1
|
Chang X, Zhang D, Shi W, Yu Q, Wu Z, Yang J, Tang Z, Chen H, Yan C. An arabinoxylan (AOP70-1) isolated from Alpinia oxyphylla alleviates neuroinflammation and neurotoxicity by TLR4/MyD88/NF-κB pathway. Int J Biol Macromol 2024; 277:134339. [PMID: 39089558 DOI: 10.1016/j.ijbiomac.2024.134339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Alpinia oxyphylla is famous for its neuroprotective and memory-improving effects. A crude polysaccharide AO70 from A. oxyphylla remarkably ameliorated neuroinflammation and cognitive dysfunction in Alzheimer's disease mice. This study aimed to explore the bioactive component of AO70 and its mechanism of action. A homogeneous polysaccharide (AOP70-1) rich in arabinose and xylose was purified from AO70, which was consisted of α-L-Araf-(1→, →5)-α-L-Araf-(1→, β-D-Xylp-(1→,→2,4)-β-D-Xylp-(1→, →2,3,4)-β-D-Xylp-(1→, α-L-Rhap-(1→, α-D-Manp-(1→, →4)-α-D-Glcp-(1→, →4)-α-D-GlcpA-(1→, β-D-Galp-(1→, →2)-α-D-Galp-(1→, →6)-α-D-Galp-(1 → and →3,6)-α-D-Manp-(1 →. AOP70-1 (2.5, 5, 10 μM) significantly suppressed NO, IL-1β, and TNF-α production in a concentration-dependent manner and inhibited the migration of BV2 microglia. AOP70-1 inhibited LPS-mediated activation of Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein (MyD88), and nuclear factor kappa B (NF-κB). Moreover, AOP70-1 exerted neuroprotection on SH-SY5Y cells and primary neurons by reducing neuronal apoptosis (72 %, 44 %), alleviating ROS accumulation (63 %, 55 %), and improving mitochondrial membrane potential (63 %, 77 %). Overall, AOP70-1 is one of the major bioactive components in AO70 from A. oxyphylla, which has great potential in the prevention and treatment of neuroinflammation.
Collapse
Affiliation(s)
- Xiao Chang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Wenting Shi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhijian Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junqiang Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zonggui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
AmeliMojarad M, AmeliMojarad M. The neuroinflammatory role of microglia in Alzheimer's disease and their associated therapeutic targets. CNS Neurosci Ther 2024; 30:e14856. [PMID: 39031970 PMCID: PMC11259573 DOI: 10.1111/cns.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
INTRODUCTION Alzheimer's disease (AD), the main cause of dementia, is characterized by synaptic loss and neurodegeneration. Amyloid-β (Aβ) accumulation, hyperphosphorylation of tau protein, and neurofibrillary tangles (NFTs) in the brain are considered to be the initiating factors of AD. However, this hypothesis falls short of explaining many aspects of AD pathogenesis. Recently, there has been mounting evidence that neuroinflammation plays a key role in the pathophysiology of AD and causes neurodegeneration by over-activating microglia and releasing inflammatory mediators. METHODS PubMed, Web of Science, EMBASE, and MEDLINE were used for searching and summarizing all the recent publications related to inflammation and its association with Alzheimer's disease. RESULTS Our review shows how inflammatory dysregulation influences AD pathology as well as the roles of microglia in neuroinflammation, the possible microglia-associated therapeutic targets, top neuroinflammatory biomarkers, and anti-inflammatory drugs that combat inflammation. CONCLUSION In conclusion, microglial inflammatory reactions are important factors in AD pathogenesis and need to be discussed in more detail for promising therapeutic strategies.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| | - Mandana AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| |
Collapse
|
3
|
Katola FO, Olajide OA. Nimbolide Targets Multiple Signalling Pathways to Reduce Neuroinflammation in BV-2 Microglia. Mol Neurobiol 2023; 60:5450-5467. [PMID: 37314658 PMCID: PMC10415506 DOI: 10.1007/s12035-023-03410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
