1
|
Hernández-Gómez C, Hernández-Lemus E, Espinal-Enríquez J. CNVs in 8q24.3 do not influence gene co-expression in breast cancer subtypes. Front Genet 2023; 14:1141011. [PMID: 37274786 PMCID: PMC10236314 DOI: 10.3389/fgene.2023.1141011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
Gene co-expression networks are a useful tool in the study of interactions that have allowed the visualization and quantification of diverse phenomena, including the loss of co-expression over long distances in cancerous samples. This characteristic, which could be considered fundamental to cancer, has been widely reported in various types of tumors. Since copy number variations (CNVs) have previously been identified as causing multiple genetic diseases, and gene expression is linked to them, they have often been mentioned as a probable cause of loss of co-expression in cancerous networks. In order to carry out a comparative study of the validity of this statement, we took 477 protein-coding genes from chromosome 8, and the CNVs of 101 genes, also protein-coding, belonging to the 8q24.3 region, a cytoband that is particularly active in the appearance of breast cancer. We created CNVS-conditioned co-expression networks of each of the 101 genes in the 8q24.3 region using conditional mutual information. The study was carried out using the four molecular subtypes of breast cancer (Luminal A, Luminal B, Her2, and Basal), as well as a case corresponding to healthy samples. We observed that in all cancer cases, the measurement of the Kolmogorov-Smirnov statistic shows that there are no significant differences between one and other values of the CNVs for any case. Furthermore, the co-expression interactions are stronger in all cancer subtypes than in the control networks. However, the control network presents a homogeneously distributed set of co-expression interactions, while for cancer networks, the highest interactions are more confined to specific cytobands, in particular 8q24.3 and 8p21.3. With this approach, we demonstrate that despite copy number alterations in the 8q24 region being a common trait in breast cancer, the loss of long-distance co-expression in breast cancer is not determined by CNVs.
Collapse
Affiliation(s)
- Candelario Hernández-Gómez
- Computational Genomics Division, National Institute of Genomic Medicine, México City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, México City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, México City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, México City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
2
|
Samelak-Czajka A, Wojciechowski P, Marszalek-Zenczak M, Figlerowicz M, Zmienko A. Differences in the intraspecies copy number variation of Arabidopsis thaliana conserved and nonconserved miRNA genes. Funct Integr Genomics 2023; 23:120. [PMID: 37036577 PMCID: PMC10085913 DOI: 10.1007/s10142-023-01043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/11/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression by RNA interference mechanism. In plants, miRNA genes (MIRs) which are grouped into conserved families, i.e. they are present among the different plant taxa, are involved in the regulation of many developmental and physiological processes. The roles of the nonconserved MIRs-which are MIRs restricted to one plant family, genus, or even species-are less recognized; however, many of them participate in the responses to biotic and abiotic stresses. Both over- and underproduction of miRNAs may influence various biological processes. Consequently, maintaining intracellular miRNA homeostasis seems to be crucial for the organism. Deletions and duplications in the genomic sequence may alter gene dosage and/or activity. We evaluated the extent of copy number variations (CNVs) among Arabidopsis thaliana (Arabidopsis) MIRs in over 1000 natural accessions, using population-based analysis of the short-read sequencing data. We showed that the conserved MIRs were unlikely to display CNVs and their deletions were extremely rare, whereas nonconserved MIRs presented moderate variation. Transposon-derived MIRs displayed exceptionally high diversity. Conversely, MIRs involved in the epigenetic control of transposons reactivated during development were mostly invariable. MIR overlap with the protein-coding genes also limited their variability. At the expression level, a higher rate of nonvariable, nonconserved miRNAs was detectable in Col-0 leaves, inflorescence, and siliques compared to nonconserved variable miRNAs, although the expression of both groups was much lower than that of the conserved MIRs. Our data indicate that CNV rate of Arabidopsis MIRs is related with their age, function, and genomic localization.
