1
|
Sathiyamoorthi S, Chandrasekaran M, Thiruppathi K, Padmanathan P, Subashchandrabose S, Gomathi S. Synthesis, characterization, quantum mechanical calculations and biomedical docking studies on curcumin analogs: 2, 6-(Difurfurylidene) cyclohexanone and 2, 6 - Bis (2,6-Dichloro Benzylidene) Cyclohexanone. Heliyon 2024; 10:e38300. [PMID: 39435079 PMCID: PMC11492443 DOI: 10.1016/j.heliyon.2024.e38300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The initiation of colorectal cancer is controlled by various factors, including random occurrences and genetic alterations affecting oncogenes and tumor suppressor genes.Curcumin, a significant compound extracted from turmeric, has attracted interest for its robust anticancer properties, particularly regarding its analogs, 2, 6-bisdifurfurylidene cyclohexanone (DFC) and 2, 6-bis (2, 6-dichlorobenzylidene) cyclohexanone (DCC), which were synthesized and assessed for their anticancer efficacy. A combination of spectroscopic techniques and molecular docking methods was utilized to comprehensively evaluate the interaction behaviors of DFC and DCC. The application of density functional theory (DFT) using the B3LYP/6-311G (d, p) basis set facilitated the prediction of spectroscopic properties. The molecular docking investigations conducted using the Glide docking program from Schrodinger Maestro elucidated the interactions of these drugs at the molecular level. In vitro investigations were performed to evaluate the cytotoxic efficacy of the synthesized curcumin analogs. The determined IC50 values revealed that DFC displayed an IC50 of approximately 82 μM, and DCC exhibited a significantly lower IC50 of around 10 μM. This notable disparity highlights the potential of DFC and DCC as a more efficacious cytotoxic agent and further research be conducted on the produced chemicals in the future.
Collapse
Affiliation(s)
- S. Sathiyamoorthi
- Department of Physics, Sri Sai Ram Engineering College, Tambaram, Chennai, 600 044, Tamil Nadu, India
| | - Meganathan Chandrasekaran
- Department of Physics, Sri Sai Ram Engineering College, Tambaram, Chennai, 600 044, Tamil Nadu, India
| | - K. Thiruppathi
- Department of Physics, SRM Valliammai Engineering College, SRM Nagar, Kattankulathur, Kanchipuram, 603203, India
| | - P. Padmanathan
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, India
| | - S. Subashchandrabose
- Centre for Functionalized Materials, Department of Physics, PRIST Deemed University, Thanjavur, 613403, Tamilnadu, India
| | - S. Gomathi
- Department of Chemistry, Periyar Maniammai Institute of Science and Technology, Thanjavur, 613403, Tamilnadu, India
| |
Collapse
|
2
|
Sumran G, Sharma M, Aggarwal R. Insight into the therapeutic potential of pyrazole-thiazole hybrids: A comprehensive review. Arch Pharm (Weinheim) 2024:e2400576. [PMID: 39367561 DOI: 10.1002/ardp.202400576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
Several pyrazole-thiazole hybrids featuring two potentially bioactive pharmacophores with or without linker have been synthesized using the molecular hybridization approach as target structures by medicinal chemists to modulate multiple drug targets simultaneously. The presented review aims to provide an overview of the diversified and wide array of pharmacological activities of these hybrids bestowing anticancer, antifungal, antibacterial, analgesic, anti-inflammatory, antioxidant, antitubercular, antiviral, antiparasitic, and miscellaneous activities. The structure-activity relationships and potential mechanism of action are also reviewed to shed light on the development of more effective and biotargeted candidates. This review focuses on the latest research advances in the biological profile of pyrazole-thiazole hybrids reported from 2015 to the present, providing medicinal researchers with a comprehensive platform to rationally design and develop more promising pyrazole-thiazole hybrids.
Collapse
Affiliation(s)
- Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, Haryana, India
| | - Manisha Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
| |
Collapse
|
3
|
Zheng Y, Chen M, Zhang R, Xue W. Design, synthesis, antimicrobial activity, and mechanism of novel 3-(2,4-dichlorophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives. PEST MANAGEMENT SCIENCE 2024; 80:5388-5399. [PMID: 38961685 DOI: 10.1002/ps.8266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 06/09/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Plant pathogens cause substantial crop losses annually, posing a grave threat to global food security. Fungicides have usually been used for their control, but the rapid development of pesticide resistance renders many ineffective, therefore the search for novel and efficient green pesticides to prevent and control plant diseases has become the top priority in crop planting. RESULTS The results of bioassay studies indicated that most of the target compounds showed certain antimicrobial activity in vitro. In particular, compound X7 showed high inhibitory activity against Xanthomonas oryzae pv. oryzae (Xoo), with an EC50 value of 27.47 μg mL-1, surpassing conventional control agents such as thiazole zinc (41.55 μg mL-1) and thiodiazole copper (53.39 μg mL-1). Further studies on molecular docking showed that X7 had a strong binding affinity with 2FBW. The morphological change observed by scanning electron microscopy indicated that the surface of Xoo appears wrinkled and cracked under X7 treatment and a total of 2662 proteins were identified by label-free proteomic analysis. Three experiments have elucidated the mechanism whereby X7 induced considerable changes in the physiological and biochemical properties of Xoo, which in turn affected the reproduction and growth of bacteria. CONCLUSION This work represents a pivotal advancement, offering important reference for the research and development therapeutics in combating plant pathogens. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuguo Zheng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, China
| | - Mei Chen
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, China
| | - Renfeng Zhang
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Aggarwal R, Kumar P, Kumar S, Sadana R, Lwanga R, Campbell J, Chaubal V. Design, Synthesis, and In Vitro Cytotoxic Studies of Some Novel Arylidene-Hydrazinyl-Thiazoles as Anticancer and Apoptosis-Inducing Agents. ACS OMEGA 2024; 9:38832-38845. [PMID: 39310139 PMCID: PMC11411527 DOI: 10.1021/acsomega.4c04924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/25/2024]
Abstract
Cancer, defined by uncontrolled cell growth, poses a significant global health challenge, necessitating the development of new anticancer drugs crucial to address drug resistance, side effects, and the need for combination therapies. The study presents the design, synthesis, and anticancer screening of a series of novel functionalized arylidene-hydrazinyl-thiazoles against various human cancer cell lines. The environmentally benign synthetic protocol involves the visible-light prompted, NBS-mediated domino reaction of thiosemicarbazide, heteroaryl aldehydes, and unsymmetrical 1,3-diketones. The regioselective organic transformation delivered the single regioisomeric product, characterized unambiguously through detailed 2D NMR spectral studies. In vitro cytotoxic studies revealed that the synthesized derivatives exhibited excellent cytotoxic potential against BxPC-3, MOLT-4, and MCF-7 cancer cell lines. Notably, compounds 4m, 4n, and 4r showed significant cytotoxicity, reducing cell survival to 23.85-26.45% for BxPC-3, 30.08-33.30% for MOLT-4, and 44.40-47.63% for MCF-7 at a concentration of 10 μM. These compounds profoundly induced apoptosis, evidenced by increased caspase-3/7 activity, loss of mitochondrial membrane potential, and modulation of Bcl2 and Bax gene expression. Additionally, these compounds caused robust cell cycle arrest at the G2/M phase by inhibiting tubulin polymerization, indicating their multifaceted impact on cancer cells.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department
of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
- Council
of Scientific and Industrial Research-National Institute of Science
Communication and Policy Research, New Delhi 110012, India
| | - Prince Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Suresh Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Rachna Sadana
- Department
of Natural Sciences, University of Houston, Downtown, Houston, Texas 77002, United States
| | - Robert Lwanga
- Department
of Natural Sciences, University of Houston, Downtown, Houston, Texas 77002, United States
| | - Jude Campbell
- Department
of Natural Sciences, University of Houston, Downtown, Houston, Texas 77002, United States
| | - Vaishali Chaubal
- Department
of Natural Sciences, University of Houston, Downtown, Houston, Texas 77002, United States
| |
Collapse
|
5
|
Hashem H, Hassan A, Abdelmagid WM, Habib AGK, Abdel-Aal MAA, Elshamsy AM, El Zawily A, Radwan IT, Bräse S, Abdel-Samea AS, Rabea SM. Synthesis of New Thiazole-Privileged Chalcones as Tubulin Polymerization Inhibitors with Potential Anticancer Activities. Pharmaceuticals (Basel) 2024; 17:1154. [PMID: 39338317 PMCID: PMC11435058 DOI: 10.3390/ph17091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
A series of novel thiazole-based chalcones were evaluated for their anticancer activity as potential tubulin polymerization inhibitors. In vitro anticancer screening for the thiazole derivatives 2a-2p exhibited broad-spectrum antitumor activity against various cancer cell lines particularly Ovar-3 and MDA-MB-468 cells with a GI50 range from 1.55 to 2.95 μΜ, respectively. Compound 2e demonstrated significant inhibition of tubulin polymerization, with an IC50 value of 7.78 μM compared to Combretastatin-A4 (CA-4), with an IC50 value of 4.93 μM. Molecular docking studies of compounds 2e, 2g, and 2h into tubulin further supported these findings, revealing that they bind effectively to the colchicine binding site, mirroring key interactions exhibited by CA-4. Computational predictions suggested favorable oral bioavailability and drug-likeness for these compounds, highlighting their potential for further development as chemotherapeutic agents.
