1
|
Abramenko N, Vellieux F, Veselá K, Kejík Z, Hajduch J, Masařík M, Babula P, Hoskovec D, Pacák K, Martásek P, Smetana K, Jakubek M. Investigation of the potential effects of estrogen receptor modulators on immune checkpoint molecules. Sci Rep 2024; 14:3043. [PMID: 38321096 PMCID: PMC10847107 DOI: 10.1038/s41598-024-51804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Immune checkpoints regulate the immune system response. Recent studies suggest that flavonoids, known as phytoestrogens, may inhibit the PD-1/PD-L1 axis. We explored the potential of estrogens and 17 Selective Estrogen Receptor Modulators (SERMs) as inhibiting ligands for immune checkpoint proteins (CTLA-4, PD-L1, PD-1, and CD80). Our docking studies revealed strong binding energy values for quinestrol, quercetin, and bazedoxifene, indicating their potential to inhibit PD-1 and CTLA-4. Quercetin and bazedoxifene, known to modulate EGFR and IL-6R alongside estrogen receptors, can influence the immune checkpoint functionality. We discuss the impact of SERMs on PD-1 and CTLA-4, suggesting that these SERMs could have therapeutic effects through immune checkpoint inhibition. This study highlights the potential of SERMs as inhibitory ligands for immune checkpoint proteins, emphasizing the importance of considering PD-1 and CTLA-4 inhibition when evaluating SERMs as therapeutic agents. Our findings open new avenues for cancer immunotherapy by exploring the interaction between various SERMs and immune checkpoint pathways.
Collapse
Affiliation(s)
- Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Fréderic Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Karel Pacák
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, Room 1-3140, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00, Prague, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic.
| |
Collapse
|
2
|
Han D, Lu J, Fan B, Lu W, Xue Y, Wang M, Liu T, Cui S, Gao Q, Duan Y, Xu Y. Lysine-Specific Demethylase 1 Inhibitors: A Comprehensive Review Utilizing Computer-Aided Drug Design Technologies. Molecules 2024; 29:550. [PMID: 38276629 PMCID: PMC10821146 DOI: 10.3390/molecules29020550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) has emerged as a promising therapeutic target for treating various cancers (such as breast cancer, liver cancer, etc.) and other diseases (blood diseases, cardiovascular diseases, etc.), owing to its observed overexpression, thereby presenting significant opportunities in drug development. Since its discovery in 2004, extensive research has been conducted on LSD1 inhibitors, with notable contributions from computational approaches. This review systematically summarizes LSD1 inhibitors investigated through computer-aided drug design (CADD) technologies since 2010, showcasing a diverse range of chemical scaffolds, including phenelzine derivatives, tranylcypromine (abbreviated as TCP or 2-PCPA) derivatives, nitrogen-containing heterocyclic (pyridine, pyrimidine, azole, thieno[3,2-b]pyrrole, indole, quinoline and benzoxazole) derivatives, natural products (including sanguinarine, phenolic compounds and resveratrol derivatives, flavonoids and other natural products) and others (including thiourea compounds, Fenoldopam and Raloxifene, (4-cyanophenyl)glycine derivatives, propargylamine and benzohydrazide derivatives and inhibitors discovered through AI techniques). Computational techniques, such as virtual screening, molecular docking and 3D-QSAR models, have played a pivotal role in elucidating the interactions between these inhibitors and LSD1. Moreover, the integration of cutting-edge technologies such as artificial intelligence holds promise in facilitating the discovery of novel LSD1 inhibitors. The comprehensive insights presented in this review aim to provide valuable information for advancing further research on LSD1 inhibitors.
Collapse
Affiliation(s)
- Di Han
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Jiarui Lu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Baoyi Fan
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Wenfeng Lu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Yiwei Xue
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Meiting Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Taigang Liu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Shaoli Cui
- School of Forensic, Xinxiang Medical University, Xinxiang 453003, China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yingchao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| |
Collapse
|
3
|
Tian J, Jin L, Liu H, Hua Z. Stilbenes: a promising small molecule modulator for epigenetic regulation in human diseases. Front Pharmacol 2023; 14:1326682. [PMID: 38155902 PMCID: PMC10754530 DOI: 10.3389/fphar.2023.1326682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023] Open
Abstract
Stilbenes are characterized by a vinyl group connecting two benzene rings to form the basic parent nucleus. Hydrogen atoms on different positions of the benzene rings can be substituted with hydroQxyl groups. These unique structural features confer anti-inflammatory, antibacterial, antiviral, antioxidant, anticancer, cardiovascular protective, and neuroprotective pharmacological effects upon these compounds. Numerous small molecule compounds have demonstrated these pharmacological activities in recent years, including Resveratrol, and Pterostilbene, etc. Tamoxifen and Raloxifene are FDA-approved commonly prescribed synthetic stilbene derivatives. The emphasis is on the potential of these small molecules and their structural derivatives as epigenetic regulators in various diseases. Stilbenes have been shown to modulate epigenetic marks, such as DNA methylation and histone modification, which can alter gene expression patterns and contribute to disease development. This review will discuss the mechanisms by which stilbenes regulate epigenetic marks in various diseases, as well as clinical trials, with a focus on the potential of small molecule and their derivatives such as Resveratrol, Pterostilbene, and Tamoxifen.
