1
|
Guardigni M, Greco G, Poeta E, Santini A, Tassinari E, Bergamini C, Zalambani C, De Simone A, Andrisano V, Uliassi E, Monti B, Bolognesi ML, Fimognari C, Milelli A. Integrating a quinone substructure into histone deacetylase inhibitors to cope with Alzheimer's disease and cancer. RSC Med Chem 2024; 15:2045-2062. [PMID: 38911150 PMCID: PMC11187553 DOI: 10.1039/d4md00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/13/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) and cancer are among the most devastating diseases of the 21st century. Although the clinical manifestations are different and the cellular mechanisms underlying the pathologies are opposite, there are different classes of molecules that are effective in both diseases, such as quinone-based compounds and histone deacetylase inhibitors (HDACIs). Herein, we investigate the biological effects of a series of compounds built to exploit the beneficial effects of quinones and histone deacetylase inhibition (compounds 1-8). Among the different compounds, compound 6 turned out to be a potent cytotoxic agent in SH-SY5Y cancer cell line, with a half maximal inhibitory concentration (IC50) value lower than vorinostat and a pro-apoptotic activity. On the other hand, compound 8 was nontoxic up to the concentration of 100 μM and was highly effective in stimulating the proliferation of neural precursor cells (NPCs), as well as inducing differentiation into neurons, at low micromolar concentrations. In particular, it was able to induce NPC differentiation solely towards a neuronal-specific phenotype, without affecting glial cells commitment.
Collapse
Affiliation(s)
- Melissa Guardigni
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Giulia Greco
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna 40129 Bologna Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Alan Santini
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Elisa Tassinari
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin 10125 Turin Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| |
Collapse
|
2
|
Icarisid
II
rescues cognitive dysfunction via activation of Wnt/β‐catenin signaling pathway promoting hippocampal neurogenesis in
APP
/
PS1
transgenic mice. Phytother Res 2022; 36:2095-2108. [DOI: 10.1002/ptr.7430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
|
3
|
Uliassi E, de Oliveira AS, de Camargo Nascente L, Romeiro LAS, Bolognesi ML. Cashew Nut Shell Liquid (CNSL) as a Source of Drugs for Alzheimer's Disease. Molecules 2021; 26:5441. [PMID: 34576912 PMCID: PMC8466601 DOI: 10.3390/molecules26185441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with a multifaceted pathogenesis. This fact has long halted the development of effective anti-AD drugs. Recently, a therapeutic strategy based on the exploitation of Brazilian biodiversity was set with the aim of discovering new disease-modifying and safe drugs for AD. In this review, we will illustrate our efforts in developing new molecules derived from Brazilian cashew nut shell liquid (CNSL), a natural oil and a byproduct of cashew nut food processing, with a high content of phenolic lipids. The rational modification of their structures has emerged as a successful medicinal chemistry approach to the development of novel anti-AD lead candidates. The biological profile of the newly developed CNSL derivatives towards validated AD targets will be discussed together with the role of these molecular targets in the context of AD pathogenesis.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy;
| | - Andressa Souza de Oliveira
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Luciana de Camargo Nascente
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Luiz Antonio Soares Romeiro
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy;
| |
Collapse
|
4
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
5
|
Yilmaz EN, Bay S, Ozturk G, Ucisik MH. Neuroprotective Effects of Curcumin-Loaded Emulsomes in a Laser Axotomy-Induced CNS Injury Model. Int J Nanomedicine 2020; 15:9211-9229. [PMID: 33244233 PMCID: PMC7685369 DOI: 10.2147/ijn.s272931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Curcumin, a polyphenol isolated from the rhizomes of turmeric, holds great potential as a neuroprotective agent in addition to its anti-inflammatory and antioxidant characteristics. The poor bioavailability and low stability of curcumin are the greatest barriers to its clinical use. This study aims to investigate the neuroprotective effect of curcumin on axonal injury, by delivering the lipophilic polyphenol to a primary hippocampal neuron culture by means of a lipid-based drug delivery system, named emulsomes. METHODS To study neuroregeneration ex vivo, an injury model was established through single-cell laser axotomy on hippocampal neurites. Upon treatment with curcumin-loaded emulsomes (CurcuEmulsomes), curcumin and CurcuEmulsome uptake into neurons was verified by three-dimensional Z-stack images acquired with confocal microscopy. Neuron survival after axonal injury was tracked by propidium iodide (PI) and Hoechst staining. Alterations in expression levels of physiological markers, such as anti-apoptotic marker Bcl2, apoptotic