1
|
Conejo-García A, Jiménez-Martínez Y, Cámara R, Franco-Montalbán F, Peña-Martín J, Boulaiz H, Carrión MD. New substituted benzoxazine derivatives as potent inducers of membrane permeability and cell death. Bioorg Med Chem 2024; 111:117849. [PMID: 39068873 DOI: 10.1016/j.bmc.2024.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
The search for new agents targeting different forms of cell death is an important research focus for developing new and potent antitumor therapies. As a contribution to this endeavor, we have designed and synthesized a series of new substituted 3,4-dihydro-2H-1,4-benzoxazine derivatives. These compounds have been evaluated for their efficacy against MCF-7 breast cancer and HCT-116 colon cancer cell lines. Overall, substituting this heterocycle led to improved antiproliferative activity compared to the unsubstituted derivative 1. The most active compounds, 2b and 4b, showed IC50 values of 2.27 and 3.26 μM against MCF-7 cells and 4.44 and 7.63 μM against HCT-116 cells, respectively. To investigate the mechanism of action of the target compounds, the inhibition profile of 8 kinases involved in cell signaling was studied highlighting residual activity on HER2 and JNK1 kinases. 2b and 4b showed a consistent binding mode to both receptor kinases, establishing significant interactions with known and catalytically important domains and residues. Compounds 2b and 4b exhibit potent cytotoxic activity by disrupting cell membrane permeability, likely triggering both inflammatory and non-inflammatory cell death mechanisms. This dual capability increases their versatility in the treatment of different stages or types of tumors, providing greater flexibility in clinical applications.
Collapse
Affiliation(s)
- Ana Conejo-García
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
| | - Yaiza Jiménez-Martínez
- Department of Anatomy and Human Embryology, Faculty of Medicine, Avenida de la Investigación 11, University of Granada, 18016 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Rubén Cámara
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain
| | - Francisco Franco-Montalbán
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain
| | - Jesús Peña-Martín
- Department of Anatomy and Human Embryology, Faculty of Medicine, Avenida de la Investigación 11, University of Granada, 18016 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Houria Boulaiz
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain; Department of Anatomy and Human Embryology, Faculty of Medicine, Avenida de la Investigación 11, University of Granada, 18016 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Avenida del Conocimiento s/n, 18016 Granada, Spain.
| | - M Dora Carrión
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain.
| |
Collapse
|
2
|
Targeting cancer through recently developed purine clubbed heterocyclic scaffolds: An overview. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Shatokhin SS, Tuskaev VA, Gagieva SC, Markova AA, Pozdnyakov DI, Denisov GL, Melnikova EK, Bulychev BM, Oganesyan ET. Synthesis, cytotoxicity and antioxidant activity of new 1,3-dimethyl-8-(chromon-3-yl)-xanthine derivatives containing 2,6-di- tert-butylphenol fragments. NEW J CHEM 2022. [DOI: 10.1039/d1nj03726a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
New xanthine analogs of isoflavone were synthesized and exhibited promising anticancer and antioxidant activities.