Nimbolide, a limonoid compound found in the neem plant, was investigated for effects on neuroinflammation in BV-2 microglia activated with lipopolysaccharide (LPS). Cultured BV-2 cells were treated with nimbolide (125, 250 and 500 nM) followed by stimulation with LPS (100 ng/ml). Results showed that nimbolide caused a significant reduction in the levels of TNFα, IL-6, IFNγ, NO/iNOS and PGE2/COX-2 in LPS-activated BV-2 cells. Further experiments revealed that LPS-induced increased expression of phospho-p65 and phospho-IκBα proteins were reduced in the presence of nimbolide. Also, LPS-induced NF-κB acetylation, increased binding to consensus sites and transactivation, as well as phosphorylation of p38 and JNK MAPKs were reduced by nimbolide. Reduction of cellular ROS generation by nimbolide was accompanied by a reduction in gp91phox protein levels, while antioxidant effects were also observed through elevation in protein levels of HO-1 and NQO-1. It was observed that treatment of BV-2 microglia with nimbolide resulted in reduced levels of cytoplasmic Nrf2, which was accompanied by increased levels in the nucleus. Furthermore, treatment with this compound resulted in increased binding of Nrf2 to antioxidant responsive element (ARE) consensus sites accompanied by enhanced ARE luciferase activity. Knockdown experiments revealed a loss of anti-inflammatory activity by nimbolide in cells transfected with Nrf2 siRNA. Treatment with nimbolide resulted in nuclear accumulation of SIRT-1, while siRNA knockdown of SIRT-1 resulted in the reversal of anti-inflammatory activity of nimbolide. It is proposed that nimbolide reduces neuroinflammation in BV-2 microglia through mechanisms resulting in dual inhibition of NF-κB and MAPK pathways. It is also proposed that activation of Nrf2 antioxidant mechanisms may be contributing to its anti-inflammatory activity.
Collapse
Affiliation(s)
- Folashade O Katola
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
- University of Texas Southwestern Medical Center, Dallas, TX, 75390-9072, USA
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
4
|
Yang G, Hu Y, Qin X, Sun J, Miao Z, Wang L, Ke Z, Zheng Y. Micheliolide attenuates neuroinflammation to improve cognitive impairment of Alzheimer's disease by inhibiting NF-κB and PI3K/Akt signaling pathways. Heliyon 2023; 9:e17848. [PMID: 37456020 PMCID: PMC10344752 DOI: 10.1016/j.heliyon.2023.e17848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Inflammatory reaction in the brain activates glial cells, and over-activated glial cells secrete inflammatory mediators, which aggravates the inflammatory response in the brain and accelerates the development of Alzheimer's disease (AD) in turn. Numerous natural compounds from herbs can alleviate inflammation, and it is very promising to find anti-neuroinflammatory natural compounds. Micheliolide (MCL) is an asesquiterpene lactone. Studies have proved that MCL showed an obvious anti-inflammatory property. Nevertheless, whether MCL can treat AD has not been determined. In this research, AD model mice were fed with a diet supplemented MCL for 3 months, the cognitive ability and inflammatory state of mice were detected. We found that MCL raised the frequency of touching novel objects, cut down the escape latency, raised the number of crossing platform, inhibited the infiltration of inflammatory cells and the secretion of interleukin-1α (IL-1α), IL-12p40, IL-13, IL-17A, tumor necrosis factor-α (TNF-α), granulocyte colony stimulating factor (G-CSF), macrophage inflammatory protein-1α (MIP-1α) and monocyte chemotactic protein-1 (MCP-1) in peripheral blood samples, inhibited the hyperplasia of glial cells and the production of IL-1α, IL-4, G-CSF, granulocyte-macrophage colony stimulating factor (GM-CSF), MIP-1α and MIP-1β, and reduced the deposition of Aβ peptides in the brain of AD mice. We also concluded that MCL dropped the expression of IL-1β, TNF-α, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and the phosphorylation of IκB, p65 and Akt in BV-2 cells. In conclusion, MCL alleviates the intensity of systemic inflammatory reaction via inhibiting nuclear transcription factor κ gene binding (NF-κB) and phosphoinositide-3-kinase/serine/threonine kinase (PI3K/Akt) pathways in glial cells, and improves the cognitive impairment of AD mice. Therefore, MCL could be a therapeutic candidate for AD.