Collapse
Affiliation(s)
- Jing Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Li Jin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Hongquan Liu
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, China
- Nanjing Generecom Biotechnology Co., Ltd., Nanjing, China
| |
Collapse
|
4
|
Liu S, Yao Y, Hou M, Mei J, Sun L, Zhang G. Identification and validation of a ferroptosis-related signature for prediction of the prognosis and tumor microenvironment in patients with chromophobe renal cell carcinoma. BMC Cancer 2023; 23:1079. [PMID: 37940859 PMCID: PMC10634106 DOI: 10.1186/s12885-023-11589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Ferroptosis is a novel form of regulated cell death that is different from other forms, which has an important role in tumor growth inhibition. The purpose of this study was to construct and validate a prognostic signature related to ferroptosis in chromophobe renal cell carcinoma (ChRCC) and to explore its role in immune cell infiltration and systemic therapy. METHODS The gene expression profiles of ChRCC patients obtained from The Cancer Genome Atlas (TCGA) database were used to identify differentially expressed prognostic ferroptosis-related genes (FRGs) by univariate Cox proportional hazards analyses. Ferroptosis molecular subtypes were obtained by consensus clustering analysis. The FRG-based signature in the training set was established by least absolute shrinkage and selection operator analysis and verified in the testing set. The association between molecular subtypes and the prognostic signature and immune microenvironment was explored to predict responses to immunotherapy. Immunohistochemistry was used to verify expression of the FRG-based signature externally. RESULTS ChRCC patients were divided into two FRG subtypes. Two FRGs (TFRC and SLC7A11) were identified to construct the prognostic signature. The high-risk group and cluster 2 had worse overall survival than the low-risk group and cluster 1, respectively. The low-risk group and cluster 1 had higher levels of immune cell infiltration and expression of MHC and immune checkpoint molecules than the high-risk group and cluster 2. The risk score was a predictor of overall survival and had a good predictive ability, which was verified in the testing set and evaluated by ROC and calibration curves. The high-risk group had a higher tumor mutation burden. The different sensitivities of targeted drugs in patients with different risks were evaluated. External immunohistochemical analysis showed that TFRC and SLC7A11 were highly expressed in tumor tissues compared with para-cancer normal tissues, and the expression level was significantly associated with a more advanced stage and worse cancer-specific survival. CONCLUSIONS An FRG signature was identified and validated to predict the clinicopathological features and prognosis of ChRCC. A significant association between the signature and immune cell infiltration, immune checkpoint expression, and drug response is helpful to guide comprehensive treatment of ChRCC.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China
| | - Yu Yao
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China
| | - Mingyu Hou
- Department of Pathology, The Affiliated Hospital of Qingdao University, 266003, Qingdao, P.R. China
| | - Jingchang Mei
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China
| | - Lijiang Sun
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China
| | - Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Rd, 266003, Qingdao, P.R. China.