Collapse
Affiliation(s)
- Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Pawel Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
- Institute of Computing Science, Faculty of Computing and Telecommunications, Poznan University of Technology, 60-965, Poznan, Poland
| | | | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
| | - Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
| |
Collapse
|
3
|
Ware AP, Kabekkodu SP, Chawla A, Paul B, Satyamoorthy K. Diagnostic and prognostic potential clustered miRNAs in bladder cancer. 3 Biotech 2022; 12:173. [PMID: 35845108 PMCID: PMC9279521 DOI: 10.1007/s13205-022-03225-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/18/2022] [Indexed: 12/13/2022] Open
Abstract
At specific genomic loci, miRNAs are in clusters and their association with copy number variations (CNVs) may exhibit abnormal expression in several cancers. Hence, the current study aims to understand the expression of miRNA clusters residing within CNVs and the regulation of their target genes in bladder cancer. To achieve this, we used extensive bioinformatics resources and performed an integrated analysis of recurrent CNVs, clustered miRNA expression, gene expression, and drug–gene interaction datasets. The study identified nine upregulated miRNA clusters that are residing on CNV gain regions and three miRNA clusters (hsa-mir-200c/mir-141, hsa-mir-216a/mir-217, and hsa-mir-15b/mir-16-2) are correlated with patient survival. These clustered miRNAs targeted 89 genes that were downregulated in bladder cancer. Moreover, network and gene enrichment analysis displayed 10 hub genes (CCND2, ETS1, FGF2, FN1, JAK2, JUN, KDR, NOTCH1, PTEN, and ZEB1) which have significant potential for diagnosis and prognosis of bladder cancer patients. Interestingly, hsa-mir-200c/mir-141 and hsa-mir-15b/mir-16-2 cluster candidates showed significant differences in their expression in stage-specific manner during cancer progression. Downregulation of NOTCH1 by hsa-mir-200c/mir-141 may also sensitize tumors to methotrexate thus suggesting potential chemotherapeutic options for bladder cancer subjects. To overcome some computational challenges and reduce the complexity in multistep big data analysis, we developed an automated pipeline called CmiRClustFinder v1.0 (https://github.com/msls-bioinfo/CmiRClustFinder_v1.0), which can perform integrated data analysis of 35 TCGA cancer types.
Collapse
Affiliation(s)
- Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Arun Chawla
- Department of Urology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| |
Collapse
|
4
|
Xue X, Chen Y. Circular RNA (circ)_0129047 upregulates bone morphogenetic protein receptor type 2 expression to inhibit lung adenocarcinoma progression by sponging microRNA (miR)-1206. Bioengineered 2022; 13:12067-12087. [PMID: 35570745 PMCID: PMC9275972 DOI: 10.1080/21655979.2022.2070580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) play significant roles in the tumorigenesis and progression of various cancers, including lung adenocarcinoma (LAC). However, their underlying biological functions in LAC remain unclear. Here, we investigated the tumor suppressor role of the newly identified circRNA, circ_0129047, in LAC tumorigenesis and progression. The expression levels of circ_0129047, microRNA (miR)-1206, and bone morphogenetic protein receptor type 2 (BMPR2) mRNA in LAC cells and tissues were monitored using reverse transcription-quantitative polymerase chain reaction. Dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays were used to confirm the targeting relationships among circ_0129047, miR-1206, and BMPR2 mRNA. Functional experiments for A549 and PC9 cells were performed using cell counting kit-8, bromodeoxyuridine enzyme-linked immunosorbent, caspase-3 activity, cell adhesion, wound healing, and transwell assays. Circ_0129047 expression levels were reduced in LAC cells and tissues. Mechanistically, we discovered that circ_0129047 could sponge miR-1206, and miR-1206 could directly target BMPR2. In addition, circ_0129047 or BMPR2 knockdown facilitated the viability, proliferation, adhesion, migration, and invasion, while inhibiting the apoptosis of LAC cells. Furthermore, the inhibitory effects of circ_0129047 or BMPR2 overexpression on the malignant phenotype of LAC cells could be reversed by the overexpression of miR-1206. In conclusion, circ _0129047 was found to play a tumor suppressive role in LAC progression; it upregulated BMPR2 expression to inhibit LAC progression by sponging miR-1206. Abbreviations: non-small cell lung cancer (NSCLC); small cell lung cancer (SCLC); lung adenocarcinoma (LAC); Circular RNA (circRNA); MicroRNA (miRNA); bone morphogenetic protein (BMP); squamous cell lung cancer (SCC); RNA immunoprecipitation (RIP)
Collapse
Affiliation(s)
- Xinxin Xue
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yajun Chen
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Larios-Serrato V, Martínez-Ezquerro JD, Valdez-Salazar HA, Torres J, Camorlinga-Ponce M, Piña-Sánchez P, Ruiz-Tachiquín ME. Copy number alterations and epithelial‑mesenchymal transition genes in diffuse and intestinal gastric cancers in Mexican patients. Mol Med Rep 2022; 25:191. [PMID: 35362543 PMCID: PMC8985205 DOI: 10.3892/mmr.2022.12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/28/2022] [Indexed: 01/06/2023] Open