Collapse
Affiliation(s)
- Stanislav S. Shatokhin
- Pyatigorsk Medical and Pharmaceutical Institute - a branch of the Federal State Budgetary Educational Institution of Higher Medical Education VolgSMU of the Ministry of Health of Russia, 11, Kalinin Ave., 357532, Pyatigorsk, Russian Federation
| | - Vladislav A. Tuskaev
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992, Moscow, Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991, Moscow, Russian Federation
| | - Svetlana Ch. Gagieva
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992, Moscow, Russian Federation
| | - Alina A. Markova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991, Moscow, Russian Federation
- N. M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street 4, 119334, Moscow, Russian Federation
| | - Dmitry I. Pozdnyakov
- Pyatigorsk Medical and Pharmaceutical Institute - a branch of the Federal State Budgetary Educational Institution of Higher Medical Education VolgSMU of the Ministry of Health of Russia, 11, Kalinin Ave., 357532, Pyatigorsk, Russian Federation
| | - Gleb L. Denisov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991, Moscow, Russian Federation
| | - Elizaveta K. Melnikova
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992, Moscow, Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991, Moscow, Russian Federation
| | - Boris M. Bulychev
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992, Moscow, Russian Federation
| | - Eduard T. Oganesyan
- Pyatigorsk Medical and Pharmaceutical Institute - a branch of the Federal State Budgetary Educational Institution of Higher Medical Education VolgSMU of the Ministry of Health of Russia, 11, Kalinin Ave., 357532, Pyatigorsk, Russian Federation
| |
Collapse
|
4
|
Chu Z, Chen H, Shan S, Wang X, Gao C, Qu G, Liu Z, Guo H. One-Step Synthesis of 1,2,4-Triazolo[3,4 -i]purine Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Sharma P, LaRosa C, Antwi J, Govindarajan R, Werbovetz KA. Imidazoles as Potential Anticancer Agents: An Update on Recent Studies. Molecules 2021; 26:molecules26144213. [PMID: 34299488 PMCID: PMC8307698 DOI: 10.3390/molecules26144213] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Nitrogen-containing heterocyclic rings are common structural components of marketed drugs. Among these heterocycles, imidazole/fused imidazole rings are present in a wide range of bioactive compounds. The unique properties of such structures, including high polarity and the ability to participate in hydrogen bonding and coordination chemistry, allow them to interact with a wide range of biomolecules, and imidazole-/fused imidazole-containing compounds are reported to have a broad spectrum of biological activities. This review summarizes recent reports of imidazole/fused imidazole derivatives as anticancer agents appearing in the peer-reviewed literature from 2018 through 2020. Such molecules have been shown to modulate various targets, including microtubules, tyrosine and serine-threonine kinases, histone deacetylases, p53-Murine Double Minute 2 (MDM2) protein, poly (ADP-ribose) polymerase (PARP), G-quadraplexes, and other targets. Imidazole-containing compounds that display anticancer activity by unknown/undefined mechanisms are also described, as well as key features of structure-activity relationships. This review is intended to provide an overview of recent advances in imidazole-based anticancer drug discovery and development, as well as inspire the design and synthesis of new anticancer molecules.
Collapse
Affiliation(s)
- Pankaj Sharma
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
| | - Chris LaRosa
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
| | - Janet Antwi
- Division of Mathematics, Computer & Natural Sciences Division, Ohio Dominican University, Columbus, OH 43219, USA;
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
- Correspondence:
| |
Collapse
|
6
|
Gauni B, Mehariya K, Shah A, Duggirala SM. Tetralone Scaffolds and Their Potential Therapeutic Applications. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201013165656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Substituted tetralones have played a substantial role in organic synthesis due to their
strong reactivity and suitability as a starting material for a range of synthetic heterocyclic compounds,
pharmaceuticals along with biological activities as well as precursors of many natural
products and their derivatives. Many α-tetralone derivatives are building blocks that have been used
in the synthesis of therapeutically functional compounds like some antibiotics, antidepressants,
acetylcholinesterase inhibitors effective for treating Alzheimer’s disease and alkaloids possessing
antitumor activity. In this review, there has been an attempt to explore the small molecule library
having an α-tetralone scaffold along with their diverse biological activities. Structural features of α-
tetralone derivatives responsible for potential therapeutic applications are also described.
Collapse
Affiliation(s)
- Bhagwati Gauni
- Department of Microbiology, Gujarat Vidyapith, Sadra-382 320, Dist; Gandhinagar, Gujarat,India
| | - Krunal Mehariya
- National Facility for Drug Discovery Complex, Centre of Excellence, Department of Chemistry, Saurashtra University, Rajkot-360 005, Gujarat,India
| | - Anamik Shah
- National Facility for Drug Discovery Complex, Centre of Excellence, Department of Chemistry, Saurashtra University, Rajkot-360 005, Gujarat,India
| | | |
Collapse
|
7
|
Fernández-Sáez N, Campos JM, Camacho ME, Carrión MD. NMR studies of new heterocycles tethered to purine moieties with anticancer activity. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:331-341. [PMID: 30903703 DOI: 10.1002/mrc.4871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Nerea Fernández-Sáez
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Joaquín M Campos
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - María Encarnación Camacho
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - María Dora Carrión
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| |
Collapse
|