N-N)2Cl8]+ (4-6) for trinuclear compounds, respectively, in which N-N is a bidentate ligand (1,4-diaminobutane; 1,6-diaminohexane or 1,8-diaminooctane). These complexes were characterized by elemental analysis, molar conductivity, and spectroscopic techniques (IR, UV-Vis, 1H NMR, ESI-MS). We performed DFT calculations to get insight into the geometry of the studies complexes. DNA-binding studies were performed by UV-Vis spectrophotometry and fluorescence spectroscopy. The results of competitive reactions between gold(III) complexes and ethidium bromide (EB) towards DNA have shown that selected complexes can displace EB from DNA-EB adduct. In addition, these experiments confirm that polynuclear gold(III) complexes interact with DNA covalently or via intercalation. Furthermore, high values of binding constants of gold(III) complexes towards bovine serum albumin (BSA) protein indicate good binding affinity. In addition, redox stability of complexes in the presence of DNA/BSA was confirmed by cyclic voltammetry. Results of the interactions between gold(III) complexes with DNA/BSA were discussed in reference to molecular docking data obtain by Molegro virtual docker. The cytotoxic activity of synthesized gold(III) complexes was evaluated on human breast cancer cell line (MDA-MB-231), human colorectal cancer cell line (HCT-116), and normal human lung fibroblast cell line (MRC-5). All complexes dose-dependently reduced cancer and normal cells viabilities, with significant cytotoxic effects (IC50 < 25 μM) for trinuclear gold(III) complexes (4, 5) on HCT-116 cells.
Collapse
|
41
|
Rocco D, Batchelor LK, Agonigi G, Braccini S, Chiellini F, Schoch S, Biver T, Funaioli T, Zacchini S, Biancalana L, Ruggeri M, Pampaloni G, Dyson PJ, Marchetti F. Anticancer Potential of Diiron Vinyliminium Complexes. Chemistry 2019; 25:14801-14816. [PMID: 31441186 DOI: 10.1002/chem.201902885] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/20/2019] [Indexed: 11/08/2022]
Abstract
Although ferrocene derivatives have attracted considerable attention as possible anticancer agents, the medicinal potential of diiron complexes has remained largely unexplored. Herein, we describe the straightforward multigram-scale synthesis and the antiproliferative activity of a series of diiron cyclopentadienyl complexes containing bridging vinyliminium ligands. IC50 values in the low-to-mid micromolar range were determined against cisplatin sensitive and resistant human ovarian carcinoma (A2780 and A2780cisR) cell lines. Notable selectivity towards the cancerous cells lines compared to the non-tumoral human embryonic kidney (HEK-293) cell line was observed for selected compounds. The activity seems to be multimodal, involving reactive oxygen species (ROS) generation and, in some cases, a fragmentation process to afford monoiron derivatives. The large structural variability, amphiphilic character and good stability in aqueous media of the diiron vinyliminium complexes provide favorable properties compared to other widely studied classes of iron-based anticancer candidates.
Collapse
Affiliation(s)
- Dalila Rocco
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Lucinda K Batchelor
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Gabriele Agonigi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Simona Braccini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Federica Chiellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Silvia Schoch
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Tarita Biver
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Tiziana Funaioli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Marina Ruggeri
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
42
|
Bjelogrlić SK, Todorović TR, Kojić M, Senćanski M, Nikolić M, Višnjevac A, Araškov J, Miljković M, Muller CD, Filipović NR. Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification. J Inorg Biochem 2019; 199:110758. [PMID: 31299379 DOI: 10.1016/j.jinorgbio.2019.110758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023]
Abstract
Anticancer activity of Pd complexes 1-5 with bidentate N-heteroaromatic hydrazone ligands was investigated on human acute monocytic leukemia (THP-1; cells in a suspension) and human mammary adenocarcinoma (MCF-7; two-dimensional layer and three-dimensional spheroid tumor model) cell lines. For the Pd(II) complexes with condensation products of ethyl hydrazainoacetate and quinoline-8-carboxaldehyde (complex 1) and 2-formylpyridine (complex 3), for which apoptosis was determined as a mechanism of anticancer activity, further investigation revealed that they arrest the cell cycle in G0/G1 phase, induce generation of reactive oxygen species and inhibit Topoisomerase I in vitro. In silico studies corroborate experimental findings that these complexes show topoisomerase inhibition activity in the micromolar range and indicate binding to a DNA's minor groove as another potential target. Based on the results obtained by circular dichroism and fluorescence spectroscopy measurements, the most active complexes are suitable to be delivered to a blood stream via human serum albumin.