marker cleaved caspase 3, neuroprotective marker Wnt3a and the neuronal survival marker mTOR, were investigated by immunocytochemistry analyses. RESULTS The results indicated significant improvement in the survival rate of injured neurons upon CurcuEmulsome treatment. Bcl2 expression was significantly higher for injured neurons treated with curcumin or CurcuEmulsome. Reduction in caspase 3 expression was seen in both curcumin and CurcuEmulsome treatment, whereas there were no significant changes in Wnt3a and mTOR expression. CONCLUSION The established laser-axotomy model was proven as a reliable methodology to study neurodegenerative models ex vivo. CurcuEmulsomes delivered curcumin to primary hippocampal neurons successfully. Treated with CurcuEmulsomes, injured hippocampal neurons benefit from the neuroprotective effects of curcumin, exhibiting a higher survival rate and increased anti-apoptotic marker levels.
Collapse
Affiliation(s)
- Elif Nur Yilmaz
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, Istanbul, Turkey
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Sadik Bay
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Gurkan Ozturk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, Istanbul, Turkey
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Mehmet Hikmet Ucisik
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, Istanbul, Turkey
- Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| |
Collapse
|
6
|
Xiao H, Li H, Song H, Kong L, Yan X, Li Y, Deng Y, Tai H, Wu Y, Ni Y, Li W, Chen J, Yang J. Shenzao jiannao oral liquid, an herbal formula, ameliorates cognitive impairments by rescuing neuronal death and triggering endogenous neurogenesis in AD-like mice induced by a combination of Aβ42 and scopolamine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112957. [PMID: 32416248 DOI: 10.1016/j.jep.2020.112957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the theory of traditional Chinese medicine (TCM), Alzheimer's disease (AD) is identified as "forgetfulness" or "dementia", and is mainly caused by "kidney essence deficiency" which ultimately induces "encephala reduction". Therefore, herbal formulas possessing the efficacy of nourishing kidney essence or replenishing brain marrow are commonly served as effective strategies for AD treatment. Shenzao jiannao oral liquid (SZJN), a traditional Chinese preparation approved by the China Food and Drug Administration (CFDA), is used for the treatment of insomnia and mind fatigue at present for its efficacy of nourishing kidneys. In present study, we found that SZJN could improve cognitive function of AD-like mice. AIMS OF STUDY This study aims to investigate the effects of SJZN on ameliorating cognitive deficits of AD-like mouse model, and to illuminate the underlying mechanisms from the perspective of neuroprotection and neurogenesis. MATERIALS AND METHODS Kunming mice (28 ± 2 g) were randomly allocated into seven groups: control, sham, model, donepezil and SZJN groups (low, middle and high). The AD mouse model was established by Aβ42 combined with scopolamine. SZJN were intragastrically administrated at doses of 0.3, 1.5 and 7.5 g/kg for 28 days. Morris water maze (MWM) test was applied to determine the cognitive function. Hematoxylin eosin (HE) and Nissl staining were carried out to evaluate pathological damages in the cortex and hippocampal tissues. To explore the protective effects of SZJN on multiple pathogenic factors of AD, protein levels of Aβ42, glial fibrillary acidic protein (GFAP), Bax, Bcl-2, Caspase-3, synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), and neurogenesis related proteins were assessed using Immunofluorescence (IF) and western blot analysis. In vitro, the AD cell model was established by transduction of APP695swe genes into Neural stem cells (NSCs) isolated from the hippocampal tissues of neonatal C57BL/6 mice. Cell viability assay and neurosphere formation assay were carried out to verify the efficacy of SZJN on proliferation of NSCs. RESULTS Our results demonstrated that SZJN (1.5 g/kg and 7.5 g/kg) treatment significantly ameliorated cognitive deficits of AD-like mice. SZJN (7.5 g/kg) treatment significantly retarded the pathological damages including neuronal degeneration, neuronal apoptosis, Aβ peptides aggregation and reaction of astrocytes in AD-like mice. In addition, SZJN (7.5 g/kg) increased the expression of BDNF and SYP, and restored the abnormal level of MDA and SOD in the brain of AD-like mice. Furthermore, SZJN treatment for 28 days remarkably increased the proliferation of NSCs evidenced by more Nestin+ and BrdU+ cells in the hippocampal DG regions, and increased the amount of mature neurons marked by NeuN both in the cortex and hippocampal DG regions. In vitro, SZJN treatement (16, 32, 64 mg/ml) promoted the proliferation of NSCs evidenced by the increased amount and enlarged size of the neurospheres (p < 0.05). CONCLUSIONS Our findings indicated that SZJN could ameliorate cognitive deficits by protecting neurons from death and triggering endogenous neurogenesis. Therefore, SZJN may be considered as a promising agent to restore neuronal loss and deter the deterioration in AD patients.