Collapse
Affiliation(s)
- Hamada Hashem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Abdelfattah Hassan
- Medicinal Chemistry Department, Faculty of Pharmacy, South Valley University, Qena 52242, Egypt
- Medicinal Chemistry Department, Clinical Pharmacy Program, South Valley National University, Qena 52242, Egypt
| | - Walid M Abdelmagid
- Medicinal Chemistry and Drug Discovery Research Centre, Swenam College, 210-6125 Sussex Avenue, Burnaby, BC V5H 4G1, Canada
| | - Ahmed G K Habib
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed A A Abdel-Aal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Ali M Elshamsy
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Amr El Zawily
- Department of Plant and Microbiology, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
- Division of Pharmaceutics and Translation Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Ahmed S Abdel-Samea
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Safwat M Rabea
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Apogee Pharmaceuticals Inc., 4475 Wayburne Dr., Suite 105, Burnaby, BC V6V2H8, Canada
| |
Collapse
|
6
|
Zhou P, Liang X, Xu Z, Chen H, Wei Z, Liang T, Jiang J, Zhang Z. Regiodivergent C-H alkynylation of 2-arylthiazoles switched by Ru II and Pd II catalysis. Chem Commun (Camb) 2024; 60:6679-6682. [PMID: 38860866 DOI: 10.1039/d4cc02254h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Two complementary regiodivergent C-H alkynylations of 2-arylthiazoles are reported. When RuII catalysis is employed, an aryl ortho-alkynylation process is favored. The alkynylated products are gained in good yields. With the use of PdII catalysis, a thiazole C5-alkynylation process is developed, allowing for the construction of C5-alkynylated products. This strategy not only expands the methods for the functionalization of 2-arylthiazoles, but also provides new opportunities for the rapid assembly of complex molecular structures, which may have great potential in organic synthesis, medicinal chemistry, and materials science.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Xinyao Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zekun Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Honggu Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| |
Collapse
|
7
|
Li K, Lin C, Hu YH, Wang J, Jin Z, Zeng ZL, Tang YZ. Design, Synthesis, Biological Evaluation, and Molecular Docking Studies of Pleuromutilin Derivatives Containing Thiazole. ACS Infect Dis 2024; 10:1980-1989. [PMID: 38703116 DOI: 10.1021/acsinfecdis.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
In this study, we designed and synthesized a series of pleuromutilin derivatives containing thiazole. The in vitro antimicrobial efficacy of these synthesized compounds was examined by using four strains. Compared with tiamulin (MIC = 0.25 μg/mL), compound 14 exhibited potency in inhibiting MRSA growth (MIC = 0.0625 μg/mL) in these derivatives. Meanwhile, the time-killing kinetics further demonstrated that compound 14 could efficiently inhibit the MRSA growth. After exposure at 4 × MIC, the postantibiotic effect (PAE) of compound 14 was 1.29 h. Additionally, in thigh-infected mice, compound 14 exhibited a more potent antibacterial efficacy (-1.78 ± 0.28 log10 CFU/g) in reducing MRSA load compared to tiamulin (-1.21 ± 0.23 log10 CFU/g). Moreover, the MTT assay on RAW 264.7 cells demonstrated that compound 14 (8 μg/mL) had no significant cytotoxicity. Docking studies indicated the strong affinity of compound 14 toward the 50S ribosomal subunit, with a binding free energy of -9.63 kcal/mol. Taken together, it could be deduced that compound 14 was a promising candidate for treating MRSA infections.
Collapse
Affiliation(s)
- Ke Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chao Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Han Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhen-Ling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
8
|
Pinto AF, Nunes JS, Severino Martins JE, Leal AC, Silva CCVC, da Silva AJFS, da Cruz Olímpio DS, da Silva ETN, Campos TA, Lima Leite AC. Thiazole, Isatin and Phthalimide Derivatives Tested in vivo against Cancer Models: A Literature Review of the Last Six Years. Curr Med Chem 2024; 31:2991-3032. [PMID: 37170994 DOI: 10.2174/0929867330666230426154055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cancer is a disease characterized by the abnormal multiplication of cells and is the second leading cause of death in the world. The search for new effective and safe anticancer compounds is ongoing due to factors such as low selectivity, high toxicity, and multidrug resistance. Thus, heterocyclic compounds derived from isatin, thiazole and phthalimide that have achieved promising in vitro anticancer activity have been tested in vivo and in clinical trials. OBJECTIVE This review focused on the compilation of promising data from thiazole, isatin, and phthalimide derivatives, reported in the literature between 2015 and 2022, with in vivo anticancer activity and clinical trials. METHODS A bibliographic search was carried out in the PUBMED, MEDLINE, ELSEVIER, and CAPES PERIODIC databases, selecting relevant works for each pharmacophoric group with in vivo antitumor activity in the last 6 years. RESULTS In our study, 68 articles that fit the scope were selected and critically analyzed. These articles were organized considering the type of antitumor activity and their year of publication. Some compounds reported here demonstrated potent antitumor activity against several tumor types. CONCLUSION This review allowed us to highlight works that reported promising structures for the treatment of various cancer types and also demonstrated that the privileged structures thiazole, isatin and phthalimide are important in the design of new syntheses and molecular optimization of compounds with antitumor activity.
Collapse
Affiliation(s)
- Aline Ferreira Pinto
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Janine Siqueira Nunes
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - José Eduardo Severino Martins
- Regulatory Affairs Advisory, Empresa Brasileira de Hemoderivados e Biotecnologia (HEMOBRAS), CEP 51021-410, Recife, PE, Brazil
| | - Amanda Calazans Leal
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Carla Cauanny Vieira Costa Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Anderson José Firmino Santos da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Daiane Santiago da Cruz Olímpio
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Elineide Tayse Noberto da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Thiers Araújo Campos
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
9
|
Dawood DH, Srour AM, Omar MA, Farghaly TA, El-Shiekh RA. Synthesis and molecular docking simulation of new benzimidazole-thiazole hybrids as cholinesterase inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300201. [PMID: 37937360 DOI: 10.1002/ardp.202300201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/09/2023]
Abstract
Dementia is a cognitive disturbance that is generally correlated with central nervous system diseases, especially Alzheimer's disease. The limited number of medications available is insufficient to improve the lifestyle of the patients suffering from this disease. Thus, new benzimidazole-thiazole hybrids (3-10) were designed and synthesized as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory agents. The in vitro evaluation displayed that the derivatives 4b, 4d, 5b, 6a, 7a, and 8b demonstrated dual inhibitory efficiency against both AChE with IC50 ranging from 4.55 to 8.62 µM and BChE with IC50 ranging from 3.50 to 8.32 µM. By analyzing the Lineweaver-Burk plot, an uncompetitive form of inhibition was determined for the highly active compound 4d, revealing its inhibition type. The human telomerase reverse transcriptase-immortalized retinal pigment epithelial cell line was used to ensure the safety of the most potent cholinesterase inhibitors. Furthermore, compounds 4b, 4d, 5b, 6a, 7a, and 8b were evaluated for their neuroprotective and antioxidant properties, as well as their ability to suppress COX-2. The results demonstrated that compounds 4d, 5b, and 8b presented significant neuroprotection efficiency against H2 O2 -induced damage in SH-SY5Y cells with % cell viability of 67.42 ± 7.90%, 62.51 ± 6.71%, and 72.61 ± 8.10%, respectively, while the tested candidates did not reveal significant antioxidant activity. Otherwise, compounds 4b, 6a, 7a, and 8b displayed outstanding COX-2 inhibition effects with IC50 ranging from 0.050 to 0.080 μM relative to celecoxib (IC50 = 0.050 µM). In addition, molecular docking was carried out for the potent benzimidazole-thiazole hybrids with the active sites of both AChE (PDB ID: 4EY7) and BChE (PDB code: 1P0P). The tested candidates fit well in the active sites of both portions, with docking scores ranging from -8.65 to -6.64 kcal/mol (for AChE) and -8.71 to -7.73 kcal/mol (for BChE). In silico results show that the synthesized benzimidazole-thiazole hybrids have good physicochemical and pharmacokinetic properties with no Lipinski rule violations. The preceding results exhibited that compound 4d could be used as a new template for developing more significant cholinesterase inhibitors in the future.
Collapse
Affiliation(s)
- Dina H Dawood
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Mohamed A Omar
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Farghaly TA, Alfaifi GH, Gomha SM. Recent Literature on the Synthesis of Thiazole Derivatives and their Biological Activities. Mini Rev Med Chem 2024; 24:196-251. [PMID: 37496137 DOI: 10.2174/1389557523666230726142459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
The thiazole ring is naturally occurring and is primarily found in marine and microbial sources. It has been identified in various compounds such as peptides, vitamins (thiamine), alkaloids, epothilone, and chlorophyll. Thiazole-containing compounds are widely recognized for their antibacterial, antifungal, anti-inflammatory, antimalarial, antitubercular, antidiabetic, antioxidant, anticonvulsant, anticancer, and cardiovascular activities. The objective of this review is to present recent advancements in the discovery of biologically active thiazole derivatives, including their synthetic methods and biological effects. This review comprehensively discusses the synthesis methods of thiazole and its corresponding biological activities within a specific timeframe, from 2017 until the conclusion of 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Ghaidaa H Alfaifi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| |
Collapse
|
11
|
Fadaly WAA, Zidan TH, Kahk NM, Mohamed FEA, Abdelhakeem MM, Khalil RG, Nemr MTM. New pyrazolyl-thiazolidinone/thiazole derivatives as celecoxib/dasatinib analogues with selective COX-2, HER-2 and EGFR inhibitory effects: design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis, molecular modelling and ADME studies. J Enzyme Inhib Med Chem 2023; 38:2281262. [PMID: 38010912 PMCID: PMC11003491 DOI: 10.1080/14756366.2023.2281262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Two new series of pyrazolyl-thiazolidinone/thiazole derivatives 16a-b and 18a-j were synthesised, merging the scaffolds of celecoxib and dasatinib. Compounds 16a, 16b and 18f inhibit COX-2 with S.I. 134.6, 26.08 and 42.13 respectively (celecoxib S.I. = 24.09). Compounds 16a, 16b, 18c, 18d and 18f inhibit MCF-7 with IC50 = 0.73-6.25 μM (dasatinib IC50 = 7.99 μM) and (doxorubicin IC50 = 3.1 μM) and inhibit A549 with IC50 = 1.64-14.3 μM (dasatinib IC50 = 11.8 μM and doxorubicin IC50 = 2.42 μM) with S.I. (F180/MCF7) of 33.15, 7.13, 18.72, 13.25 and 8.28 respectively higher than dasatinib (4.03) and doxorubicin (3.02) and S.I. (F180/A549) of 14.75, 12.96, 4.16, 7.07 and 18.88 respectively higher than that of dasatinib (S.I. = 2.72) and doxorubicin (S.I = 3.88). Derivatives 16a, 18c, 18d, 18f inhibit EGFR and HER-2 IC50 for EGFR of 0.043, 0.226, 0.388, 0.19 μM respectively and for HER-2 of 0.032, 0.144, 0.195, 0.201 μM respectively.