Collapse
Affiliation(s)
- Snežana K Bjelogrlić
- National Cancer Research Center of Serbia, Pasterova 14, 11000 Belgrade, Serbia; Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, 67401 Illkirch, France
| | - Tamara R Todorović
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, V. Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Milan Senćanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences "Vinča", University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Nikolić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Aleksandar Višnjevac
- Physical Chemistry Division, Ruđer Bošković Institute, Bijenička c. 54, HR-10000 Zagreb, Croatia
| | - Jovana Araškov
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, V. Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Christian D Muller
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, 67401 Illkirch, France
| | - Nenad R Filipović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11000 Belgrade, Serbia.
| |
Collapse
|
43
|
Song XQ, Wang ZG, Wang Y, Huang YY, Sun YX, Ouyang Y, Xie CZ, Xu JY. Syntheses, characterization, DNA/HSA binding ability and antitumor activities of a family of isostructural binuclear lanthanide complexes containing hydrazine Schiff base. J Biomol Struct Dyn 2019; 38:733-743. [DOI: 10.1080/07391102.2019.1587511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Zhi-Gang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yu-Ying Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yu-Xuan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yan Ouyang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, P. R. China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, P. R. China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| |
Collapse
|
44
|
Synthesis, X-ray studies, electrochemical properties, evaluation as in vitro cytotoxic and antibacterial agents of two antimony(III) complexes with dipicolinic acid. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Bjelogrlić S, Todorović TR, Cvijetić I, Rodić MV, Vujčić M, Marković S, Araškov J, Janović B, Emhemmed F, Muller CD, Filipović NR. A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells. J Inorg Biochem 2018; 190:45-66. [PMID: 30352315 DOI: 10.1016/j.jinorgbio.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/16/2018] [Accepted: 10/03/2018] [Indexed: 11/29/2022]
Abstract
A novel binuclear Cd complex (1) with hydrazone-based ligand was prepared and characterized by spectroscopy and single crystal X-ray diffraction techniques. Complex 1 reveals a strong pro-apoptotic activity in both human, mammary adenocarcinoma cells (MCF-7) and pancreatic AsPC-1 cancer stem cells (CSCs). While apoptosis undergoes mostly caspase-independent, 1 stimulates the activation of intrinsic pathway with noteworthy down regulation of caspase-8 activity in respect to non-treated controls. Distribution of cells over mitotic division indicates that 1 caused DNA damage in both cell lines, which is confirmed in DNA interaction studies. Compared to 1, cisplatin (CDDP) does not achieve cell death in 2D cultured AsPC-1 cells, while induces different pattern of cell cycle changes and caspase activation in 2D cultured MCF-7 cells, implying that these two compounds do not share similar mechanism of action. Additionally, 1 acts as a powerful inducer of mitochondrial superoxide production with dissipated trans-membrane potential in the majority of the treated cells already after 6 h of incubation. On 3D tumors, 1 displays a superior activity against CSC model, and at 100 μM induces disintegration of spheroids within 2 days of incubation. Fluorescence spectroscopy, along with molecular docking show that compound 1 binds to the minor groove of DNA. Compound 1 binds to the human serum albumin (HSA) showing that the HSA can effectively transport and store 1 in the human body. Thus, our current study strongly supports further investigations on antitumor activity of 1 as a drug candidate for the treatment of highly resistant pancreatic cancer.