Abstract
Gastric cancer (GC) is a common malignancy with the highest mortality rate among diseases of the digestive system, worldwide. The present study of GC alterations is crucial to the understanding of tumor biology and the establishment of important aspects of cancer prognosis and treatment response. In the present study, DNA from Mexican patients with diffuse GC (DGC), intestinal GC (IGC) or non‑atrophic gastritis (NAG; control) was purified and whole‑genome analysis was performed with high‑density arrays. Shared and unique copy number alterations (CNA) were identified between the different tissues involving key genes and signaling pathways associated with cancer. This led to the molecular distinction and identification of the most relevant molecular functions to be identified. A more detailed bioinformatics analysis of epithelial‑mesenchymal transition (EMT) genes revealed that the altered network associated with chromosomal alterations included 11 genes that were shared between DGC, IGC and NAG, as well as 19 DGC‑ and 7 IGC‑exclusive genes. Furthermore, the main molecular functions included adhesion, angiogenesis, migration, metastasis, morphogenesis, proliferation and survival. The present study provided the first whole‑genome high‑density array analysis in Mexican patients with GC and revealed shared and exclusive CNA‑associated genes in DGC and IGC. In addition, a bioinformatics‑predicted network was generated, focusing on CNA‑altered genes associated with EMT and the hallmarks of cancer, as well as precancerous alterations that may lead to GC. Molecular signatures of diffuse and intestinal GC, predicted bioinformatically, involve common and distinct CNA‑EMT genes related to the hallmarks of cancer that are potential candidates for screening biomarkers of GC, including early stages.
Collapse
Affiliation(s)
- Violeta Larios-Serrato
- Laboratory of Biotechnology and Genomic Bioinformatics, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Lázaro Cárdenas Professional Unit, Mexico City 11340, Mexico
| | - José-Darío Martínez-Ezquerro
- Epidemiological and Health Services Research Unit, Aging Area (UIESSAE), XXI Century National Medical Center, Mexican Social Security Institute (IMSS), Mexico City 06720, Mexico
| | - Hilda-Alicia Valdez-Salazar
- Infectious and Parasitic Diseases Medical Research Unit (UIMEIP), High Specialty Medical Unit (UMAE)‑Pediatrics Hospital 'Dr. Silvestre Frenk Freund', XXI Century National Medical Center, IMSS, Mexico City 06720, Mexico
| | - Javier Torres
- Infectious and Parasitic Diseases Medical Research Unit (UIMEIP), High Specialty Medical Unit (UMAE)‑Pediatrics Hospital 'Dr. Silvestre Frenk Freund', XXI Century National Medical Center, IMSS, Mexico City 06720, Mexico
| | - Margarita Camorlinga-Ponce
- Infectious and Parasitic Diseases Medical Research Unit (UIMEIP), High Specialty Medical Unit (UMAE)‑Pediatrics Hospital 'Dr. Silvestre Frenk Freund', XXI Century National Medical Center, IMSS, Mexico City 06720, Mexico
| | - Patricia Piña-Sánchez
- Oncological Diseases Medical Research Unit (UIMEO), UMAE‑Oncology Hospital, XXI Century National Medical Center, Mexican Social Security Institute (IMSS), Mexico City 06720, Mexico
| | - Martha-Eugenia Ruiz-Tachiquín
- Oncological Diseases Medical Research Unit (UIMEO), UMAE‑Oncology Hospital, XXI Century National Medical Center, Mexican Social Security Institute (IMSS), Mexico City 06720, Mexico
| |
Collapse
|
6
|
Bi Y, Ji J, Zhou Y. LncRNA-PVT1 indicates a poor prognosis and promotes angiogenesis via activating the HNF1B/EMT axis in glioma. J Cancer 2021; 12:5732-5744. [PMID: 34475987 PMCID: PMC8408127 DOI: 10.7150/jca.60257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
Recent studies identified that long non-coding RNAs (lncRNAs) exhibited critical roles in tumor migration and invasion. However, the roles of lncRNAs in glioma remain unclear. The aim of this study was to uncover the underlying mechanisms of glioma progression and provide potential therapeutic targets for its treatment in clinic. Our microarray study showed that lncRNA-PVT1 was significantly upregulated in glioma tissues and played an important role in cell proliferation, migration, invasion and angiogenesis. Our data showed that the expression of lncRNA-PVT1 was increased obviously and associated with advanced tumor stage, metastasis, invasion ability, and poor prognosis in glioma patients. Up-regulation of lncRNA-PVT1 was observed to promote glioma cells proliferation, and invasion abilities in vitro as well as tumor growth in vivo by regulating miR-1207-3p expression. Online software (TargetScan, miRDB and miR TarBase) were used to predict the regulating mechanisms of lncRNA-PVT1, miR-1207-3p and HNF1B, which were validated by dual-luciferase reporter gene system. In vivo tumor-bearing mice models were established to validate the cellular results. Therefore, we suggested that lncRNA-PVT1/miR-1207-3p/HNF1B axis might play critical roles in glioma progression, indicating that lncRNA-PVT1/miR-1207-3p/HNF1B signaling axis may serve as novel molecular targets for glioma prevention and treatment.