| |
Collapse
|
5
|
Kruk L, Mamtimin M, Braun A, Anders HJ, Andrassy J, Gudermann T, Mammadova-Bach E. Inflammatory Networks in Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15082212. [PMID: 37190141 DOI: 10.3390/cancers15082212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer-associated inflammation has been established as a hallmark feature of almost all solid cancers. Tumor-extrinsic and intrinsic signaling pathways regulate the process of cancer-associated inflammation. Tumor-extrinsic inflammation is triggered by many factors, including infection, obesity, autoimmune disorders, and exposure to toxic and radioactive substances. Intrinsic inflammation can be induced by genomic mutation, genome instability and epigenetic remodeling in cancer cells that promote immunosuppressive traits, inducing the recruitment and activation of inflammatory immune cells. In RCC, many cancer cell-intrinsic alterations are assembled, upregulating inflammatory pathways, which enhance chemokine release and neoantigen expression. Furthermore, immune cells activate the endothelium and induce metabolic shifts, thereby amplifying both the paracrine and autocrine inflammatory loops to promote RCC tumor growth and progression. Together with tumor-extrinsic inflammatory factors, tumor-intrinsic signaling pathways trigger a Janus-faced tumor microenvironment, thereby simultaneously promoting or inhibiting tumor growth. For therapeutic success, it is important to understand the pathomechanisms of cancer-associated inflammation, which promote cancer progression. In this review, we describe the molecular mechanisms of cancer-associated inflammation that influence cancer and immune cell functions, thereby increasing tumor malignancy and anti-cancer resistance. We also discuss the potential of anti-inflammatory treatments, which may provide clinical benefits in RCCs and possible avenues for therapy and future research.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Joachim Andrassy
- Division of General, Visceral, Vascular and Transplant Surgery, Hospital of LMU, 81377 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| |
Collapse
|
6
|
Feng C, Gong L, Wang J. Arborinine from <em>Glycosmis parva</em> leaf extract inhibits clear-cell renal cell carcinoma by inhibiting KDM1A/UBE2O signaling. Food Nutr Res 2022; 66:8714. [PMID: 36185617 PMCID: PMC9487452 DOI: 10.29219/fnr.v66.8714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Background Arborinine is a natural product isolated from Globigerina parva (G. parva) leaf extract that shows strong anticancer activity with its role in clear-cell renal cell carcinoma (ccRCC) unreported. Objective We aim to evaluate the role of Arborinine in ccRCC. Design Arborinine was tested for its effects in ccRCC cell lines in vitro and in silico. Results Arborinine conferred inhibitory effect to ccRCC cells at reasonable doses. Arborinine showed inhibitory effects on Lysine Demethylase 1A (KDM1A) in ccRCC cells and decreased levels of KDM1A outputs and on epithelial mesenchymal transition (EMT) markers. Arborinine significantly inhibited proliferation, apoptosis, and cell cycle progression and migration of ccRCC cells. Using in silico ChIP analysis and luciferase activity validation, we identified Ubiquitin-conjugating enzyme E2O (UBE2O) as an active transcription target downstream of KDM1A. UBE2O expression was not only correlated with KDM1A expression but also associated with worsened prognosis in ccRCC. Overexpression of UBE2O abrogated cancer-inhibitory effect of Arborinine. Discussion Arborinine holds promise as an additive in the treatment of ccRCC. Conclusions We have shown for the first time that Arborinine showed inhibitory effect on ccRCC via KDM1A/UBE2O signaling.
Collapse
Affiliation(s)
- Chenchen Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingxiao Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- Jing Wang, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100000, PR China.
| |
Collapse
|
7
|
He X, Zhang H, Zhang Y, Ye Y, Wang S, Bai R, Xie T, Ye XY. Drug discovery of histone lysine demethylases (KDMs) inhibitors (progress from 2018 to present). Eur J Med Chem 2022; 231:114143. [DOI: 10.1016/j.ejmech.2022.114143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
|
8
|
Song Y, Zhang H, Yang X, Shi Y, Yu B. Annual review of lysine-specific demethylase 1 (LSD1/KDM1A) inhibitors in 2021. Eur J Med Chem 2022; 228:114042. [PMID: 34915312 DOI: 10.1016/j.ejmech.2021.114042] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022]
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) has emerged as a promising epigenetic target for disease treatment. Several LSD1 inhibitors have advanced into clinical trials. Following our last annual review on LSD1 inhibitors in 2020 (Eur. J. Med. Chem. 2021, 214, 113254), in this review we aim to update LSD1 inhibitors including natural products, synthetic compounds and cyclic peptides reported during 2021. Design strategies, structure-activity relationships, binding model analysis and modes of action are highlighted. In particular, two FDA-approved antihypertensive drugs raloxifene and fenoldopam were repurposed as reversible LSD1 inhibitors. The clinical candidate TAK-418 for treating neurodevelopmental disorders and PET imaging agent [18F]30 for LSD1 were identified. Moreover, dual inhibitors targeting both LSD1 and HDAC6 or tubulin displayed enhanced anti-cancer effects than single agents. These compounds further enrich the structural types of LSD1 inhibitors.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100000, China
| | - Huiqing Zhang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoke Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuting Shi
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100000, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|