Collapse
Affiliation(s)
- Wael A. A. Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Taha H. Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M. Kahk
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E. A. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M. Abdelhakeem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab G. Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed T. M. Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Smith E, Lewis A, Narine SS, Emery RJN. Unlocking Potentially Therapeutic Phytochemicals in Capadulla ( Doliocarpus dentatus) from Guyana Using Untargeted Mass Spectrometry-Based Metabolomics. Metabolites 2023; 13:1050. [PMID: 37887375 PMCID: PMC10608729 DOI: 10.3390/metabo13101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Doliocarpus dentatus is thought to have a wide variety of therapeutic phytochemicals that allegedly improve libido and cure impotence. Although a few biomarkers have been identified with potential antinociceptive and cytotoxic properties, an untargeted mass spectrometry-based metabolomics approach has never been undertaken to identify therapeutic biofingerprints for conditions, such as erectile dysfunction, in men. This study executes a preliminary phytochemical screening of the woody vine of two ecotypes of D. dentatus with renowned differences in therapeutic potential for erectile dysfunction. Liquid chromatography-mass spectrometry-based metabolomics was used to screen for flavonoids, terpenoids, and other chemical classes found to contrast between red and white ecotypes. Among the metabolite chemodiversity found in the ecotype screens, using a combination of GNPS, MS-DIAL, and SIRIUS, approximately 847 compounds were annotated at levels 2 to 4, with the majority of compounds falling under lipid and lipid-like molecules, benzenoids and phenylpropanoids, and polyketides, indicative of the contributions of the flavonoid, shikimic acid, and terpenoid biosynthesis pathways. Despite the extensive annotation, we report on 138 tentative compound identifications of potentially therapeutic compounds, with 55 selected compounds at a level-2 annotation, and 22 statistically significant therapeutic biomarkers, the majority of which were polyphenols. Epicatechin methyl gallate, catechin gallate, and proanthocyanidin A2 had the greatest significant differences and were also relatively abundant among the red and white ecotypes. These putatively identified compounds reportedly act as antioxidants, neutralizing damaging free radicals, and lowering cell oxidative stress, thus aiding in potentially preventing cellular damage and promoting overall well-being, especially for treating erectile dysfunction (ED).
Collapse
Affiliation(s)
- Ewart Smith
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 0G2, Canada
| | - Ainsely Lewis
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada
| | - Suresh S. Narine
- Trent Centre for Biomaterials Research, Trent University, Peterborough, ON K9J 0G2, Canada
- Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, ON K9J 0G2, Canada
| | - R. J. Neil Emery
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada
| |
Collapse
|
13
|
Angeli A, Kartsev V, Petrou A, Lichitsky B, Komogortsev A, Geronikaki A, Supuran CT. Substituted furan sulfonamides as carbonic anhydrase inhibitors: Synthesis, biological and in silico studies. Bioorg Chem 2023; 138:106621. [PMID: 37257407 DOI: 10.1016/j.bioorg.2023.106621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Carbonic Anhydrases (CAs) are a large family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide involved in several of biological processes, such as respiration, calcification, acid-base balance, bone resorption, and the formation of aqueous humor, cerebrospinal fluid, saliva, and gastric acid. They show wide diversity in tissue distribution and in their subcellular localization. Fifteen novel furyl sulfonamides were designed, synthesized and evaluated against four human isoforms: hCA I, hCA II, hCA IV and hCA IX. Compounds appeared to be very active mostly against hCAI (8) and hCA IV (11) isoforms being more potent than reference drug acetazolamide (AAZ). It should be mentioned that four compounds were more active than AAZ against hCA IX isoform, with compound 13d to be selective against hCA I (SI 70), hCA II (SI 13.5) and hCA IV (SI 20). Furthermore, docking was performed for some of these compounds on all isoforms I order to understand the possible interactions with the active site. The most active compounds showed good bioavailability and drug likeness scores.
Collapse
Affiliation(s)
- Andrea Angeli
- NeuroFarba Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, no. 41A, 700487 Iasi, Romania.
| | | | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Boris Lichitsky
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 119991 Moscow, Russia.
| | - Andrey Komogortsev
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 119991 Moscow, Russia.
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Claudiu T Supuran
- NeuroFarba Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
14
|
Silva DVSPD, Nascimento PHDB, Rocha JVRD, Marques DSC, Brayner FA, Alves LC, Araújo HDAD, Cruz Filho IJD, Albuquerque MCPDA, Lima MDCAD, Aires ADL. In vitro activity, ultrastructural analysis and in silico pharmacokinetic properties (ADMET) of thiazole compounds against adult worms of Schistosoma mansoni. Acta Trop 2023; 245:106965. [PMID: 37295486 DOI: 10.1016/j.actatropica.2023.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
The present work aimed to carry out in vitro biological assays of thiazole compounds against adult worms of Schistosoma mansoni, as well as the in silico determination of pharmacokinetic parameters to predict the oral bioavailability of these compounds. In addition to presenting moderate to low cytotoxicity against mammalian cells, thiazole compounds are not considered hemolytic. All compounds were initially tested at concentrations ranging from 200 to 6.25 μM against adult worms of S. mansoni parasites. The results showed the best activity of PBT2 and PBT5 at a concentration of 200 μM, which caused 100% mortality after 3 h of incubation. While at 6 h of exposure, 100% mortality was observed at the concentration of 100 µM. Subsequent studies with these same compounds allowed classifying PBT5, PBT2, PBT6 and PBT3 compounds, which were considered active and PBT1 and PBT4 compounds, which were considered inactive. In the ultrastructural analysis the compounds PBT2 and PBT5 (200 µM) promoted integumentary changes with exposure of the muscles, formation of integumentary blisters, integuments with abnormal morphology and destruction of tubercles and spicules. Therefore, the compounds PBT2 and PBT5 are promising antiparasitics against S. mansoni.
Collapse
Affiliation(s)
| | - Pedro Henrique do Bomfim Nascimento
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50.670-901, Recife, PE, Brazil
| | - João Victor Ritinto da Rocha
- Centro de Ciências Médicas - Programa de Pós-graduação em Medicina Tropical, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Diego Santa Clara Marques
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50.670-901, Recife, PE, Brazil
| | - Fábio André Brayner
- Departamento de Parasitologia, Instituto Aggeu Magalhães, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50670-901, Recife, PE, Brazil; Instituto Keizo Asami - iLIKA, UFPE, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50670-901, Recife-PE, Brazil
| | - Luiz Carlos Alves
- Departamento de Parasitologia, Instituto Aggeu Magalhães, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50670-901, Recife, PE, Brazil; Instituto Keizo Asami - iLIKA, UFPE, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50670-901, Recife-PE, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Instituto Keizo Asami - iLIKA, UFPE, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50670-901, Recife-PE, Brazil; Departamento de Bioquímica. Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50.670-901, Recife, PE, Brazil
| | - Iranildo José da Cruz Filho
- Centro de Biociências, Programa de Pós-graduação em Morfotecnologia, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Antibióticos, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50.670-901, Recife, PE, Brazil
| | | | - Maria do Carmo Alves de Lima
- Departamento de Parasitologia, Instituto Aggeu Magalhães, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50670-901, Recife, PE, Brazil
| | - André de Lima Aires
- Centro de Biociências, Programa de Pós-graduação em Morfotecnologia, Universidade Federal de Pernambuco, Recife, Brazil; Centro de Ciências Médicas - Programa de Pós-graduação em Medicina Tropical, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil; Instituto Keizo Asami - iLIKA, UFPE, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50670-901, Recife-PE, Brazil.
| |
Collapse
|
15
|
Bondock S, Albarqi T, Abboud M, Nasr T, Mohamed NM, Abdou MM. Tail-approach based design, synthesis, and cytotoxic evaluation of novel disubstituted and trisubstituted 1,3-thiazole benzenesulfonamide derivatives with suggested carbonic anhydrase IX inhibition mechanism. RSC Adv 2023; 13:24003-24022. [PMID: 37577088 PMCID: PMC10413337 DOI: 10.1039/d3ra02528d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023] Open
Abstract
A novel series of 2,4,5- and 2,3,4-trisubstituted thiazole hybrids with 1,3,4-thiadiazolylbenzenesulfonamide was designed following the tail approach as possible hCAIX inhibitors. The key intermediate 1 was condensed with thiosemicarbazide 2a to give 1,3,4-thiadiazolylthiosemicarbazone 3, which upon hetero-cyclization with substituted α-haloketones and esters afforded 2,4,5-trisubstituted thiazole-1,3,4-thiadiazole conjugates 4-8. Furthermore, the trisubstituted thiazole-1,3,4-thiadiazole hybrids 12a-d were synthesized via the regioselective cyclization of 4-substituted-1,3,4-thiadiazolylthiosemicarbazones with phenacyl bromide. The cyclized 2,4-disubstituted thiazole 4 enhanced cytotoxicity by nine, four and two times against HepG-2, Caco2, and MCF-7, respectively. Moreover, the simple methyl substitution on the thiosemicarbazone terminus 9a improved the parent derivative 3 cytotoxicity by nine, fourteen, and six times against HepG-2, Caco2, and MCF-7, respectively. This astonishing cytotoxicity was elaborated with hCAIX molecular docking simulation of 4, 9a, and 12d demonstrating binding to zinc and its catalytic His94. Furthermore, molecular dynamic simulation 9a revealed stable hydrogen bonding with hCAIX with interaction energy of -61.07 kcal mol-1 and ΔGbinding MM-PBSA of -9.6 kcal mol-1.
