1
|
da Silva Nonato N, Nunes LS, da Silveira Martins AW, Pinhal D, Domingues WB, Bellido-Quispe DK, Remião MH, Campos VF. miRNA heterologous production in bacteria: A systematic review focusing on the choice of plasmid features and bacterial/prokaryotic microfactory. Plasmid 2024; 131-132:102731. [PMID: 39349126 DOI: 10.1016/j.plasmid.2024.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Bacteria, the primary microorganisms used for industrial molecule production, do not naturally generate miRNAs. This study aims to systematically review current literature on miRNA expression systems in bacteria and address three key questions: (1) Which microorganism is most efficient for heterologous miRNA production? (2) What essential elements should be included in a plasmid construction to optimize miRNA expression? (3) Which commercial plasmid is most used for miRNA expression? Initially, 832 studies were identified across three databases, with fifteen included in this review. Three species-Escherichia coli, Salmonella typhimurium, and Rhodovulum sulfidophilum-were found as host organisms for recombinant miRNA expression. A total of 78 miRNAs were identified, out of which 75 were produced in E. coli, one in R. sulfidophilum (miR-29b), and two in S. typhimurium (mi-INHA and miRNA CCL22). Among gram-negative bacteria, R. sulfidophilum emerged as an efficient platform for heterologous production, thanks to features like nucleic acid secretion, RNase non-secretion, and seawater cultivation capability. However, E. coli remains the widely recognized model for large-scale miRNA production in biotechnology market. Regarding plasmids for miRNA expression in bacteria, those with an lpp promoter and multiple cloning sites appear to be the most suitable due to their robust expression cassette. The reengineering of recombinant constructs holds potential, as improvements in construct characteristics maximize the expression of desired molecules. The utilization of recombinant bacteria as platforms for producing new molecules is a widely used approach, with a focus on miRNAs expression for therapeutic contexts.
Collapse
Affiliation(s)
- Nyelson da Silva Nonato
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Leandro Silva Nunes
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda Weege da Silveira Martins
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular, Instituto de Biociências de Botucatu, Departamento de Genética, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Dionet Keny Bellido-Quispe
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mariana Härter Remião
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
2
|
Lu R, Li Y, Xu A, King B, Ruan KH. Reprogramming Megakaryocytes for Controlled Release of Platelet-like Particles Carrying a Single-Chain Thromboxane A 2 Receptor-G-Protein Complex with Therapeutic Potential. Cells 2023; 12:2775. [PMID: 38132095 PMCID: PMC10741393 DOI: 10.3390/cells12242775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
In this study, we reported that novel single-chain fusion proteins linking thromboxane A2 (TXA2) receptor (TP) to a selected G-protein α-subunit q (SC-TP-Gαq) or to α-subunit s (SC-TP-Gαs) could be stably expressed in megakaryocytes (MKs). We tested the MK-released platelet-linked particles (PLPs) to be used as a vehicle to deliver the overexpressed SC-TP-Gαq or the SC-TP-Gαs to regulate human platelet function. To understand how the single-chain TP-Gα fusion proteins could regulate opposite platelet activities by an identical ligand TXA2, we tested their dual functions-binding to ligands and directly linking to different signaling pathways within a single polypeptide chain-using a 3D structural model. The immature MKs were cultured and transfected with cDNAs constructed from structural models of the individual SC-TP-Gαq and SC-TP-Gαs, respectively. After transient expression was identified, the immature MKs stably expressing SC-TP-Gαq or SC-TP-Gαs (stable cell lines) were selected. The stable cell lines were induced into mature MKs which released PLPs. Western blot analysis confirmed that the released PLPs were carrying the recombinant SC-TP-Gαq or SC-TP-Gαs. Flow cytometry analysis showed that the PLPs carrying SC-TP-Gαq were able to perform the activity by promoting platelet aggregation. In contrast, PLPs carrying SC-TP-Gαs reversed Gq to Gs signaling to inhibit platelet aggregation. This is the first time demonstrating that SC-TP-Gαq and SC-TP-Gαs were successfully overexpressed in MK cells and released as PLPs with proper folding and programmed biological activities. This bio-engineering led to the formation of two sets of biologically active PLP forms mediating calcium and cAMP signaling, respectively. As a result, these PLPs are able to bind to identical endogenous TXA2 with opposite activities, inhibiting and promoting platelet aggregation as reprogrammed for therapeutic process. Results also demonstrated that the nucleus-free PLPs could be used to deliver recombinant membrane-bound GPCRs to regulate cellular activity in general.
Collapse
Affiliation(s)
| | | | | | | | - Ke-He Ruan
- The Center for Experimental Therapeutics and Pharmacoinformatics, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (R.L.); (Y.L.); (A.X.); (B.K.)
| |
Collapse
|
3
|
Xu K, Zou W, Peng B, Guo C, Zou X. Lipid Droplets from Plants and Microalgae: Characteristics, Extractions, and Applications. BIOLOGY 2023; 12:biology12040594. [PMID: 37106794 PMCID: PMC10135979 DOI: 10.3390/biology12040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Plant and algal LDs are gaining popularity as a promising non-chemical technology for the production of lipids and oils. In general, these organelles are composed of a neutral lipid core surrounded by a phospholipid monolayer and various surface-associated proteins. Many studies have shown that LDs are involved in numerous biological processes such as lipid trafficking and signaling, membrane remodeling, and intercellular organelle communications. To fully exploit the potential of LDs for scientific research and commercial applications, it is important to develop suitable extraction processes that preserve their properties and functions. However, research on LD extraction strategies is limited. This review first describes recent progress in understanding the characteristics of LDs, and then systematically introduces LD extraction strategies. Finally, the potential functions and applications of LDs in various fields are discussed. Overall, this review provides valuable insights into the properties and functions of LDs, as well as potential approaches for their extraction and utilization. It is hoped that these findings will inspire further research and innovation in the field of LD-based technology.
Collapse
Affiliation(s)
- Kaiwei Xu
- Institute of Systems Security and Control, College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
| | - Wen Zou
- State Owned SIDA Machinery Manufacturing, Xianyang 712201, China
| | - Biao Peng
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Chao Guo
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Xiaotong Zou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
4
|
Peptide-Based Bioconjugates and Therapeutics for Targeted Anticancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14071378. [PMID: 35890274 PMCID: PMC9320687 DOI: 10.3390/pharmaceutics14071378] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 11/25/2022] Open
Abstract
With rapidly growing knowledge in bioinformatics related to peptides and proteins, amino acid-based drug-design strategies have recently gained importance in pharmaceutics. In the past, peptide-based biomedicines were not widely used due to the associated severe physiological problems, such as low selectivity and rapid degradation in biological systems. However, various interesting peptide-based therapeutics combined with drug-delivery systems have recently emerged. Many of these candidates have been developed for anticancer therapy that requires precisely targeted effects and low toxicity. These research trends have become more diverse and complex owing to nanomedicine and antibody–drug conjugates (ADC), showing excellent therapeutic efficacy. Various newly developed peptide–drug conjugates (PDC), peptide-based nanoparticles, and prodrugs could represent a promising therapeutic strategy for patients. In this review, we provide valuable insights into rational drug design and development for future pharmaceutics.
Collapse
|