Collapse
Affiliation(s)
- Honghe Xiao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China.
| | - Hongyan Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Huipeng Song
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Liang Kong
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Xin Yan
- Diaoyutai Pharmaceutical Group Jilin Tianqiang Pharmaceutical co. LTD, 309 Renmin Street, Tonghua, 135300, PR China
| | - Yan Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Yan Deng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - He Tai
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Visera-State Theory and Application, Liaoning University of Traditional Chinese Medicine, Huanggu District Chongshan Road No. 79, Shenyang, Liaoning, 110847, PR China
| | - Yutong Wu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Yingnan Ni
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Wanyi Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Jicong Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Jingxian Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China.
| |
Collapse
|
7
|
Brucato FH, Benjamin DE. Synaptic Pruning in Alzheimer's Disease: Role of the Complement System. GLOBAL JOURNAL OF MEDICAL RESEARCH 2020; 20:10.34257/gjmrfvol20is6pg1. [PMID: 32982106 PMCID: PMC7518506 DOI: 10.34257/gjmrfvol20is6pg1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alz heimer’s disease (AD) continues to threaten aged individuals and health care systems around the world. Human beings have been trying to postpone, reduce, or eliminate the primary risk factor for AD, aging, throughout history. Despite this, there is currently only symptomatic treatment for AD and this treatment is limited to only a handful of FDA approved AD drugs.
Collapse
Affiliation(s)
- Frederic H Brucato
- Cascade Biotechnology Inc., Princeton Corporate Plaza 1 Deer Park Dr., Suite D5. Monmouth Junction NJ 08852
| | - Daniel E Benjamin
- Cascade Biotechnology Inc., Princeton Corporate Plaza 1 Deer Park Dr., Suite D5. Monmouth Junction NJ 08852
| |
Collapse
|
8
|
Rodríguez-Lavado J, Gallardo-Garrido C, Mallea M, Bustos V, Osorio R, Hödar-Salazar M, Chung H, Araya-Maturana R, Lorca M, Pessoa-Mahana CD, Mella-Raipán J, Saitz C, Jaque P, Reyes-Parada M, Iturriaga-Vásquez P, Pessoa-Mahana H. Synthesis, in vitro evaluation and molecular docking of a new class of indolylpropyl benzamidopiperazines as dual AChE and SERT ligands for Alzheimer's disease. Eur J Med Chem 2020; 198:112368. [PMID: 32388114 DOI: 10.1016/j.ejmech.2020.112368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
During the last decade, the one drug-one target strategy has resulted to be inefficient in facing diseases with complex ethiology like Alzheimer's disease and many others. In this context, the multitarget paradigm has emerged as a promising strategy. Based on this consideration, we aim to develop novel molecules as promiscuous ligands acting in two or more targets at the same time. For such purpose, a new series of indolylpropyl-piperazinyl oxoethyl-benzamido piperazines were synthesized and evaluated as multitarget-directed drugs for the serotonin transporter (SERT) and acetylcholinesterase (AChE). The ability to decrease β-amyloid levels as well as cell toxicity of all compounds were also measured. In vitro results showed that at least four compounds displayed promising activity against SERT and AChE. Compounds 18 and 19 (IC50 = 3.4 and 3.6 μM respectively) exhibited AChE inhibition profile in the same order of magnitude as donepezil (DPZ, IC50 = 2.17 μM), also displaying nanomolar affinity in SERT. Moreover, compounds 17 and 24 displayed high SERT affinities (IC50 = 9.2 and 