Collapse
Affiliation(s)
- Yongyan Bi
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Neurosurgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Jie Ji
- Department of Rehabilitation Medicine, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Zhang Y, Wang D, Zhu T, Yu J, Wu X, Lin W, Zhu M, Dai Y, Zhu J. CircPUM1 promotes hepatocellular carcinoma progression through the miR-1208/MAP3K2 axis. J Cell Mol Med 2021; 25:600-612. [PMID: 33320435 PMCID: PMC7810943 DOI: 10.1111/jcmm.15998] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common disease with a significant mortality, and there is no effective treatment for advanced patients. Growing evidence indicates that circRNAs are closely related to HCC progression, may be used as biomarkers and targets for the diagnosis and treatment of HCC. Recent researches have shown that circPUM1 may play an oncogene role in a variety of human cancers, but its role in HCC development has not been reported. Our study found that circPUM1 could promote the proliferation, migration and invasion of HCC cells in vitro. In addition, in vivo studies showed that circPUM1 could increase the development of HCC tumours and regulate the expression of EMT-related proteins. Furthermore, we demonstrated that circPUM1 could promote the development of HCC by up-regulating the expression of MAP3K2 via sponging miR-1208. Our study suggested that circPUM1 may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yaqiong Zhang
- Department of Clinical LaboratoryTaizhou Central Hospital (Taizhou University Hospital)ZhejiangChina
| | - Dongguo Wang
- Department of Clinical Lab MedicineTaizhou Municipal Hospital Affiliated with Taizhou UniversityZhejiangChina
| | - Tao Zhu
- Department of Plastic surgeryTaizhou Central Hospital (Taizhou University Hospital)ZhejiangChina
| | - Jin Yu
- The Health Management CentreTaizhou Central Hospital (Taizhou University Hospital)TaizhouChina
| | - Xiaoyu Wu
- Department of Clinical LaboratoryTaizhou Central Hospital (Taizhou University Hospital)ZhejiangChina
| | - Weidong Lin
- Department of Clinical LaboratoryTaizhou Central Hospital (Taizhou University Hospital)ZhejiangChina
| | - Minqi Zhu
- Department of Clinical LaboratoryTaizhou Central Hospital (Taizhou University Hospital)ZhejiangChina
| | - Yingjie Dai
- Department of Clinical LaboratoryTaizhou Central Hospital (Taizhou University Hospital)ZhejiangChina
| | - Jie Zhu
- Department of Clinical LaboratoryTaizhou Central Hospital (Taizhou University Hospital)ZhejiangChina
| |
Collapse
|
8
|
Genome-Wide Characterization of RNA Editing Sites in Primary Gastric Adenocarcinoma through RNA-seq Data Analysis. Int J Genomics 2020; 2020:6493963. [PMID: 33415135 PMCID: PMC7768588 DOI: 10.1155/2020/6493963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
RNA editing is a posttranscriptional nucleotide modification in humans. Of the various types of RNA editing, the adenosine to inosine substitution is the most widespread in higher eukaryotes, which is mediated by the ADAR family enzymes. Inosine is recognized by the biological machinery as guanosine; therefore, editing could have substantial functional effects throughout the genome. RNA editing could contribute to cancer either by exclusive editing of tumor suppressor/promoting genes or by introducing transcriptomic diversity to promote cancer progression. Here, we provided a comprehensive overview of the RNA editing sites in gastric adenocarcinoma and highlighted some of their possible contributions to gastric cancer. RNA-seq data corresponding to 8 gastric adenocarcinoma and their paired nontumor counterparts were retrieved from the GEO database. After preprocessing and variant calling steps, a stringent filtering pipeline was employed to distinguish potential RNA editing sites from SNPs. The identified potential editing sites were annotated and compared with those in the DARNED database. Totally, 12362 high-confidence adenosine to inosine RNA editing sites were detected across all samples. Of these, 12105 and 257 were known and novel editing events, respectively. These editing sites were unevenly distributed across genomic regions, and nearly half of them were located in 3′UTR. Our results revealed that 4868 editing sites were common in both normal and cancer tissues. From the remaining sites, 3985 and 3509 were exclusive to normal and cancer tissues, respectively. Further analysis revealed a significant number of differentially edited events among these sites, which were located in protein coding genes and microRNAs. Given the distinct pattern of RNA editing in gastric adenocarcinoma and adjacent normal tissue, edited sites have the potential to serve as the diagnostic biomarkers and therapeutic targets in gastric cancer.