Collapse
Affiliation(s)
- Samir Bondock
- Chemistry Department, Faculty of Science, King Khalid University 9004 Abha Saudi Arabia
| | - Tallah Albarqi
- Chemistry Department, Faculty of Science, King Khalid University 9004 Abha Saudi Arabia
| | - Mohamed Abboud
- Chemistry Department, Faculty of Science, King Khalid University 9004 Abha Saudi Arabia
| | - Tamer Nasr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University 11795 Helwan Cairo Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, MTI 12055 Cairo Egypt
| | - Nada M Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, MTI 12055 Cairo Egypt
| | - Moaz M Abdou
- Egyptian Petroleum Research Institute Nasr City 11727 Cairo Egypt
| |
Collapse
|
16
|
Hussien MA, Ashour GR, Albukhari SM, Saleh TS, Hussein MA. Favorable Heteroaromatic Thiazole-Based Polyurea Derivatives as Interesting Biologically Active Products. Polymers (Basel) 2023; 15:2662. [PMID: 37376308 DOI: 10.3390/polym15122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
This research sought to synthesize a new set of heteroaromatic thiazole-based polyurea derivatives with sulfur links in the polymers' main chains, which were denoted by the acronyms PU1-5. Using pyridine as a solvent, a diphenylsulfide-based aminothiazole monomer (M2) was polymerized via solution polycondensation with varied aromatic, aliphatic, and cyclic diisocyanates. Typical characterization methods were used to confirm the structures of the premonomer, monomer, and fully generated polymers. The XRD results revealed that aromatic-based polymers had higher crystallinity than aliphatic and cyclic derivatives. SEM was used to visualize the surfaces of PU1, PU4, and PU5, revealing spongy and porous shapes, shapes resembling wooden planks and sticks, and shapes resembling coral reefs with floral shapes at various magnifications. The polymers demonstrated thermal stability. The numerical results for PDTmax are listed in the following order, ranked from lowest to highest: PU1 < PU2 < PU3 < PU5 < PU4. The FDT values for the aliphatic-based derivatives (PU4 and PU5) were lower than those for the aromatic-based ones (616, 655, and 665 °C). PU3 showed the greatest inhibitory impact against the bacteria and fungi under investigation. In addition, PU4 and PU5 demonstrated antifungal activities that, in contrast with the other products, were on the lower end of the spectrum. Furthermore, the intended polymers were also tested for the presence of the proteins 1KNZ, 1JIJ, and 1IYL, which are frequently utilized as model organisms for E. coli (Gram-negative bacteria), S. aureus (Gram-positive bacteria), and C. albicans (fungal pathogens). This study's findings are consistent with the outcomes of the subjective screening.
Collapse
Affiliation(s)
- Mostafa A Hussien
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Gadeer R Ashour
- Department of Chemistry, Faculty of Applied Sciences, Umm Al Qura University, P.O. Box 24451, Makkah 21955, Saudi Arabia
| | - Soha M Albukhari
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Tamer S Saleh
- Chemistry Department, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Sharma D, Singh M, Joshi J, Garg M, Chaudhary V, Blankenberg D, Chandna S, Kumar V, Rani R. Design and Synthesis of Thiazole Scaffold-Based Small Molecules as Anticancer Agents Targeting the Human Lactate Dehydrogenase A Enzyme. ACS OMEGA 2023; 8:17552-17562. [PMID: 37251149 PMCID: PMC10210175 DOI: 10.1021/acsomega.2c07569] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023]
Abstract
A new series of thiazole central scaffold-based small molecules of hLDHA inhibitors were designed using an in silico approach. Molecular docking analysis of designed molecules with hLDHA (PDB ID: 1I10) demonstrates that Ala 29, Val 30, Arg 98, Gln 99, Gly 96, and Thr 94 possessed strong interaction with the compounds. Compounds 8a, 8b, and 8d showed good binding affinity (-8.1 to -8.8 kcal/mol), whereas an additional interaction of NO2 at the ortho position in compounds 8c with Gln 99 through hydrogen bonding enhanced the affinity to -9.8 kcal/mol. Selected high-scored compounds were synthesized and screened for hLDHA inhibitory activities and in vitro anticancer activity in six cancer cell lines. Biochemical enzyme inhibition assays showed the highest hLDHA inhibitory activity observed with compounds 8b, 8c, and 8l. Compounds 8b, 8c, 8j, 8l, and 8m depicted significant anticancer activities, exhibiting IC50 values in the range of 1.65-8.60 μM in HeLa and SiHa cervical cancer cell lines. Compounds 8j and 8m exhibited notable anticancer activity with IC50 values of 7.90 and 5.15 μM, respectively, in liver cancer cells (HepG2). Interestingly, compounds 8j and 8m did not induce noticeable toxicity in the human embryonic kidney cells (HEK293). Insilico absorption, distribution, metabolism, and excretion profiling demonstrates that the compounds possess drug-likeness, and results may pave the way for the development of novel thiazole-based biologically active small molecules for therapeutics.
Collapse
Affiliation(s)
- Dolly Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
- Amity
Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201303, Uttar
Pradesh, India
| | - Mamta Singh
- Amity
Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201303, Uttar
Pradesh, India
| | - Jayadev Joshi
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Manoj Garg
- Amity
Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201303, Uttar
Pradesh, India
| | | | - Daniel Blankenberg
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Sudhir Chandna
- Institute
of Nuclear Medicine & Allied Science, Defense Research Development Organization, Delhi 110054, India
| | - Vinit Kumar
- Amity
Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201303, Uttar
Pradesh, India
| | - Reshma Rani
- Drug Discovery,
Jubilant Biosys, Knowledge
Park-2, Greater Noida 201306, India
| |
Collapse
|
18
|
Bhatnagar A, Pemawat G. An overview on synthetic routes of anti-inflammatory active scaffolds including thiazole and thiazolidine cores. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2189253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
19
|
Application and synthesis of thiazole ring in clinically approved drugs. Eur J Med Chem 2023; 250:115172. [PMID: 36758304 DOI: 10.1016/j.ejmech.2023.115172] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
The development of heterocyclic derivatives has progressed considerably over the past few decades, and many new agents of synthetic and natural origin have been produced. Among heterocyclic compounds, thiazole is a unique five-membered heterocyclic motif characterized by nitrogen and sulfur atoms, which is widely used as an important core skeleton in a variety of pharmaceutically important compounds due to their diverse biological activities, such as antibacterial, antivirus, and antifungal. To the best of our knowledge, more than 90 thiazole-containing derivatives have been currently under clinical investigation, and some thiazole analogs have been approved to treat various diseases. As the potentially privileged scaffolds, thiazole derivatives can be further extensively explored to search for new drugs characterized by improved therapeutic efficacy and similar biological targets. This review aims to outline the applications and synthetic routes of some representative thiazole-containing drugs approved in the clinic, which may guide medicinal researchers to rationally design more effective thiazole-containing drug candidates.
Collapse
|
20
|
Asadi P, Khodamoradi E, Khodarahmi G, Jahanian-Najafabadi A, Marvi H, Dehghan Khalili S. Novel N-α-amino acid spacer-conjugated phthalimide-triazine derivatives: synthesis, antimicrobial and molecular docking studies. Amino Acids 2023; 55:337-348. [PMID: 36617370 DOI: 10.1007/s00726-023-03232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
To design and develop novel antimicrobial agents, a series of phthalimide-triazine-based derivatives (6a-6e) were synthesized, characterized and evaluated for their potential antibacterial activities. The compounds were prepared through reaction of 6-phenyl-1,3,5-triazine-2,4-diamine with phthalimide moiety containing aliphatic amino acid. Structural analysis of the synthesized compounds was carried out by various characterization techniques such as FT-IR, 1H and 13C-NMR and mass spectroscopy. After the confirmation of the structure, the antibacterial screening of the synthesized compounds was performed against two strains of Gram-positive (Staphylococcus aureus, and Bacillus subtilis) and two strains of Gram-negative (Escherichia coli and Salmonella enteritidis) bacteria. The results of antimicrobial activity showed that compound 6d was the most active against all the tested strains of microorganisms with the MIC value 1.25 µg/µl. The synthesized compounds were docked into the binding sites of E. coli-DNA gyrase B and S. aureus-DNA gyrase complex to explore their theoretically binding mode and possible interactions of these ligands with these two targets. Docking study showed the importance of both hydrogen bonding and hydrophobic interactions as a key interaction with the targets. Based on the obtained results, the hybrid derivatives of triazine and phthalimide could be regarded as efficient candidates for further molecular developments of antimicrobial agents.
Collapse
Affiliation(s)
- Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Islamic Republic of Iran.