Collapse
Affiliation(s)
- Guizhen Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Immunology and Microbiology, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - You Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiangyang Qin
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Jinxia Sun
- Department of Immunology and Microbiology, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhulei Miao
- Department of Immunology and Microbiology, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixin Wang
- Department of Immunology and Microbiology, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zunji Ke
- Institute of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
5
|
He L, Sun J, Miao Z, Chen S, Yang G. Astragaloside IV attenuates neuroinflammation and ameliorates cognitive impairment in Alzheimer's disease via inhibiting NF-κB signaling pathway. Heliyon 2023; 9:e13411. [PMID: 36820018 PMCID: PMC9937980 DOI: 10.1016/j.heliyon.2023.e13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The inflammatory process plays a significant role in the pathophysiology of Alzheimer's disease (AD). Anti-neuroinflammatory cascade is now considered an important measure for AD treatment. Astragaloside IV (AS-IV), a saponin of Astragali radix, has shown significant anti-inflammatory properties and protective effects against neurodegenerative diseases. However, the mechanisms of AS-IV in treating Alzheimer's disease (AD) have not been fully determined. The experiment research was carried out to comprehensively confirm the beneficial effects and underlying molecular mechanisms of AS-IV to AD. In this research, BV-2 cells were cultured in vitro and treated by AS-IV under the stimulation of LPS, qRT-PCR was adopted to analyze the mRNA expression level of inflammatory factors. Western-blot was carried out to analyze the phosphorylation level of NF-κB signaling pathway. 5xFAD mice were administrated AS-IV mixed in the diet for 3 months. Behavioral experiments were adopted to analyze learning and memory abilities. Immunohistochemical staining was adopted to observe the proliferation of microglias and the accumulation of Aβ plaques. AS-IV cut down the mRNA expression of IL-1β, COX-2, iNOS and TNF-α in LPS-stimulated BV-2 cells by suppressing the phosphorylation of IκB and p65, and inhibited the phosphorylated p65 from entering the nucleus. AS-IV increased the frequency of recognizing new objects in the novel object recognition test, shortened the escape latency, raised the number of crossing platform in the Morris water maze, inhibited the hyperplasia of microglias, and reduced the production of senile plaques in 5xFAD mice. In brief, AS-IV ameliorates learning and memory impairment by relieving the intensity of neuroinflammatory response in AD. Therefore, AS-IV is very promising to be a herbal medicine for AD treatment.
Collapse
Affiliation(s)
- Li He
- Department of Traditional Chinese Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072, China
| | - Jinxia Sun
- Department of Immunology and Microbiology, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China,The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Center for Immunology and Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhulei Miao
- Department of Immunology and Microbiology, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China,The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Center for Immunology and Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shengmin Chen
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guizhen Yang
- Department of Immunology and Microbiology, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China,The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Center for Immunology and Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China,Corresponding author.Department of Immunology and Microbiology, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Liu L, Peng Y, Liu W, Xu J, Li D, Li X. GATA-binding protein 4 promotes neuroinflammation and cognitive impairment in Aβ 1-42 fibril-infused rats through small nucleolar RNA host gene 1/miR-361-3p axis. CHINESE J PHYSIOL 2023; 66:14-20. [PMID: 36814152 DOI: 10.4103/cjop.cjop-d-22-00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Aging with dysregulated metabolic and immune homeostasis stimulates pyroptosis, neuroinflammation, and cellular senescence, thus contributing to etiopathogenesis of Alzheimer's disease. GATA-binding protein 4 (GATA4) functions as a transcriptional factor in response to DNA damage, and is associated with neuroinflammation and cellular senescence. The role of GATA4 in Alzheimer's disease was investigated. GATA4 was elevated in hippocampus of Aβ1-42 fibril-infused rats. Injection with shRNA targeting GATA4 reduced escape latency with increase of time in target quadrant and number of platform crossings in Aβ1-42 fibril-infused rats. Moreover, knockdown of GATA4 ameliorated morphological changes of hippocampus and reduced amyloid plaque deposition in Aβ1-42 fibril-infused rats. Silence of GATA4 repressed neuroinflammation and apoptosis in Aβ1-42 fibril-infused rats. Loss of GATA4 in Aβ1-42 fibril-infused rats reduced the expression of specificity protein 1 (Sp1) to downregulate long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) and upregulated miR-361-3p. Loss of SNHG1 ameliorated learning and memory impairments in Aβ1-42 fibril-infused rats. Overexpression of Sp1 attenuated GATA4 silence-induced decrease of escape latency, increase of time in target quadrant, and number of platform crossings in Aβ1-42 fibril-infused rats. In conclusion, silence of GATA4 ameliorated cognitive dysfunction and inhibited hippocampal inflammation and cell apoptosis through regulation of Sp1/SNHG1/miR-361-3p.