Collapse
|
9
|
Anauate AC, Leal MF, Calcagno DQ, Gigek CO, Karia BTR, Wisnieski F, dos Santos LC, Chen ES, Burbano RR, Smith MAC. The Complex Network between MYC Oncogene and microRNAs in Gastric Cancer: An Overview. Int J Mol Sci 2020; 21:ijms21051782. [PMID: 32150871 PMCID: PMC7084225 DOI: 10.3390/ijms21051782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the advancements in cancer treatments, gastric cancer is still one of the leading causes of death worldwide. In this context, it is of great interest to discover new and more effective ways of treating this disease. Accumulated evidences have demonstrated the amplification of 8q24.21 region in gastric tumors. Furthermore, this is the region where the widely known MYC oncogene and different microRNAs are located. MYC deregulation is key in tumorigenesis in various types of tissues, once it is associated with cell proliferation, survival, and drug resistance. microRNAs are a class of noncoding RNAs that negatively regulate the protein translation, and which deregulation is related with gastric cancer development. However, little is understood about the interactions between microRNAs and MYC. Here, we overview the MYC role and its relationship with the microRNAs network in gastric cancer aiming to identify potential targets useful to be used in clinic, not only as biomarkers, but also as molecules for development of promising therapies.
Collapse
Affiliation(s)
- Ana Carolina Anauate
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
| | - Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Bruno Takao Real Karia
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Gastroenterologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Leonardo Caires dos Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Rommel Rodríguez Burbano
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém PA 66075-110, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém PA 66063-240, Brazil
| | - Marília Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Correspondence: ; Tel.: +55-11-5576-4848
| |
Collapse
|
10
|
Barbosa-Jobim GS, Costa-Lira É, Ralph ACL, Gregório L, Lemos TL, Burbano RR, Calcagno DQ, Smith MA, Montenegro RC, Vasconcellos MC. Biflorin inhibits the proliferation of gastric cancer cells by decreasing MYC expression. Toxicol In Vitro 2020; 63:104735. [DOI: 10.1016/j.tiv.2019.104735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/02/2019] [Accepted: 11/17/2019] [Indexed: 01/14/2023]
|
11
|
Onagoruwa OT, Pal G, Ochu C, Ogunwobi OO. Oncogenic Role of PVT1 and Therapeutic Implications. Front Oncol 2020; 10:17. [PMID: 32117705 PMCID: PMC7010636 DOI: 10.3389/fonc.2020.00017] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
PVT1, a long non-coding RNA has been implicated in a variety of human cancers. Recent advancements have led to increasing discovery of the critical roles of PVT1 in cancer initiation and progression. Novel insight is emerging about PVT1's mechanism of action in different cancers. Identifying and understanding the variety of activities of PVT1 involved in cancers is a necessity for the development of PVT1 as a diagnostic biomarker or therapeutic target in cancers where PVT1 is dysregulated. PVT1's varied activities include overexpression, modulation of miRNA expression, protein interactions, targeting of regulatory genes, formation of fusion genes, functioning as a competing endogenous RNA (ceRNA), and interactions with MYC, among many others. Furthermore, bioinformatic analysis of PVT1 interactions in cancers has aided understanding of the numerous pathways involved in PVT1 contribution to carcinogenesis in a cancer type-specific manner. However, these recent findings show that there is much more to be learned to be able to fully exploit PVT1 for cancer prognostication and therapy. In this review, we summarize some of the latest findings on PVT1's oncogenic activities, signaling networks and how targeting these networks can be a strategy for cancer therapy.