1.9 nM respectively) similar to the antidepressant citalopram, and significant micromolar AChE activity at the same time. All the bioactive compounds showed a low toxicity profile in the range of concentrations studied. Molecular docking allowed us to rationalize the binding mode of the synthesized compounds in both targets. In addition, we also show that compounds 11 and 25 exhibit significant β-amyloid lowering activity in a cell-based assay, 11 (50% inhibition, 10 μM) and 25 (35% inhibition, 10 μM). These results suggest that indolylpropyl benzamidopiperazines based compounds constitute promising leads for a multitargeted approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Julio Rodríguez-Lavado
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Carlos Gallardo-Garrido
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Michael Mallea
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Victor Bustos
- Laboratory of Cellular and Molecular Neuroscience, The Rockefeller University, New York, USA
| | - Rodrigo Osorio
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Martín Hödar-Salazar
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería Ciencias, Universidad de la Frontera, Temuco, Chile
| | - Hery Chung
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Marcos Lorca
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - C David Pessoa-Mahana
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Mella-Raipán
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Santa Marta, Valparaíso, Chile
| | - Claudio Saitz
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Pablo Jaque
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Patricio Iturriaga-Vásquez
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería Ciencias, Universidad de la Frontera, Temuco, Chile; Center of Excellence in Biotechnology Research Applied to the Environment, Universidad de La Frontera, Temuco, Chile.
| | - Hernán Pessoa-Mahana
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile.
| |
Collapse
|
9
|
Xiao H, Wang Y, Wu Y, Li H, Liang X, Lin Y, Kong L, Ni Y, Deng Y, Li Y, Li W, Yang J. Osthole ameliorates cognitive impairments via augmenting neuronal population in APP / PS1 transgenic mice. Neurosci Res 2020; 164:33-45. [PMID: 32302734 DOI: 10.1016/j.neures.2020.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with notable factors of dysfunction in multiple neurological changes, encompassing neuronal loss in the frontal cortex and hippocampal regions. Dysfunction of proliferation and self-renewal of neural stem cells (NSCs) was observed in AD patients and animals. Thereby, mobilizing endogenous neurogenesis by pharmacological agents would provide a promising route for neurodegeneration. Osthole (Ost), a natural coumarin derivative, has been reported to exert extensive neuroprotective effects in AD. However, whether ost can facilitate endogenous neurogenesis against AD in vivo is still unknown. In this study, by using Morris water maze (MWM) test, hematoxylin-eosin (HE) staining, Nissl staining, immunofluorescence analysis and western blot, we demonstrated that oral administration of ost could improve the learning and memory function, inhibit neuronal apoptosis, elevate the expression of glial cell line derived neurotrophic factor (GDNF), synaptophysin (SYP) and postsynaptic density protein 95 (PSD95). Moreover, ost could remarkably enhance proliferation of NSCs and increase the amount of mature neurons in APP/PS1 transgenic mice. Together, our findings demonstrated that ost possessed the ability of promoting endogenous neurogenesis and ost could be served as a plausible agent to reverse or slow down the progress of AD.
