1
|
Caciolla J, Martini S, Spinello A, Belluti F, Bisi A, Zaffaroni N, Magistrato A, Gobbi S. Single-digit nanomolar inhibitors lock the aromatase active site via a dualsteric targeting strategy. Eur J Med Chem 2022; 244:114802. [DOI: 10.1016/j.ejmech.2022.114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022]
|
2
|
Caciolla J, Martini S, Spinello A, Pavlin M, Turrini E, Simonelli F, Belluti F, Rampa A, Bisi A, Fimognari C, Zaffaroni N, Gobbi S, Magistrato A. Balanced dual acting compounds targeting aromatase and estrogen receptor α as an emerging therapeutic opportunity to counteract estrogen responsive breast cancer. Eur J Med Chem 2021; 224:113733. [PMID: 34364162 DOI: 10.1016/j.ejmech.2021.113733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023]
Abstract
Breast Cancer (BC) is a leading cause of death in women, currently affecting 13% of female population worldwide. First-line clinical treatments against Estrogen Receptor positive (ER+) BC rely on suppressing estrogen production, by inhibiting the aromatase (AR) enzyme, or on blocking estrogen-dependent pro-oncogenic signaling, by targeting Estrogen Receptor (ER) α with selective Modulators/Degraders (SERMs/SERDs). The development of dual acting molecules targeting AR and ERα represents a tantalizing alternative strategy to fight ER + BC, reducing the incidence of adverse effects and resistance onset that limit the effectiveness of these gold-standard therapies. Here, in silico design, synthesis, biological evaluation and an atomic-level characterization of the binding and inhibition mechanism of twelve structurally related drug-candidates enable the discovery of multiple compounds active on both AR and ERα in the sub-μM range. The best drug-candidate 3a displayed a balanced low-nanomolar IC50 towards the two targets, SERM activity and moderate selectivity towards a BC cell line. Moreover, most of the studied compounds reduced ERα levels, suggesting a potential SERD activity. This study dissects the key structural traits needed to obtain optimal dual acting drug-candidates, showing that multitarget compounds may be a viable therapeutic option to counteract ER + BC.
Collapse
Affiliation(s)
- Jessica Caciolla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Silvia Martini
- Fondazione IRCSS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20113, Milano, Italy
| | - Angelo Spinello
- National Research Council of Italy Institute of Materials (CNR-IOM) C/o SISSA, Via Bonomea 265, 34136, Trieste, Italy
| | - Matic Pavlin
- National Research Council of Italy Institute of Materials (CNR-IOM) C/o SISSA, Via Bonomea 265, 34136, Trieste, Italy; Laboratory of Microsensor Structures and Electronics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška Cesta 25, SI-1000 Ljubljana, Slovenia
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Federica Simonelli
- National Research Council of Italy Institute of Materials (CNR-IOM) C/o SISSA, Via Bonomea 265, 34136, Trieste, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Nadia Zaffaroni
- Fondazione IRCSS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20113, Milano, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Alessandra Magistrato
- National Research Council of Italy Institute of Materials (CNR-IOM) C/o SISSA, Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
3
|
Spinello A, Borišek J, Pavlin M, Janoš P, Magistrato A. Computing Metal-Binding Proteins for Therapeutic Benefit. ChemMedChem 2021; 16:2034-2049. [PMID: 33740297 DOI: 10.1002/cmdc.202100109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/18/2023]
Abstract
Over one third of biomolecules rely on metal ions to exert their cellular functions. Metal ions can play a structural role by stabilizing the structure of biomolecules, a functional role by promoting a wide variety of biochemical reactions, and a regulatory role by acting as messengers upon binding to proteins regulating cellular metal-homeostasis. These diverse roles in biology ascribe critical implications to metal-binding proteins in the onset of many diseases. Hence, it is of utmost importance to exhaustively unlock the different mechanistic facets of metal-binding proteins and to harness this knowledge to rationally devise novel therapeutic strategies to prevent or cure pathological states associated with metal-dependent cellular dysfunctions. In this compendium, we illustrate how the use of a computational arsenal based on docking, classical, and quantum-classical molecular dynamics simulations can contribute to extricate the minutiae of the catalytic, transport, and inhibition mechanisms of metal-binding proteins at the atomic level. This knowledge represents a fertile ground and an essential prerequisite for selectively targeting metal-binding proteins with small-molecule inhibitors aiming to (i) abrogate deregulated metal-dependent (mis)functions or (ii) leverage metal-dyshomeostasis to selectively trigger harmful cells death.