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Elahe Khodamoradi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Islamic Republic of Iran
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Marvi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Islamic Republic of Iran
| | - Shiva Dehghan Khalili
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Liu F, Cao X, Xing L, He B, Zhang N, Zeng W, Xin H, Xue W. Design, Synthesis, Biological Activity Evaluation and Action Mechanism of Myricetin Derivatives Containing Thiazolebisamide. Chem Biodivers 2023; 20:e202201103. [PMID: 36683342 DOI: 10.1002/cbdv.202201103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
The plant diseases caused by a variety of pathogens such as viruses, bacteria and fungi pose a great threat to global food production and food safety. Therefore, the search for green, efficient and pollution-free pesticides has become an important task. In this article, 23 myricetin derivatives containing thiazolebisamides active groups have been designed and synthesized. Their activities were evaluated by performing in vitro antibacterial and in vivo antiviral assays, microscale thermophoresis (MST) and molecular docking assays. The results of in vivo antiviral assays showed that compounds A4 and A23 exhibited good antiviral activity with EC50 values of 79.0 and 54.1 μg/mL for therapeutic activity and 103.3 and 91.2 μg/mL for protective activity, respectively. The dissociation constants (Kd) values of compounds A4 and A23 against TMV-CP were 0.021 and 0.018 μM, respectively, determined by microscale thermophoresis (MST), which were much smaller than those of the commercial drug ningnanmycin (NNM), which were 2.84 μM. The interaction of compounds A4, A23 with TMV-CP was further verified at the molecular level. In addition, in vitro antifungal assays of this series of compounds showed that they exhibited some inhibitory activity against a variety of fungi, especially against the phytophthora capsici. Among them, A13 and A20 showed similar inhibitory activity to the control drug azoxystrobin at 100 μg/mL against the phytophthora capsici.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiao Cao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Li Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Bangcan He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Nian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Hui Xin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
22
|
Al-Aizari FA, Ghabbour HA, Kheder NA, Soliman SM, Hassan MZ, Tasqeeruddin S, Mabkhot YN. Synthesis, X-Ray Structure Analysis, Computational Investigations, and In Vitro Biological Evaluation of New Thiazole-Based Heterocycles as Possible Antimicrobial Agents. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2172053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Faiz A. Al-Aizari
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Chemistry, Faculty of Science, Al-Baydha University, Albaydah, Yemen
| | - Hazem A. Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Nabila A. Kheder
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, Alexandria, Egypt
| | - Mohd. Z. Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Syed Tasqeeruddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Yahia N. Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
23
|
Daoui O, Elkhattabi S, Bakhouch M, Belaidi S, Bhandare RR, Shaik AB, Mali SN, Chtita S. Cyclohexane-1,3-dione Derivatives as Future Therapeutic Agents for NSCLC: QSAR Modeling, In Silico ADME-Tox Properties, and Structure-Based Drug Designing Approach. ACS OMEGA 2023; 8:4294-4319. [PMID: 36743017 PMCID: PMC9893467 DOI: 10.1021/acsomega.2c07585] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/29/2022] [Indexed: 05/20/2023]
Abstract
The abnormal expression of the c-Met tyrosine kinase has been linked to the proliferation of several human cancer cell lines, including non-small-cell lung cancer (NSCLC). In this context, the identification of new c-Met inhibitors based on heterocyclic small molecules could pave the way for the development of a new cancer therapeutic pathway. Using multiple linear regression (MLR)-quantitative structure-activity relationship (QSAR) and artificial neural network (ANN)-QSAR modeling techniques, we look at the quantitative relationship between the biological inhibitory activity of 40 small molecules derived from cyclohexane-1,3-dione and their topological, physicochemical, and electronic properties against NSCLC cells. In this regard, screening methods based on QSAR modeling with density-functional theory (DFT) computations, in silico pharmacokinetic/pharmacodynamic (ADME-Tox) modeling, and molecular docking with molecular electrostatic potential (MEP) and molecular mechanics-generalized Born surface area (MM-GBSA) computations were used. Using physicochemical (stretch-bend, hydrogen bond acceptor, Connolly molecular area, polar surface area, total connectivity) and electronic (total energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels) molecular descriptors, compound 6d is identified as the optimal scaffold for drug design based on in silico screening tests. The computer-aided modeling developed in this study allowed us to design, optimize, and screen a new class of 36 small molecules based on cyclohexane-1,3-dione as potential c-Met inhibitors against NSCLC cell growth. The in silico rational drug design approach used in this study led to the identification of nine lead compounds for NSCLC therapy via c-Met protein targeting. Finally, the findings are validated using a 100 ns series of molecular dynamics simulations in an aqueous environment on c-Met free and complexed with samples of the proposed lead compounds and Foretinib drug.
Collapse
Affiliation(s)
- Ossama Daoui
- Laboratory
of Engineering, Systems and Applications, National School of Applied
Sciences, Sidi Mohamed Ben Abdellah-Fez
University, BP Box 72, Fez30000, Morocco
| | - Souad Elkhattabi
- Laboratory
of Engineering, Systems and Applications, National School of Applied
Sciences, Sidi Mohamed Ben Abdellah-Fez
University, BP Box 72, Fez30000, Morocco
| | - Mohamed Bakhouch
- Laboratory
of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 24, 24000El Jadida, Morocco
| | - Salah Belaidi
- Group
of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra,
BP 145, Biskra707000, Algeria
| | - Richie R. Bhandare
- Department
of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Ajman346, United Arab Emirates
- Center of Medical and Bio-allied
Health Sciences Research, Ajman University, Ajman P.O. Box 340, 346, United Arab Emirates
| | - Afzal B. Shaik
- St. Mary’s
College of Pharmacy, St. Mary’s Group
of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological
University Kakinada, Chebrolu, Guntur, Andhra Pradesh522212, India
| | - Suraj N. Mali
- Department
of Pharmacy, Government College of Pharmacy, Karad, Affiliated to Shivaji University, Kolhapur, Maharashtra415124, India
| | - Samir Chtita
- Laboratory
of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca7955, Morocco
| |
Collapse
|
24
|
Discovery and biosynthesis of karnamicins as angiotensin converting enzyme inhibitors. Nat Commun 2023; 14:209. [PMID: 36639377 PMCID: PMC9838390 DOI: 10.1038/s41467-023-35829-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Angiotensin-converting enzyme inhibitors are widely used for treatment of hypertension and related diseases. Here, six karnamicins E1-E6 (1-6), which bear fully substituted hydroxypyridine and thiazole moieties are characterized from the rare actinobacterium Lechevalieria rhizosphaerae NEAU-A2. Through a combination of isotopic labeling, genome mining, and enzymatic characterization studies, the programmed assembly of the fully substituted hydroxypyridine moiety in karnamicin is proposed to be due to sequential operation of a hybrid polyketide synthase-nonribosomal peptide synthetase, two regioselective pyridine ring flavoprotein hydroxylases, and a methyltransferase. Based on AlphaFold protein structures predictions, molecular docking, and site-directed mutagenesis, we find that two pyridine hydroxylases deploy active site residues distinct from other flavoprotein monooxygenases to direct the chemo- and regioselective hydroxylation of the pyridine nucleus. Pleasingly, karnamicins show significant angiotensin-converting enzyme inhibitory activity with IC50 values ranging from 0.24 to 5.81 μM, suggesting their potential use for the treatment of hypertension and related diseases.
Collapse
|
25
|
Yin G, Wang X, Wang Y, Shi T, Zeng Y, Wang Y, Peng X, Wang Z. Lawesson's reagent promoted deoxygenation of azlactones for the syntheses of 2,4-disubstituted thiazoles. Org Biomol Chem 2022; 20:9589-9592. [PMID: 36408836 DOI: 10.1039/d2ob01939f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Azlactones and thiazoles are common structural motifs and possess diverse applications. A new method for the efficient and straightforward syntheses of 2,4-disubstituted thiazoles from azlactones has been developed. The reaction proceeded via deoxygenation of azlactones by Lawesson's reagent without metal or external additives. A variety of 2,4-disubstituted thiazoles were synthesized with up to 92% yield. Furthermore, the importance of this methodology was also justified by a gram-scale synthesis.
Collapse
Affiliation(s)
- Gaofeng Yin
- School of Pharmacy, Lanzhou University, West Donggang Road. No. 199, Lanzhou 730000, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, West Donggang Road. No. 199, Lanzhou 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, West Donggang Road. No. 199, Lanzhou 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, West Donggang Road. No. 199, Lanzhou 730000, China
| | - Yaofu Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, West Changsheng Road. No. 28, Hengyang 421001, China.
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, West Changsheng Road. No. 28, Hengyang 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, West Changsheng Road. No. 28, Hengyang 421001, China.