Collapse
Affiliation(s)
- Lidan Liu
- Department of Internal Medicine-Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yanhui Peng
- Department of Internal Medicine-Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenping Liu
- Department of Internal Medicine-Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiajun Xu
- Department of Internal Medicine-Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dali Li
- Department of Internal Medicine-Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiuwen Li
- Department of Rheumatology and Immunology, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
7
|
Chen H, Zhong J, Li J, Zeng Z, Yu Q, Yan C. PTP70-2, a novel polysaccharide from Polygala tenuifolia, prevents neuroinflammation and protects neurons by suppressing the TLR4-mediated MyD88/NF-κB signaling pathway. Int J Biol Macromol 2022; 194:546-555. [PMID: 34801584 DOI: 10.1016/j.ijbiomac.2021.11.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 12/31/2022]
Abstract
PTP70-2, a novel polysaccharide isolated from Polygala tenuifolia in our previous publication, exhibits potential anti-inflammatory effects. Here, we investigate the mechanisms underlying these effects and the neuroprotective activity of PTP70-2 in lipopolysaccharide (LPS)-damaged BV2 microglial cells and neuroinflammation-injured primary cortical neurons. The results suggest that PTP70-2 dramatically reduces the LPS-stimulated inflammatory cytokines overexpression, as well as down-regulates the levels of TLR4-, MyD88-, and NF-κB-related proteins. The effect of PTP70-2 in down-regulation of proinflammatory cytokines and downstream proteins implicated in MyD88 and NF-κB signaling is related to the TLR4 pathway. Furthermore, this effect is enhanced by the co-incubation of BV2 cells with PTP70-2 and TAK242, a TLR4 inhibitor, before exposure to LPS. Importantly, PTP70-2 prevents neuroinflammation-induced neurotoxicity by mitigating ROS overproduction and MMP dissipation. Overall, the PTP70-2's anti-neuroinflammation and neuroprotection are involved to the modulation of the TLR4-mediated MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jing Zhong
- Clinical Pharmacy of The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianxuan Li
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhiwei Zeng
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- Clinical Pharmacy of The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- Clinical Pharmacy of The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Zhou W, Hu M, Hu J, Du Z, Su Q, Xiang Z. Luteolin Suppresses Microglia Neuroinflammatory Responses and Relieves Inflammation-Induced Cognitive Impairments. Neurotox Res 2021; 39:1800-1811. [PMID: 34655374 DOI: 10.1007/s12640-021-00426-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Microglia-mediated neuroinflammation in response to injurious self and non-self-stimuli exerts detrimental effects on neurons, which may lead to cognitive impairment. Luteolin, a typical kind of natural flavonoid in honeysuckle, chrysanthemum, and Herba Schizonepetae, is widely recognized to be anti-inflammatory and antioxidant against peripheral inflammation. However, its protective effect against inflammation-induced cognitive impairment is currently unknown. In this paper, we investigated the relief potential of luteolin against lipopolysaccharide (LPS)-induced cognitive impairment and neuroinflammation and its possible anti-inflammatory mechanisms in lipopolysaccharide-stimulated BV2 microglia cells. In this study, luteolin ameliorated LPS-induced cognitive impairments, indicated by behavioral performance of neuroinflammatory model mice in Morris water maze tests. Protein analyses and histological examination also revealed protective effect of luteolin against neuronal damage, through inhibiting overproduction of inflammatory cytokines in both hippocampus and cortex of mice. We also observed luteolin in vitro significantly suppressed the levels of pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-1 β (IL-1β), and inflammatory mediators like nitric oxide. Taken together, these results demonstrated luteolin was effective in alleviating cognitive impairment and limited neuronal damage via inhibiting the release of inflammatory mediators, suggesting luteolin is potential for further therapeutic research of neuroinflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, PR China
| | - Mengmeng Hu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, PR China
| | - Jingrong Hu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, PR China
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, PR China
| | - Qing Su
- School of Computers, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, PR China.