Collapse
Affiliation(s)
- Snežana Bjelogrlić
- National Cancer Research Center of Serbia, Pasterova 14, Belgrade, Serbia; Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, 67401 Illkirch, France
| | - Tamara R Todorović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Ilija Cvijetić
- Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Marko V Rodić
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia
| | - Miroslava Vujčić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, Serbia
| | - Sanja Marković
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Jovana Araškov
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Barbara Janović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, Serbia
| | - Fathi Emhemmed
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, 67401 Illkirch, France
| | - Christian D Muller
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, 67401 Illkirch, France
| | - Nenad R Filipović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, Serbia.
| |
Collapse
|
46
|
Abdolmaleki S, Ghadermazi M, Ashengroph M, Saffari A, Sabzkohi SM. Cobalt (II), zirconium(IV), calcium(II) complexes with dipicolinic acid and imidazole derivatives: X-ray studies, thermal analyses, evaluation as in vitro antibacterial and cytotoxic agents. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
47
|
Choo KB, Mah WL, Lee SM, Lee WL, Cheow YL. Palladium complexes of bidentate pyridineN-heterocyclic carbenes: Optical resolution, antimicrobial and cytotoxicity studies. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kar Bee Choo
- School of Science, Monash University Malaysia; Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| | - Wee Li Mah
- School of Science, Monash University Malaysia; Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| | - Sui Mae Lee
- School of Science, Monash University Malaysia; Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| | - Wai Leng Lee
- School of Science, Monash University Malaysia; Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| | - Yuen Lin Cheow
- School of Science, Monash University Malaysia; Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| |
Collapse
|
48
|
Boscutti G, Nardon C, Marchiò L, Crisma M, Biondi B, Dalzoppo D, Dalla Via L, Formaggio F, Casini A, Fregona D. Anticancer Gold(III) Peptidomimetics: From Synthesis to in vitro and ex vivo Biological Evaluations. ChemMedChem 2018; 13:1131-1145. [PMID: 29570944 DOI: 10.1002/cmdc.201800098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/14/2018] [Indexed: 12/25/2022]
Abstract
Five new AuIII -peptidodithiocarbamato complexes of the type [AuIII Br2 (dtc-AA1 -AA2 -OR] (in which AA1 =N-methylglycine (Sar), l/d-Pro; AA2 =l/d-Ala, α-aminoisobutyric acid (Aib); R=OtBu, triethylene glycol methyl ether), differing with regard to the amino acid sequence and/or the chiral amino acid configuration, were designed to enhance tumor selectivity and bioavailability. The gold(III)-based moiety was functionalized to exploit the targeting properties of the peptidomimetic ligand toward two peptide transporters (namely PEPT1 and PEPT2), which are upregulated in several tumor cells. The compounds were synthesized and fully characterized, mainly by means of elemental analysis, one- and two-dimensional NMR spectroscopy, FT-IR, and UV/Vis spectrophotometry. The crystal structures of three compounds were also solved by X-ray diffraction. In vitro cytotoxicity studies using a panel of human tumor cell lines (A549 [non-small-cell lung carcinoma], MCF-7 [breast cancer], A2780 [ovarian carcinoma], H1975 [non-small-cell lung carcinoma], H460 [large-cell lung carcinoma], and A431 [human epidermoid carcinoma]) showed the dtc-Pro-Aib-OtBu derivative to be very effective, with GI50 values much lower than those of cisplatin. This complex was thus selected for evaluating stability under physiological conditions and possible interactions with serum albumin, as well in PARP-1 enzyme inhibition assays and preliminary ex vivo toxicity experiments on healthy rat tissues.
Collapse
Affiliation(s)
- Giulia Boscutti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Chiara Nardon
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Luciano Marchiò
- SCVSA Department, University of Parma, Parco Area delle Scienze 17/A, 43121, Parma, Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Daniele Dalzoppo
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.,Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Angela Casini
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK.,Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 GV, Groningen, The Netherlands
| | - Dolores Fregona
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
49
|
Reytman L, Hochman J, Tshuva EY. Anticancer diaminotris(phenolato) vanadium(V) complexes: Ligand-metal interplay. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1461848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lilia Reytman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacob Hochman
- Department of Cell and Development Biology Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Edit Y. Tshuva
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
50
|
|