| |
Collapse
|
26
|
Imran M. Ethionamide and Prothionamide Based Coumarinyl-Thiazole Derivatives: Synthesis, Antitubercular Activity, Toxicity Investigations and Molecular Docking Studies. Pharm Chem J 2022; 56:1215-1225. [PMID: 36531826 PMCID: PMC9734486 DOI: 10.1007/s11094-022-02782-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The goal of this research work was to prepare and evaluate the antitubercular (anti-TB) activity of ethionamide (ETH) and prothionamide (PTH) based coumarinyl-thiazole derivatives. ETH and PTH were reacted with coumarin intermediates (3a-3e) to provide the target compounds (4a-4e and 4f-4j, respectively). Spectral studies confirmed the assigned structures of 4a-4j. The Microplate Alamar Blue Assay was utilized to evaluate the anti-TB activity of compounds 4a-4j against Mycobacterium tuberculosis H37Rv strain in comparison to ETH, PTH, isoniazid (INH), and pyrazinamide (PYZ) as standard drugs. The cytotoxicity studies were carried out versus HepG2 and Vero cell lines. In addition. molecular docking studies of 4a-4j concerning the DprE1 enzyme and the in-silico evaluation of physicochemical and pharmacokinetic parameters were performed. Compounds 4a, 4b, 4f, and 4g displayed equal minimum inhibitory concentration (MIC) values in comparison to INH (3.125 μg/ml) and PYZ (3.125 μg/ml), whereas 4c-4e and 4h-4j displayed better MIC values (1.562 μg/mL) than INH and PYZ. All compounds presented better anti-TB potential than ETH (6.25 μg/mL) and PTH (6.25 μg/mL). The studies of toxicity revealed that 4a-4j were safe up to 300 μg/mL concentration versus Vero and HepG2 cell lines. The molecular docking studies suggested that 4a-4j could possess anti-TB activity through the inhibition of the DprE1 enzyme. The in silico studies showed that 4a-4j followed Lipinski's rule (drug-likeliness) and exhibited better gastrointestinal absorption than BTZ043 and macozinone. In conclusion, the ETH and PTH-based coumarinyl-thiazole template can help developing selective DprE1 enzyme inhibitors as potent anti-TB agents.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| |
Collapse
|
27
|
Belakhov VV. Polyfunctional Drugs: Search, Development, Use in Medical Practice, and Environmental Aspects of Preparation and Application (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222130047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
28
|
Rizk MG, Emara AA, Abou-Hussein A, Mahmoud NH. Novel metal complexes of N,N-bis(4-phenylthiazol-2-yl)phthalamide: Synthesis, spectroscopic, thermal and kinetic investigations, molecular modeling, computational calculations, anti-breast cancer studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Synthesis and Antimicrobial Activity of New Heteroaryl(aryl) Thiazole Derivatives Molecular Docking Studies. Antibiotics (Basel) 2022; 11:antibiotics11101337. [PMID: 36289995 PMCID: PMC9658463 DOI: 10.3390/antibiotics11101337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Herein, we report the design, synthesis, and evaluation of the antimicrobial activity of new heteroaryl (aryl) thiazole derivatives. The design was based on a molecular hybridization approach. The in vitro evaluation revealed that these compounds demonstrated moderate antibacterial activity. The best activity was achieved for compound 3, with MIC and MBC in the range of 0.23–0.7 and 0.47–0.94 mg/mL, respectively. Three compounds (2, 3, and 4) were tested against three resistant strains, namely methicillin resistant Staphylococcus aureus, P. aeruginosa, and E. coli, which showed higher potential than the reference drug ampicillin. Antifungal activity of the compounds was better with MIC and MFC in the range of 0.06–0.47 and 0.11–0.94 mg/mL, respectively. The best activity was observed for compound 9, with MIC at 0.06–0.23 mg/mL and MFC at 0.11–0.47 mg/mL. According to docking studies, the predicted inhibition of the E. coli MurB enzyme is a putative mechanism of the antibacterial activity of the compounds, while inhibition of 14a-lanosterol demethylase is probably the mechanism of their antifungal activity.
Collapse
|
30
|
El-Abd A, Bayomi SM, El-Damasy AK, Mansour B, Abdel-Aziz NI, El-Sherbeny MA. Synthesis and Molecular Docking Study of New Thiazole Derivatives as Potential Tubulin Polymerization Inhibitors. ACS OMEGA 2022; 7:33599-33613. [PMID: 36157722 PMCID: PMC9494671 DOI: 10.1021/acsomega.2c05077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
A new series of 2,4-disubstituted thiazole derivatives containing 4-(3,4,5-trimethoxyphenyl) moiety was synthesized and evaluated for their potential anticancer activity as tubulin polymerization inhibitors. All designed compounds were screened for cytotoxic activity against four human cancer cell lines, namely, HepG2, MCF-7, HCT116, and HeLa, using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, with combretastatin A-4 as a reference drug. Compounds 5c, 6d, 7c, 8, and 9a,b showed superior activity against the tested cell lines, with IC50 values ranging from 3.35 ± 0.2 to 18.69 ± 0.9 μM. Further investigation for the most active cytotoxic agents as tubulin polymerization inhibitors was also performed in order to explore the mechanism of their antiproliferative activity. The obtained results suggested that compounds 5c, 7c, and 9a remarkably inhibit tubulin polymerization, with IC50 values of 2.95 ± 0.18, 2.00 ± 0.12, and 2.38 ± 0.14 μM, respectively, which exceeded that of the reference drug combretastatin A-4 (IC50 2.96 ± 0.18 μM). Molecular docking studies were also conducted to investigate the possible binding interactions between the targeted compounds and the tubulin active site. The interpretation of the results showed clearly that compounds 7c and 9a were identified as the most potent tubulin polymerization inhibitors with promising cytotoxic activity and excellent binding mode in the docking study.
Collapse
Affiliation(s)
- Azhar
O. El-Abd
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, 11152 Gamasa, Egypt
| | - Said M. Bayomi
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, 35516 Mansoura, Egypt
| | - Ashraf K. El-Damasy
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, 35516 Mansoura, Egypt
| | - Basem Mansour
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, 11152 Gamasa, Egypt
| | - Naglaa I. Abdel-Aziz
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, 11152 Gamasa, Egypt
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, 35516 Mansoura, Egypt
| | - Magda A. El-Sherbeny
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, 11152 Gamasa, Egypt
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, 35516 Mansoura, Egypt
| |
Collapse
|
31
|
Yang SF, Li P, Fang ZL, Liang S, Tian HY, Sun BG, Xu K, Zeng CC. A one-pot electrochemical synthesis of 2-aminothiazoles from active methylene ketones and thioureas mediated by NH 4I. Beilstein J Org Chem 2022; 18:1249-1255. [PMID: 36158175 PMCID: PMC9490072 DOI: 10.3762/bjoc.18.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
The electrochemical preparation of 2-aminothiazoles has been achieved by the reaction of active methylene ketones with thioureas assisted by ᴅʟ-alanine using NH4I as a redox mediator. The electrochemical protocol proceeds in an undivided cell equipped with graphite plate electrodes under constant current conditions. Various active methylene ketones, including β-keto ester, β-keto amide, β-keto nitrile, β-keto sulfone and 1,3-diketones, can be converted to the corresponding 2-aminothiazoles. Mechanistically, the in situ generated α-iodoketone was proposed to be the key active species.
Collapse
Affiliation(s)
- Shang-Feng Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Pei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Zi-Lin Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Hong-Yu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Bao-Guo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Cheng-Chu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
32
|
Koca İ, Yakan M, Çapan İ, Şahin E, Sert Y. Experimental and computational studies of 1,5-diphenyl-pyrazole-3-carboxamide compounds as potential Cannabinoid receptor type 1. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Novichikhina NP, Ashrafova ZE, Stolpovskaya NV, Ledenyova IV, Kholyavka MG, Podoplelova NA, Panteleev MA, Shikhaliev KS. Synthesis and properties of novel hybrid molecules bearing 4H-pyrrolo[3,2,1-ij]quinolin-2-one and thiazole moieties. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Bhaumick P, Kumar R, Acharya SS, Parvin T, Choudhury LH. Multicomponent Synthesis of Fluorescent Thiazole-Indole Hybrids and Thiazole-Based Novel Polymers. J Org Chem 2022; 87:11399-11413. [PMID: 35998330 DOI: 10.1021/acs.joc.2c00922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report an efficient multicomponent reaction for the synthesis of trisubstituted thiazoles involving a one-pot C-C, C-N, and C-S bond-forming process from the readily available starting materials. The reaction of arylglyoxal, indole, and aryl thioamides in the acetic acid medium under sealed heating conditions provided 3-(2,4-diarylthiazol-5-yl)-1H-indoles (4) in good to excellent yields. Using a similar reaction strategy, the reaction of arylglyoxal, aryl thioamide, and 2,5-dihydroxy-1,4-benzoquinone provided structurally interesting bis-thiazoles having dihydroxy-1,4-benzoquinone linker (9). All of the products were fully characterized by spectroscopic techniques. We also recorded single-crystal X-ray diffraction (XRD) of compounds 4b and 9a for unambiguous structure determination. Indole-linked trisubstituted thiazoles (4) exhibit prominent fluorescence properties. The relative fluorescence quantum yields of all of the thiazole-linked indoles were measured in the dimethyl sulfoxide (DMSO) medium with respect to quinine sulfate in 0.1 M H2SO4 as reference. The scope of this reaction was further explored by preparing novel polymers 11a and 11b using naphthalene/benzene-1,4-bis(carbothioamide) in multicomponent polymerization.
Collapse
Affiliation(s)
- Prabhas Bhaumick
- Department of Chemistry, Indian Institute of Technology─Patna, Patna 801106, India
| | - Rohit Kumar
- Department of Chemistry, Indian Institute of Technology─Patna, Patna 801106, India
| | - Swadhin S Acharya
- Department of Chemistry, Indian Institute of Technology─Patna, Patna 801106, India
| | - Tasneem Parvin
- Department of Chemistry, National Institute of Technology─Patna, Ashok Rajpath, Patna 800005, India
| | - Lokman H Choudhury
- Department of Chemistry, Indian Institute of Technology─Patna, Patna 801106, India
| |
Collapse
|
35
|
Arshad MF, Alam A, Alshammari AA, Alhazza MB, Alzimam IM, Alam MA, Mustafa G, Ansari MS, Alotaibi AM, Alotaibi AA, Kumar S, Asdaq SMB, Imran M, Deb PK, Venugopala KN, Jomah S. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules 2022; 27:molecules27133994. [PMID: 35807236 PMCID: PMC9268695 DOI: 10.3390/molecules27133994] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
For many decades, the thiazole moiety has been an important heterocycle in the world of chemistry. The thiazole ring consists of sulfur and nitrogen in such a fashion that the pi (π) electrons are free to move from one bond to other bonds rendering aromatic ring properties. On account of its aromaticity, the ring has many reactive positions where donor–acceptor, nucleophilic, oxidation reactions, etc., may take place. Molecules containing a thiazole ring, when entering physiological systems, behave unpredictably and reset the system differently. These molecules may activate/stop the biochemical pathways and enzymes or stimulate/block the receptors in the biological systems. Therefore, medicinal chemists have been focusing their efforts on thiazole-bearing compounds in order to develop novel therapeutic agents for a variety of pathological conditions. This review attempts to inform the readers on three major classes of thiazole-bearing molecules: Thiazoles as treatment drugs, thiazoles in clinical trials, and thiazoles in preclinical and developmental stages. A compilation of preclinical and developmental thiazole-bearing molecules is presented, focusing on their brief synthetic description and preclinical studies relating to structure-based activity analysis. The authors expect that the current review may succeed in drawing the attention of medicinal chemists to finding new leads, which may later be translated into new drugs.