| | - Zhangmin Xiang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, Guangzhou, 510070, PR China.
| |
Collapse
|
9
|
Zhong J, Qiu X, Yu Q, Chen H, Yan C. A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways. Int J Biol Macromol 2020; 163:464-475. [PMID: 32621930 DOI: 10.1016/j.ijbiomac.2020.06.266] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/02/2020] [Accepted: 06/28/2020] [Indexed: 12/26/2022]
Abstract
Our previous study has indicated that a crude polysaccharide derived from Acorus tatarinowii, AT50, remarkably improves learning and memory in scopolamine-induced amnesic mice and prevents the release of inflammatory mediators. To further explore the bioactive constituents of AT50, a novel polysaccharide (ATP50-3) was purified, and its anti-neuroinflammatory effects and underlying mechanisms were investigated. ATP50-3 significantly reduced abnormal elevation of inflammatory mediators in lipopolysaccharide (LPS)-induced proinflammatory BV2 cells in vitro and inhibited the activation of nuclear factor kappa B (NF-κB). Moreover, ATP50-3 down-regulated LPS-induced protein levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein (MyD88), p-PI3K (phosphoinositide 3-kinase), and p-Akt (protein kinase B). Further experiments demonstrated that TAK242 (a TLR4 inhibitor) and LY294002 (a PI3K inhibitor) remarkably augmented ATP50-3's down-regulation on LPS-induced proinflammatory mediators. Importantly, ATP50-3 provided neuroprotection against neuroinflammation-induced neurotoxicity in primary cortical and hippocampal neurons by mitigating overproduction of reactive oxygen species and damage to the mitochondrial membrane potential (MMP). Taken together, our findings suggest that ATP50-3 exerts anti-neuroinflammatory and neuroprotective effects through modulation of TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xian Qiu
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Exposure to CuO Nanoparticles Mediates NFκB Activation and Enhances Amyloid Precursor Protein Expression. Biomedicines 2020; 8:biomedicines8030045. [PMID: 32120908 PMCID: PMC7175332 DOI: 10.3390/biomedicines8030045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid precursor protein (APP) is directly related to Aβ amyloidosis—a hallmark of Alzheimer’s disease (AD). However, the impact of environmental factors upon APP biology and Aβ amyloid pathology have not been well studied. The increased use of nanoparticles (NPs) or engineered nanomaterials (ENMs) has led to a growing body of evidence suggesting that exposure to metal/metal oxide NPs, such as Fe2O3, CuO, and ZnO, may contribute to the pathophysiology of neurodegenerative diseases such as AD through neuroinflammation. Our previous studies indicated that exposure to CuO nanoparticles (CuONPs) induce potent in vitro neurotoxicity. Herein, we investigated the effects on APP expression in neuronal cells exposed to different metal oxide NPs. We found a low dose of CuONPs effectively activated the NFκB signaling pathway and increased APP expression. Moreover, the inhibition of p65 expression using siRNA abolished CuONP-mediated APP expression, suggesting that NFκB-regulated APP expression in response to CuONP exposure may be associated with AD pathology.