Collapse
Affiliation(s)
- Angelo Spinello
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| | - Jure Borišek
- National Institute of Chemistry Institution Hajdrihova ulica 19, 1000, Ljubljana, Slovenia
| | - Matic Pavlin
- Laboratory of Microsensor Structures and Electronics Faculty of Electrical Engineering, University of Ljubljana Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Pavel Janoš
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| |
Collapse
|
4
|
Palermo G, Spinello A, Saha A, Magistrato A. Frontiers of metal-coordinating drug design. Expert Opin Drug Discov 2020; 16:497-511. [PMID: 33874825 DOI: 10.1080/17460441.2021.1851188] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: The occurrence of metal ions in biomolecules is required to exert vital cellular functions. Metal-containing biomolecules can be modulated by small-molecule inhibitors targeting their metal-moiety. As well, the discovery of cisplatin ushered the rational discovery of metal-containing-drugs. The use of both drug types exploiting metal-ligand interactions is well established to treat distinct pathologies. Therefore, characterizing and leveraging metal-coordinating drugs is a pivotal, yet challenging, part of medicinal chemistry.Area covered: Atomic-level simulations are increasingly employed to overcome the challenges met by traditional drug-discovery approaches and to complement wet-lab experiments in elucidating the mechanisms of drugs' action. Multiscale simulations, allow deciphering the mechanism of metal-binding inhibitors and metallo-containing-drugs, enabling a reliable description of metal-complexes in their biological environment. In this compendium, the authors review selected applications exploiting the metal-ligand interactions by focusing on understanding the mechanism and design of (i) inhibitors targeting iron and zinc-enzymes, and (ii) ruthenium and gold-based anticancer agents targeting the nucleosome and aquaporin protein, respectively.Expert opinion: The showcased applications exemplify the current role and the potential of atomic-level simulations and reveal how their synergic use with experiments can contribute to uncover fundamental mechanistic facets and exploit metal-ligand interactions in medicinal chemistry.
Collapse
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California Riverside, Riverside, United States
| | - Angelo Spinello
- National Research Council (CNR) of Italy, Institute of Material (IOM) @ International School for Advanced Studies (SISSA), Trieste, Italy
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, Riverside, United States
| | - Alessandra Magistrato
- National Research Council (CNR) of Italy, Institute of Material (IOM) @ International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
5
|
Caciolla J, Spinello A, Martini S, Bisi A, Zaffaroni N, Gobbi S, Magistrato A. Targeting Orthosteric and Allosteric Pockets of Aromatase via Dual-Mode Novel Azole Inhibitors. ACS Med Chem Lett 2020; 11:732-739. [PMID: 32435378 DOI: 10.1021/acsmedchemlett.9b00591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Breast cancer (BC) is the most diffused cancer type in women and the second leading cause of death among the female population. Effective strategies to fight estrogen responsive (ER+) BC, which represents 70% of all BC cases, rely on estrogen deprivation, via the inhibition of the aromatase enzyme, or the modulation of its cognate estrogen receptor. Current clinical therapies significantly increased patient survival time. Nevertheless, the onset of resistance in metastatic BC patients undergoing prolonged treatments is becoming a current clinical challenge, urgently demanding to devise innovative strategies. In this context, here we designed, synthesized, and performed in vitro inhibitory tests on the aromatase enzyme and distinct ER+/ER- BC cell line types of novel azole bridged xanthones. These compounds are active in the low μM range and behave as dual-mode inhibitors, targeting both the orthosteric and the allosteric sites of the enzyme placed along one access channel. Classical and quantum-classical molecular dynamics simulations of the new compounds, as compared with selected steroidal and nonsteroidal inhibitors, provide a rationale to the observed inhibitory potency and supply the guidelines to boost the activity of inhibitors able to exploit coordination to iron and occupation of the access channel to modulate estrogen production.