Collapse
Affiliation(s)
- Mohammed F. Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abdullah Ayed Alshammari
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Mohammed Bader Alhazza
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Ibrahim Mohammed Alzimam
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Md Anish Alam
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Md Salahuddin Ansari
- Department of Pharmacy Practice, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Abdulelah M. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Abdullah A. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Suresh Kumar
- Drug Regulatory Affair, Department, Pharma Beistand, New Delhi 110017, India;
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah 13713, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Shahamah Jomah
- Pharmacy Department, Dr. Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
36
|
Eno EA, Louis H, Unimuke TO, Egemonye TC, Adalikwu SA, Agwupuye JA, Odey DO, Abu AS, Eko IJ, Ifeatu CE, Ntui TN. Synthesis, characterization, and theoretical investigation of 4-chloro-6(phenylamino)-1,3,5-triazin-2-yl)asmino-4-(2,4-dichlorophenyl)thiazol-5-yl-diazenyl)phenyl as potential SARS-CoV-2 agent. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
The synthesis of 4-chloro-6(phenylamino)-1,3,5-triazin-2-yl)amino-4-(2,4 dichlorophenyl)thiazol-5-yl-diazenyl)phenyl is reported in this work with a detailed structural and molecular docking study on two SARS-COV-2 proteins: 3TNT and 6LU7. The studied compound has been synthesized by the condensation of cyanuric chloride with aniline and characterized with various spectroscopic techniques. The experimentally obtained spectroscopic data has been compared with theoretical calculated results achieved using high-level density functional theory (DFT) method. Stability, nature of bonding, and reactivity of the studied compound was evaluated at DFT/B3LYP/6-31 + (d) level of theory. Hyper-conjugative interaction persisting within the molecules which accounts for the bio-activity of the compound was evaluated from natural bond orbital (NBO) analysis. Adsorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties of the experimentally synthesized compound was studied to evaluate the pharmacological as well as in silico molecular docking against SARS-CoV-2 receptors. The molecular docking result revealed that the investigated compound exhibited binding affinity of −9.3 and −8.8 for protein 3TNT and 6LU7 respectively. In conclusion, protein 3TNT with the best binding affinity for the ligand is the most suitable for treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Ededet A. Eno
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Tomsmith O. Unimuke
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - ThankGod C. Egemonye
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Stephen A. Adalikwu
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
| | - John A. Agwupuye
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Diana O. Odey
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Biochemistry, Faculty of Physical Sciences , Cross River University of Technology , Calabar , Nigeria
| | - Abu Solomon Abu
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Marine Biology, Faculty of Biology Sciences , University of Calabar , Calabar , Nigeria
| | - Ishegbe J. Eko
- Department of Polymer and Textile Engineering , Ahmadu Bello University Zaria , Kaduna , Nigeria
| | - Chukwudubem E. Ifeatu
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
| | - Tabe N. Ntui
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Chemistry, Faculty of Physical Sciences , Cross River University of Technology , Calabar , Nigeria
| |
Collapse
|
37
|
Al-Warhi T, El Kerdawy AM, Said MA, Albohy A, Elsayed ZM, Aljaeed N, Elkaeed EB, Eldehna WM, Abdel-Aziz HA, Abdelmoaz MA. Novel 2-(5-Aryl-4,5-Dihydropyrazol-1-yl)thiazol-4-One as EGFR Inhibitors: Synthesis, Biological Assessment and Molecular Docking Insights. Drug Des Devel Ther 2022; 16:1457-1471. [PMID: 35607598 PMCID: PMC9123247 DOI: 10.2147/dddt.s356988] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction Epidermal growth factor receptor (EGFR) regulates several cell functions which include cell growth, survival, multiplication, differentiation, and apoptosis. Currently, EGFR kinase inhibitors are of increasing interest as promising targeted antitumor therapeutic agents. Methods Different thiazolyl-pyrazoline derivatives (7a-o) were synthesized and were first tested for anti-proliferative effect towards the A549 lung cancer cell line and the T-47D breast cancer cell line in MTT assay. Thereafter, thiazolyl-pyrazolines (7b, 7g, 7l, and 7m) were subsequently evaluated for their PK inhibition for EGFR. Moreover, representative promising derivatives (7g and 7m) in cytotoxic and PK inhibition assays were tested to investigate their impact on the apoptosis and cell cycle phases in T-47D cells in order to explore more insights into the antitumor actions of the target thiazolyl-pyrazolines. Furthermore, docking studies were accomplished to evaluate the patterns of binding of thiazolyl-pyrazolines 7b, 7g, 7l, and 7m in the EGFR active pocket (PDB ID: 1M17). Results Testing the thiazolyl pyrazoline compounds 7a-o on A549 and T-47D cell lines showed IC50 arrays between 3.92 and 89.03 µM, and between 0.75 and 77.10 µM, respectively. Also, the tested thiazolyl-pyrazolines (7b, 7g, 7l, and 7m) demonstrated significant sub-micromolar EGFR inhibitory actions with IC50 values 83, 262, 171 and 305 nM, respectively, in comparison to erlotinib (IC50 =57 nM). Discussion Generally, it was observed that the tested thiazolyl pyrazolines showed more potent antiproliferative activity toward breast cancer cells T-47D than toward lung cancer cell lines A549. In particular, thiazolyl pyrazolines 7g and 7m showed the best activity against A549 cells (IC50 = 3.92 and 6.53 µM) and T-47D cells (IC50 = 0.88 and 0.75 µM). Compounds 7g and 7m provoked a sub-G1 phase arrest and cell apoptosis which are in agreement with the expected outcome of EGFR inhibition. Finally, the molecular docking of 7g and 7m in the active site of EGFR revealed a common binding pattern similar to that of erlotinib which involves the accommodation of the 1,3 thiazol-4-one ring and pyrazoline ring of target compounds in the binding region of erlotinib’s quinazoline ring and anilino moiety.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Cairo, Egypt
| | - Mohamed A Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nada Aljaeed
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh, 13713, Saudi Arabia
| | - Wagdy M Eldehna
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Correspondence: Wagdy M Eldehna, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt, Tel +201068837640, Email
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, 12622, Egypt
| | - Miral A Abdelmoaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantra, Egypt
| |
Collapse
|
38
|
Quercetin Hybrids—Synthesis, Spectral Characterization and Radical Scavenging Potential. MOLBANK 2022. [DOI: 10.3390/m1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
New quercetin-based derivatives are synthesized in an easily accessible one-pot manner. The method is based on the reaction of quercetin with in situ formed electrophilic N-alkoxycarbonylazolium ions. The position of the newly formed C-C bond and structure were spectrally characterized by 1D, 2D 1H, 13C-NMR, IR, and MS analysis. Thus, in all cases, good regioselectivity in the C-8 position for the obtained products was demonstrated. The obtained compounds were evaluated for their DPPH and ABTS free radical scavenging activity and compared to natural compounds—quercetin and rutin.
Collapse
|
39
|
Synthesis, antifungal studies, molecular docking, ADME and DNA interaction studies of 4-hydroxyphenyl benzothiazole linked 1,2,3-triazoles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Laxmikeshav K, Kumari P, Shankaraiah N. Expedition of sulfur-containing heterocyclic derivatives as cytotoxic agents in medicinal chemistry: A decade update. Med Res Rev 2021; 42:513-575. [PMID: 34453452 DOI: 10.1002/med.21852] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/20/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
This review article proposes a comprehensive report of the design strategies engaged in the development of various sulfur-bearing cytotoxic agents. The outcomes of various studies depict that the sulfur heterocyclic framework is a fundamental structure in diverse synthetic analogs representing a myriad scope of therapeutic activities. A number of five-, six- and seven-membered sulfur-containing heterocyclic scaffolds, such as thiazoles, thiadiazoles, thiazolidinediones, thiophenes, thiopyrans, benzothiazoles, benzothiophenes, thienopyrimidines, simple and modified phenothiazines, and thiazepines have been discussed. The subsequent studies of the derivatives unveiled their cytotoxic effects through multiple mechanisms (viz. inhibition of tyrosine kinases, topoisomerase I and II, tubulin, COX, DNA synthesis, and PI3K/Akt and Raf/MEK/ERK signaling pathways), and several others. Thus, our concise illustration explains the design strategy and anticancer potential of these five- and six-membered sulfur-containing heterocyclic molecules along with a brief outline on seven-membered sulfur heterocycles. The thorough assessment of antiproliferative activities with the reference drug allows a proficient assessment of the structure-activity relationships (SARs) of the diversely synthesized molecules of the series.
Collapse
Affiliation(s)
- Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Kumari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
41
|
Hemaida AY, Hassan GS, Maarouf AR, Joubert J, El-Emam AA. Synthesis and Biological Evaluation of Thiazole-Based Derivatives as Potential Acetylcholinesterase Inhibitors. ACS OMEGA 2021; 6:19202-19211. [PMID: 34337258 PMCID: PMC8320107 DOI: 10.1021/acsomega.1c02549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022]
Abstract
Nineteen new thiazole-based derivatives were synthesized and their structures characterized with analytical and spectral data. The in vitro assessment of their acetylcholinesterase (AChE) inhibitory activity revealed that compounds 10 and 16 produced potent AChE inhibitory activities with IC50 values of 103.24 and 108.94 nM, respectively. Compounds 13, 17, 18, 21, 23, 31, and 33 displayed moderate activity with 25-50% relative potency compared to the known potent AChE inhibitor donepezil. Molecular docking studies of the active compounds docked within the active site cavity of AChE showed a binding orientation similar to that of donepezil, with good predicted binding affinities. These compounds could therefore be considered as potential lead compounds for the development of new and potentially improved AChE inhibitors.