Collapse
Affiliation(s)
- Honghe Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Yuying Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yutong Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hongyan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xicai Liang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yin Lin
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yingnan Ni
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yan Deng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wanyi Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jingxian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
10
|
Uliassi E, Peña-Altamira LE, Morales AV, Massenzio F, Petralla S, Rossi M, Roberti M, Martinez Gonzalez L, Martinez A, Monti B, Bolognesi ML. A Focused Library of Psychotropic Analogues with Neuroprotective and Neuroregenerative Potential. ACS Chem Neurosci 2019; 10:279-294. [PMID: 30253086 DOI: 10.1021/acschemneuro.8b00242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Overcoming the lack of effective treatments and the continuous clinical trial failures in neurodegenerative drug discovery might require a shift from the prevailing paradigm targeting pathogenesis to the one targeting simultaneously neuroprotection and neuroregeneration. In the studies reported herein, we sought to identify small molecules that might exert neuroprotective and neuroregenerative potential as tools against neurodegenerative diseases. In doing so, we started from the reported neuroprotective/neuroregenerative mechanisms of psychotropic drugs featuring a tricyclic alkylamine scaffold. Thus, we designed a focused-chemical library of 36 entries aimed at exploring the structural requirements for efficient neuroprotective/neuroregenerative cellular activity, without the manifestation of toxicity. To this aim, we developed a synthetic protocol, which overcame the limited applicability of previously reported procedures. Next, we evaluated the synthesized compounds through a phenotypic screening pipeline, based on primary neuronal systems. Phenothiazine 2Bc showed improved neuroregenerative and neuroprotective properties with respect to reference drug desipramine (2Aa). Importantly, we have also shown that 2Bc outperformed currently available drugs in cell models of Alzheimer's and Parkinson's diseases and attenuates microglial activation by reducing iNOS expression.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Luis Emiliano Peña-Altamira
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Aixa V. Morales
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, Madrid 28002, Spain
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Michele Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Loreto Martinez Gonzalez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain
| | - Ana Martinez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| |
Collapse
|
11
|
Rinaldi A. Setbacks and promises for drugs against Alzheimer's disease: As pharmaceutical companies are retreating from drug development for Alzheimer's, new approaches are being tested in academia and biotech companies. EMBO Rep 2018; 19:embr.201846714. [PMID: 30150324 DOI: 10.15252/embr.201846714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
12
|
Gandini A, Bartolini M, Tedesco D, Martinez-Gonzalez L, Roca C, Campillo NE, Zaldivar-Diez J, Perez C, Zuccheri G, Miti A, Feoli A, Castellano S, Petralla S, Monti B, Rossi M, Moda F, Legname G, Martinez A, Bolognesi ML. Tau-Centric Multitarget Approach for Alzheimer’s Disease: Development of First-in-Class Dual Glycogen Synthase Kinase 3β and Tau-Aggregation Inhibitors. J Med Chem 2018; 61:7640-7656. [DOI: 10.1021/acs.jmedchem.8b00610] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Annachiara Gandini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Daniele Tedesco
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | | | - Carlos Roca
- Centro de Investigaciones Biologica, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Nuria E. Campillo
- Centro de Investigaciones Biologica, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Josefa Zaldivar-Diez
- Centro de Investigaciones Biologica, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Concepción Perez
- Instituto de Quimica Medica, CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
- S3 Center of the Institute of Nanosciences, Italian National Research Council (CNR), I-41125 Modena, Italy
| | - Andrea Miti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
- S3 Center of the Institute of Nanosciences, Italian National Research Council (CNR), I-41125 Modena, Italy
| | - Alessandra Feoli
- EpigeneticMedChemLab, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Sabrina Castellano
- EpigeneticMedChemLab, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Martina Rossi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, I-20133 Milan, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - Ana Martinez
- Centro de Investigaciones Biologica, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
13
|
Chioua M, Buzzi E, Moraleda I, Iriepa I, Maj M, Wnorowski A, Giovannini C, Tramarin A, Portali F, Ismaili L, López-Alvarado P, Bolognesi ML, Jóźwiak K, Menéndez JC, Marco-Contelles J, Bartolini M. Tacripyrimidines, the first tacrine-dihydropyrimidine hybrids, as multi-target-directed ligands for Alzheimer's disease. Eur J Med Chem 2018; 155:839-846. [PMID: 29958119 DOI: 10.1016/j.ejmech.2018.06.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 11/15/2022]
Abstract
Notwithstanding the combination of cholinesterase (ChE) inhibition and calcium channel blockade within a multitarget therapeutic approach is envisaged as potentially beneficial to confront Alzheimer's disease (AD), this strategy has been scarcely investigated. To explore this promising line, a series of 5-amino-4-aryl-3,4,6,7,8,9-hexahydropyrimido [4,5-b]quinoline-2(1H)-thiones (tacripyrimidines) (4a-l) were designed by juxtaposition of tacrine, a ChE inhibitor (ChEI), and 3,4-dihydropyrimidin-2(1H)-thiones, as efficient calcium channel blockers (CCBs). In agreement with their design, all tacripyrimidines, except the unsubstituted parent compound and its p-methoxy derivative, acted as moderate to potent CCBs with activities generally similar or higher than the reference CCB drug nimodipine and were modest-to-good ChEIs. Most interestingly, the 3'-methoxy derivative (4e) emerged as the first well balanced ChEI/CCB agent, acting as low micromolar hChEI (3.05 μM and 3.19 μM on hAChE and hBuChE, respectively) and moderate CCB (30.4% at 1 μM) with no significant hepatotoxicity toward HepG2 cells and good predicted oral absorption and blood brain barrier permeability.