Collapse
Affiliation(s)
- Jessica Caciolla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Angelo Spinello
- CNR-IOM Democritos c/o International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Silvia Martini
- Fondazione IRCSS Istituto Nazionale dei Tumori, via Amadeo 42, 20113 Milano, Italy
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Nadia Zaffaroni
- Fondazione IRCSS Istituto Nazionale dei Tumori, via Amadeo 42, 20113 Milano, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Alessandra Magistrato
- CNR-IOM Democritos c/o International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
6
|
Spinello A, Ritacco I, Magistrato A. Recent advances in computational design of potent aromatase inhibitors: open-eye on endocrine-resistant breast cancers. Expert Opin Drug Discov 2019; 14:1065-1076. [DOI: 10.1080/17460441.2019.1646245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Angelo Spinello
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Ida Ritacco
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
7
|
Pavlin M, Qasem Z, Sameach H, Gevorkyan-Airapetov L, Ritacco I, Ruthstein S, Magistrato A. Unraveling the Impact of Cysteine-to-Serine Mutations on the Structural and Functional Properties of Cu(I)-Binding Proteins. Int J Mol Sci 2019; 20:E3462. [PMID: 31337158 PMCID: PMC6679193 DOI: 10.3390/ijms20143462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 02/03/2023] Open
Abstract
Appropriate maintenance of Cu(I) homeostasis is an essential requirement for proper cell function because its misregulation induces the onset of major human diseases and mortality. For this reason, several research efforts have been devoted to dissecting the inner working mechanism of Cu(I)-binding proteins and transporters. A commonly adopted strategy relies on mutations of cysteine residues, for which Cu(I) has an exquisite complementarity, to serines. Nevertheless, in spite of the similarity between these two amino acids, the structural and functional impact of serine mutations on Cu(I)-binding biomolecules remains unclear. Here, we applied various biochemical and biophysical methods, together with all-atom simulations, to investigate the effect of these mutations on the stability, structure, and aggregation propensity of Cu(I)-binding proteins, as well as their interaction with specific partner proteins. Among Cu(I)-binding biomolecules, we focused on the eukaryotic Atox1-ATP7B system, and the prokaryotic CueR metalloregulator. Our results reveal that proteins containing cysteine-to-serine mutations can still bind Cu(I) ions; however, this alters their stability and aggregation propensity. These results contribute to deciphering the critical biological principles underlying the regulatory mechanism of the in-cell Cu(I) concentration, and provide a basis for interpreting future studies that will take advantage of cysteine-to-serine mutations in Cu(I)-binding systems.
Collapse
Affiliation(s)
- Matic Pavlin
- CNR-IOM at SISSA, via Bonomea 265, 34135 Trieste, Italy
| | - Zena Qasem
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Hila Sameach
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Ida Ritacco
- CNR-IOM at SISSA, via Bonomea 265, 34135 Trieste, Italy
| | - Sharon Ruthstein
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel.
| | | |
Collapse
|
8
|
Ritacco I, Spinello A, Ippoliti E, Magistrato A. Post-Translational Regulation of CYP450s Metabolism As Revealed by All-Atoms Simulations of the Aromatase Enzyme. J Chem Inf Model 2019; 59:2930-2940. [PMID: 31033287 DOI: 10.1021/acs.jcim.9b00157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphorylation by kinases enzymes is a widespread regulatory mechanism able of rapidly altering the function of target proteins. Among these are cytochrome P450s (CYP450), a superfamily of enzymes performing the oxidation of endogenous and exogenous substrates thanks to the electron supply of a redox partner. In spite of its pivotal role, the molecular mechanism by which phosphorylation modulates CYP450s metabolism remains elusive. Here by performing microsecond-long all-atom molecular dynamics simulations, we disclose how phosphorylation regulates estrogen biosynthesis, catalyzed by the Human Aromatase (HA) enzyme. Namely, we unprecedentedly propose that HA phosphorylation at Y361 markedly stabilizes its adduct with the flavin mononucleotide domain of CYP450s reductase (CPR), the redox partner of microsomal CYP450s, and a variety of other proteins. With CPR present at physiological conditions in a limiting ratio with respect to its multiple oxidative partners, the enhanced stability of the CPR/HA adduct may favor HA in the competition with the other proteins requiring CPR's electron supply, ultimately facilitating the electron transfer and estrogen biosynthesis. As a result, our work elucidates at atomic-level the post-translational regulation of CYP450s catalysis. Given the potential for rational clinical management of diseases associated with steroid metabolism disorders, unraveling this mechanism is of utmost importance, and raises the intriguing perspective of exploiting this knowledge to devise novel therapies.
Collapse
Affiliation(s)
- Ida Ritacco
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 Trieste , Italy
| | - Angelo Spinello
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 Trieste , Italy
| | - Emiliano Ippoliti
- IAS-5/INM-9 Computational Biomedicine Institute and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Straße , 52425 Jülich , Germany
| | - Alessandra Magistrato
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 Trieste , Italy
| |
Collapse
|
9
|
Qasem Z, Pavlin M, Ritacco I, Gevorkyan-Airapetov L, Magistrato A, Ruthstein S. The pivotal role of MBD4–ATP7B in the human Cu(i) excretion path as revealed by EPR experiments and all-atom simulations. Metallomics 2019; 11:1288-1297. [DOI: 10.1039/c9mt00067d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Atox1–MBD4 interaction mediates the in-cell Cu(i) concentration.
Collapse
Affiliation(s)
- Zena Qasem
- Chemistry Department
- Faculty of Exact Sciences
- Bar-Ilan University
- Israel
| | | | | | | | | | - Sharon Ruthstein
- Chemistry Department
- Faculty of Exact Sciences
- Bar-Ilan University
- Israel
| |
Collapse
|