Collapse
|
11
|
Kheiri G, Dolatshahi M, Rahmani F, Rezaei N. Role of p38/MAPKs in Alzheimer's disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci 2019; 30:9-30. [PMID: 29804103 DOI: 10.1515/revneuro-2018-0008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
Abstract
A myriad of environmental and genetic factors, as well as the physiologic process of aging, contribute to Alzheimer's disease (AD) pathology. Neuroinflammation is and has been a focus of interest, as a common gateway for initiation of many of the underlying pathologies of AD. Amyloid beta (Aβ) toxicity, increasing RAGE expression, tau hyperphosphorylation, induction of apoptosis, and deregulated autophagy are among other mechanisms, partly entangled and being explained by activation of mitogen-activated protein kinase (MAPK) and MAPK signaling. p38 MAPK is the most essential regulator of Aβ induced toxicity from this family. p38 induces NF-κB activation, glutamate excitotoxicity, and disruption of synaptic plasticity, which are other implications of all justifying the p38 MAPK as a potential target to break the vicious Aβ toxicity cycle. Until recently, many in vivo and in vitro studies have investigated the effects of p38 MAPK inhibitors in AD. The pyridinyl imidazole compounds SB202190 and SB203580 have shown promising anti-apoptotic results in vivo. MW108 inhibits activation of p38 and is able to postpone cognitive decline in animal models. The PD169316, with anti-inflammatory, anti-oxidative, and anti-apoptotic features, has improved spatial memory in vivo. Natural compounds from Camellia sinensis (green tea), polyphenols from olive oil, pinocembrin from propolis, and the puerarine extract isoflavones, have shown strong anti-apoptotic features, mediated by p38 MAPK inhibition. Use of these drug targets is limited due to central nervous system side effects or cross-reactivity with other kinases, predicting the low efficacy of these drugs in clinical trials.
Collapse
Affiliation(s)
- Ghazaleh Kheiri
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Mahsa Dolatshahi
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Farzaneh Rahmani
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Nima Rezaei
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| |
Collapse
|
12
|
Yimer EM, Hishe HZ, Tuem KB. Repurposing of the β-Lactam Antibiotic, Ceftriaxone for Neurological Disorders: A Review. Front Neurosci 2019; 13:236. [PMID: 30971875 PMCID: PMC6444273 DOI: 10.3389/fnins.2019.00236] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
To date, there is no cure or disease-modifying agents available for most well-known neurological disorders. Current therapy is typically focused on relieving symptoms and supportive care in improving the quality of life of affected patients. Furthermore, the traditional de novo drug discovery technique is more challenging, particularly for neurological disorders. Therefore, the repurposing of existing drugs for these conditions is believed to be an efficient and dynamic approach that can substantially reduce the investments spent on drug development. Currently, there is emerging evidence that suggests the potential effect of a beta-lactam antibiotic, ceftriaxone (CEF), to alleviate the symptoms of different experimentally-induced neurological disorders: Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, epileptic-seizure, brain ischemia, traumatic brain injuries, and neuropathic pain. CEF also affects the markers of oxidative status and neuroinflammation, glutamatergic systems as well as various aggregated toxic proteins involved in the pathogenesis of different neurological disorders. Moreover, it was found that CEF administration to drug dependent animal models improved the withdrawal symptoms upon drug discontinuation. Thus, this review aimed to describe the effects of CEF against multiple models of neurological illnesses, drug dependency, and withdrawal. It also emphasizes the possible mechanisms of neuroprotective actions of CEF with respective neurological maladies.
Collapse
Affiliation(s)
- Ebrahim M Yimer
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Hailemichael Zeru Hishe
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Kald Beshir Tuem
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
13
|
Tafoya MA, Madi S, Sillerud LO. Superparamagnetic nanoparticle-enhanced MRI of Alzheimer's disease plaques and activated microglia in 3X transgenic mouse brains: Contrast optimization. J Magn Reson Imaging 2016; 46:574-588. [PMID: 27875002 DOI: 10.1002/jmri.25563] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/01/2016] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To optimize magnetic resonance imaging (MRI) of antibody-conjugated superparamagnetic nanoparticles for detecting amyloid-β plaques and activated microglia in a 3X transgenic mouse model of Alzheimer's disease. MATERIALS AND METHODS Ten 3X Tg mice were fed either chow or chow containing 100 ppm resveratrol. Four brains, selected from animals injected with either anti-amyloid targeted superparamagnetic iron oxide nanoparticles, or anti-Iba-1-conjugated FePt-nanoparticles, were excised, fixed with formalin, and placed in Fomblin for ex vivo MRI (11.7T) using multislice-multiecho, multiple gradient echo, rapid acquisition with relaxation enhancement, and susceptibility-weighted imaging (SWI). Aβ plaques and areas of neuroinflammation appeared as hypointense regions whose number, location, and Z-score were measured as a function of sequence type and echo time. RESULTS The MR contrast was due to the shortening of the transverse relaxation time of the plaque-adjacent tissue water. A theoretical analysis of this effect showed that the echo time was the primary determinant of plaque contrast and was used to optimize Z-scores. The Z-scores of the detected lesions varied from 21 to 34 as the echo times varied from 4 to 25 msec, with SWI providing the highest Z-score and number of detected lesions. Computation of the entire plaque and activated microglial distributions in 3D showed that resveratrol treatment led to a reduction of ∼24-fold of Aβ plaque density and ∼4-fold in microglial activation. CONCLUSION Optimized MRI of antibody-conjugated superparamagnetic nanoparticles served to reveal the 3D distributions of both Aβ plaques and activated microglia and to measure the effects of drug treatments in this 3X Tg model. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:574-588.