Collapse
Affiliation(s)
- Mourad Chioua
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Eleonora Buzzi
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Ignacio Moraleda
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33,6, 28871, Alcalá de Henares, Madrid, Spain
| | - Isabel Iriepa
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33,6, 28871, Alcalá de Henares, Madrid, Spain
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, CRBA, Via Massarenti, 9 40138, Bologna, Italy
| | - Anna Tramarin
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Federica Portali
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Lhassane Ismaili
- Neurosciences Intégratives et Cliniques EA 481, University Bourgogne Franche-Comté, Laboratoire de Chimie Organique et Thérapeutique, UFR SMP, 19, rue Ambroise Paré, F-25000, Besançon, France
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain.
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| |
Collapse
|
14
|
Kim H, Han H. Computer-Aided Multi-Target Management of Emergent Alzheimer's Disease. Bioinformation 2018; 14:167-180. [PMID: 29983487 PMCID: PMC6016757 DOI: 10.6026/97320630014167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) represents an enormous global health burden in terms of human suffering and economic cost. AD management requires a shift from the prevailing paradigm targeting pathogenesis to design and develop effective drugs with adequate success in clinical trials. Therefore, it is of interest to report a review on amyloid beta (Aβ) effects and other multi-targets including cholinesterase, NFTs, tau protein and TNF associated with brain cell death to be neuro-protective from AD. It should be noted that these molecules have been generated either by target-based or phenotypic methods. Hence, the use of recent advancements in nanomedicine and other natural compounds screening tools as a feasible alternative for circumventing specific liabilities is realized. We review recent developments in the design and identification of neuro-degenerative compounds against AD generated using current advancements in computational multi-target modeling algorithms reflected by theragnosis (combination of diagnostic tests and therapy) concern.
Collapse
Affiliation(s)
- Hyunjo Kim
- Department of Medical Informatics, Ajou Medical University Hospital, Suwon, Kyeounggido province, South Korea
| | - Hyunwook Han
- Department of Informatics, School of Medicine, CHA University, Seongnam, South Korea
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, South Korea
| |
Collapse
|
15
|
Um J, Lee JH, Jung DW, Williams DR. Re-education begins at home: an overview of the discovery of in vivo-active small molecule modulators of endogenous stem cells. Expert Opin Drug Discov 2018; 13:307-326. [PMID: 29421943 DOI: 10.1080/17460441.2018.1437140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.
Collapse
Affiliation(s)
- JungIn Um
- a New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology , Buk-Gu , Gwangju , Republic of Korea
| | - Ji-Hyung Lee
- a New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology , Buk-Gu , Gwangju , Republic of Korea
| | - Da-Woon Jung
- a New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology , Buk-Gu , Gwangju , Republic of Korea
| | - Darren R Williams
- a New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology , Buk-Gu , Gwangju , Republic of Korea
| |
Collapse
|
16
|
Serafini MM, Catanzaro M, Rosini M, Racchi M, Lanni C. Curcumin in Alzheimer’s disease: Can we think to new strategies and perspectives for this molecule? Pharmacol Res 2017; 124:146-155. [DOI: 10.1016/j.phrs.2017.08.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/31/2017] [Accepted: 08/05/2017] [Indexed: 02/05/2023]
|
17
|
|