Collapse
Affiliation(s)
- Aya Y. Hemaida
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ghada S. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Azza R. Maarouf
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
42
|
Wang G, Liu W, Fan M, He M, Li Y, Peng Z. Design, synthesis and biological evaluation of novel thiazole-naphthalene derivatives as potential anticancer agents and tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2021; 36:1694-1702. [PMID: 34309466 PMCID: PMC8317958 DOI: 10.1080/14756366.2021.1958213] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A novel series of thiazole-naphthalene derivatives as tubulin polymerisation inhibitors were designed, synthesised, and evaluated for the anti-proliferative activities. The majority of the tested compounds exhibited moderate to potent antiproliferative activity on the MCF-7 and A549 cancer cell lines. Among them, compound 5b was found to be the most active compound with IC50 values of 0.48 ± 0.03 and 0.97 ± 0.13 μM. Moreover, mechanistic studies revealed that 5b significantly inhibited tubulin polymerisation with an IC50 value of 3.3 µM, as compared to the standard drug colchicine (IC50 = 9.1 μM). Further cellular mechanism studies elucidated that 5b arrested the cell cycle at G2/M phase and induced apoptosis in MCF-7 cancer cells. Molecular modelling study indicated that 5b binds well to the colchicine binding site of tubulin. In summary, these results suggest that 5b represents a promising tubulin polymerisation inhibitor worthy of further investigation as potential anticancer agents.
Collapse
Affiliation(s)
- Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Meiyan Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
43
|
Oliveira AR, Dos Santos FA, Ferreira LPDL, Pitta MGDR, Silva MVDO, Cardoso MVDO, Pinto AF, Marchand P, de Melo Rêgo MJB, Leite ACL. Synthesis, anticancer activity and mechanism of action of new phthalimido-1,3-thiazole derivatives. Chem Biol Interact 2021; 347:109597. [PMID: 34303695 DOI: 10.1016/j.cbi.2021.109597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
In this work, 22 new compounds were obtained and evaluated for their cytotoxic activity on peripheral blood mononuclear cells (PBMC) and eight different tumor cell lines. All compounds displayed IC50 values above 100 μM when assayed against PBMCs. The cytotoxic assays in tumor cell lines revealed that sub-series of phthalimido-bis-1,3-thiazoles (5a-f) exhibited the best anti-tumor activity profile, presenting viability values below 59 %. As a result, the IC50 value was calculated for compounds 5a-f and 4c, and compounds 5b and 5e were selected for further assays due to their best IC50s. Considering the results presented by the sub-series 5a-f, the importance of the 1,3-thiazole ring in improving the anti-tumor activity was pointed out. Together, the results highlighted the anti-tumor activity of phthalimido-bis-1,3-thiazole derivatives.
Collapse
Affiliation(s)
- Arsênio Rodrigues Oliveira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil; Université de Nantes, Cibles et Médicaments des Infections et Du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Flaviana Alves Dos Santos
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil
| | - Larissa Pelágia de Lima Ferreira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil; Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil
| | | | | | - Aline Ferreira Pinto
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et Du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil.
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
44
|
Ankali KN, Rangaswamy J, Shalavadi M, Naik N, Krishnamurthy GN. Synthesis and Molecular Docking of novel 1,3-Thiazole Derived 1,2,3-Triazoles and In vivo Biological Evaluation for their Anti anxiety and Anti inflammatory Activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Wang J, Ansari MF, Zhou CH. Identification of Unique Quinazolone Thiazoles as Novel Structural Scaffolds for Potential Gram-Negative Bacterial Conquerors. J Med Chem 2021; 64:7630-7645. [PMID: 34009979 DOI: 10.1021/acs.jmedchem.1c00334] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A class of quinazolone thiazoles was identified as new structural scaffolds for potential antibacterial conquerors to tackle dreadful resistance. Some prepared compounds exhibited favorable bacteriostatic efficiencies on tested bacteria, and the most representative 5j featuring the 4-trifluoromethylphenyl group possessed superior performances against Escherichia coli and Pseudomonas aeruginosa to norfloxacin. Further studies revealed that 5j with inappreciable hemolysis could hinder the formation of bacterial biofilms and trigger reactive oxygen species generation, which could take responsibility for emerging low resistance. Subsequent paralleled exploration discovered that 5j not only disintegrated outer and inner membranes to induce leakage of cytoplasmic contents but also broke the metabolism by suppressing dehydrogenase. Meanwhile, derivative 5j could intercalate into DNA to exert powerful antibacterial properties. Moreover, compound 5j gave synergistic effects against some Gram-negative bacteria in combination with norfloxacin. These findings indicated that this novel structural type of quinazolone thiazoles showed therapeutic foreground in struggling with Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
46
|
Gold(I)-catalyzed, one-pot, oxidative formation of 2,4-disubstituted thiazoles: Application to the synthesis of a pateamine-related macrodiolide. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Bactericidal activity of a substituted thiazole against multidrug-resistant Eggerthia catenaformis isolated from patients with dental abscess. Anaerobe 2021; 69:102328. [PMID: 33524547 DOI: 10.1016/j.anaerobe.2021.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/20/2022]
Abstract
Human infections caused by the anaerobic bacterium Eggerthia catenaformis are rare. However, a growing number of case reports have presented the bacterium as the causative agent in many serious complications. This study provides data on the isolation and antibiotic susceptibility profiles of E. catenaformis from dental abscess. Identification of isolates was performed using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). We also investigated the antibacterial activity of 5-acetyl-4-methyl-2-(3-pyridyl) thiazole (AMPT) on E. catenaformis isolates. Minimum inhibitory concentrations (MICs) were determined by an agar dilution method and bactericidal activity was evaluated by a time-kill assay. Moreover, the mechanism of action of AMPT was also explored by cell membrane disruption assay and scanning electron microscopy (SEM). MALDI-TOF MS results revealed unambiguous identification of all isolates with score values between 2.120 and 2.501. Isolates NY4 and NY9 (20% of isolates) were found resistant to multiple antibiotics judged by MIC values. As multidrug-resistant strains of E. catenaformis were not reported to date, we then confirmed the identity of NY4 and NY9 based on 16S rRNA gene sequence. Favorably, all isolates were susceptible to AMPT with an MIC range of 0.25-1 mg/L. Time-kill kinetics of AMPT indicated that it exhibited potent bactericidal activity against the multidrug-resistant isolates NY4 and NY9. Furthermore, this study also hypothesizes that AMPT exerts its antibacterial effect through damaging the cell membrane and thereby induce the release of intracellular components. AMPT could therefore be considered as a therapeutic option for infections caused by multidrug-resistant bacteria.
Collapse
|
48
|
Nehra N, Kumar Tittal R, Ghule VD, Kumar N, Kumar Paul A, Lal K, Kumar A. CuAAC Mediated Synthesis of 2‐HBT Linked Bioactive 1,2,3‐Triazole Hybrids: Investigations through Fluorescence, DNA Binding, Molecular Docking, ADME Predictions and DFT Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202003919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nidhi Nehra
- Department of Chemistry National Institute of Technology, Kurukshetra Haryana 136119 India
| | - Ram Kumar Tittal
- Department of Chemistry National Institute of Technology, Kurukshetra Haryana 136119 India
| | - Vikas D. Ghule
- Department of Chemistry National Institute of Technology, Kurukshetra Haryana 136119 India
| | - Nikhil Kumar
- Department of Chemistry National Institute of Technology, Kurukshetra Haryana 136119 India
| | - Avijit Kumar Paul
- Department of Chemistry National Institute of Technology, Kurukshetra Haryana 136119 India
| | - Kashmiri Lal
- Department of Chemistry GJUS&T, Hisar Haryana 125001 India
| | - Ashwini Kumar
- Department of of Pharmaceutical Sciences GJUS&T, Hisar Haryana 125001 India
| |
Collapse
|
49
|
An Overview of the Synthesis and Antimicrobial, Antiprotozoal, and Antitumor Activity of Thiazole and Bisthiazole Derivatives. Molecules 2021; 26:molecules26030624. [PMID: 33504100 PMCID: PMC7865802 DOI: 10.3390/molecules26030624] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Thiazole, a five-membered heteroaromatic ring, is an important scaffold of a large number of synthetic compounds. Its diverse pharmacological activity is reflected in many clinically approved thiazole-containing molecules, with an extensive range of biological activities, such as antibacterial, antifungal, antiviral, antihelmintic, antitumor, and anti-inflammatory effects. Due to its significance in the field of medicinal chemistry, numerous biologically active thiazole and bisthiazole derivatives have been reported in the scientific literature. The current review provides an overview of different methods for the synthesis of thiazole and bisthiazole derivatives and describes various compounds bearing a thiazole and bisthiazole moiety possessing antibacterial, antifungal, antiprotozoal, and antitumor activity, encouraging further research on the discovery of thiazole-containing drugs.
Collapse
|
50
|
Ngoc Toan V, Dinh Thanh N. Novel thiazoline–coumarin hybrid compounds containing sugar moieties: synthesis, biological evaluation and molecular docking study as antiproliferative agents. NEW J CHEM 2021. [DOI: 10.1039/d1nj00680k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1,3-Thiadiazoline–coumarin hybrid compounds containing d-glucose and d-galactose moieties have the cytotoxicity against MCF-7, HepG2, HeLa, SK-Mel-2, and LU-1 cells and also EGFR and HER2 kinases. Molecular docking showed key roles in enhancing potency against both enzymes.
Collapse
Affiliation(s)
- Vu Ngoc Toan
- Department of Toxicological Chemistry and Radiation
- Institute for Advanced Technology (Vietnam Academy of Military Science and Technology)
- Ha Noi
- Vietnam
- Faculty of Chemistry
| | - Nguyen Dinh Thanh
- Faculty of Chemistry
- VNU University of Science (Vietnam National University, Ha Noi)
- Ha Noi
- Vietnam
| |
Collapse
|