Collapse
|
12
|
Kim EA, Jang JH, Sung EG, Song IH, Kim JY, Lee TJ. MiR-1208 Increases the Sensitivity to Cisplatin by Targeting TBCK in Renal Cancer Cells. Int J Mol Sci 2019; 20:ijms20143540. [PMID: 31331056 PMCID: PMC6679220 DOI: 10.3390/ijms20143540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) can be used to target a variety of human malignancies by targeting their oncogenes or tumor suppressor genes. Recent evidence has shown that miRNA-1208 (miR-1208) was rarely expressed in a variety of cancer cells, suggesting the possibility that miR-1208 functions as a tumor suppressor gene. Herein, ectopic expression of miR-1208 induced the accumulation of sub-G1 populations and the cleavage of procaspase-3 and PARP, which could be prevented by pre-treatment with the pan-caspase inhibitor, Z-VAD. In addition, miR-1208 increased the susceptibility to cisplatin and TRAIL in Caki-1 cells. Luciferase reporter assay results showed that miR-1208 negatively regulates TBC1 domain containing kinase (TBCK) expression by binding to the miR-1208 binding sites in the 3′-untranslated region of TBCK. In addition, miR-1208 specifically repressed TBCK expression at the transcriptional level. In contrast, inhibition of endogenous miR-1208 by anti-miRs resulted in an increase in TBCK expression. Downregulation of TBCK induced by TBCK-specific siRNAs increased susceptibility to cisplatin and TRAIL. These findings suggest that miR-1208 acts as a tumor suppressor and targets TBCK directly, thus possessing great potential for use in renal cancer therapy.
Collapse
Affiliation(s)
- Eun-Ae Kim
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-Ro, Nam-Gu, Daegu 42415, Korea
| | - Ji-Hoon Jang
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-Ro, Nam-Gu, Daegu 42415, Korea
| | - Eon-Gi Sung
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-Ro, Nam-Gu, Daegu 42415, Korea
| | - In-Hwan Song
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-Ro, Nam-Gu, Daegu 42415, Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-Ro, Nam-Gu, Daegu 42415, Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-Ro, Nam-Gu, Daegu 42415, Korea.
| |
Collapse
|
13
|
Yin C, Zheng X, Xiang H, Li H, Gao M, Meng X, Yang K. Differential expression profile analysis of cisplatin‑regulated miRNAs in a human gastric cancer cell line. Mol Med Rep 2019; 20:1966-1976. [PMID: 31257509 DOI: 10.3892/mmr.2019.10430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
Cisplatin, one of the most commonly used drugs in combination chemotherapy, is an effective anti‑tumor agent widely used for diverse tumor types. MicroRNAs (miRNAs/miRs) are involved in the occurrence, development, diagnosis and treatment of cancer. Therefore, the aim of the current study was to explore whether cisplatin exerts anticancer effects by causing differential expression of miRNAs in human gastric cancer cells. The human gastric cancer cell line NCI‑N87 was cultured with a certain dose of cisplatin and high‑throughput sequencing combined with reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was performed to detect cisplatin‑regulated miRNAs. miRNAs upregulated and downregulated following cisplatin exposure were analyzed. High‑throughput sequencing revealed 33 upregulated and 16 downregulated miRNAs. A total of five significantly upregulated and five significantly downregulated miRNAs were identified by RT‑qPCR. The expression levels of hsa‑miR‑1246 and hsa‑miR‑892b were consistent with the results obtained from high‑throughput sequencing. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway clustering of cisplatin‑regulated miRNAs revealed that the miRNAs regulated genes involved in several biological processes and signaling pathways. The results obtained in the current study suggested that cisplatin may exert an important anticancer effect in gastric cancer via complex biological processes and signaling pathways.
Collapse
Affiliation(s)
- Chunlin Yin
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xianxian Zheng
- Department of Clinical Laboratory, Hefei Binhu Hospital, Hefei, Anhui 230601, P.R. China
| | - Heping Xiang
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - He Li
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ming Gao
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiangling Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Kai Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|