Collapse
Affiliation(s)
- Marissa A Tafoya
- UNM BRaIN Center, Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | - Laurel O Sillerud
- UNM BRaIN Center, Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
14
|
Zhou W, Zhong G, Fu S, Xie H, Chi T, Li L, Rao X, Zeng S, Xu D, Wang H, Sheng G, Ji X, Liu X, Ji X, Wu D, Zou L, Tortorella M, Zhang K, Hu W. Microglia-Based Phenotypic Screening Identifies a Novel Inhibitor of Neuroinflammation Effective in Alzheimer's Disease Models. ACS Chem Neurosci 2016; 7:1499-1507. [PMID: 27504670 DOI: 10.1021/acschemneuro.6b00125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Currently, anti-AD drug discovery using target-based approaches is extremely challenging due to unclear etiology of AD and absence of validated therapeutic protein targets. Neuronal death, regardless of causes, plays a key role in AD progression, and it is directly linked to neuroinflammation. Meanwhile, phenotypic screening is making a resurgence in drug discovery process as an alternative to target-focused approaches. Herein, we employed microglia-based phenotypic screenings to search for small molecules that modulate the release of detrimental proinflammatory cytokines. The identified novel pharmacological inhibitor of neuroinflammation (named GIBH-130) was validated to alter phenotypes of neuroinflammation in AD brains. Notably, this molecule exhibited comparable in vivo efficacy of cognitive impairment relief to donepezil and memantine respectively in both β amyloid-induced and APP/PS1 double transgenic Alzheimer's murine models at a substantially lower dose (0.25 mg/kg). Therefore, GIBH-130 constitutes a unique chemical probe for pathogenesis research and drug development of AD, and it also suggests microglia-based phenotypic screenings that target neuroinflammation as an effective and feasible strategy to identify novel anti-AD agents.
Collapse
Affiliation(s)
- Wei Zhou
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
- Institute
of Natural Products and Green Chemistry, School of Light Industry
and Chemical Engineering, Guangdong University of Technology, Guangzhou 510003, People’s Republic of China
| | - Guifa Zhong
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Sihai Fu
- Department
of Pharmacy, South China Center of Innovative Pharmaceuticals, Guangzhou 510663, People’s Republic of China
| | - Hui Xie
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, People’s Republic of China
| | - Tianyan Chi
- Department
of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Luyi Li
- Department
of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Xiurong Rao
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Shaogao Zeng
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Dengfeng Xu
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Hao Wang
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Guoqing Sheng
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Xing Ji
- Department
of Pharmacy, South China Center of Innovative Pharmaceuticals, Guangzhou 510663, People’s Republic of China
| | - Xiaorong Liu
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Xuefei Ji
- Department
of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Donghai Wu
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Libo Zou
- Department
of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Micky Tortorella
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Kejian Zhang
- Department
of Pharmacy, South China Center of Innovative Pharmaceuticals, Guangzhou 510663, People’s Republic of China
| | - Wenhui Hu
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| |
Collapse
|
15
|
Xu W, Yang L, Li J. Protection against β-amyloid-induced neurotoxicity by naturally occurring Z-ligustilide through the concurrent regulation of p38 and PI3-K/Akt pathways. Neurochem Int 2016; 100:44-51. [PMID: 27580711 DOI: 10.1016/j.neuint.2016.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/12/2016] [Accepted: 08/26/2016] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is primarily characterized by the progressive loss of functional neurons in the brain. Therefore, compounds with neuroprotective property may have therapeutic value in treating AD. Z-ligustilide (Z-LIG) is an essential oil originally isolated from umbelliferous plants. In the current study, the neuroprotective effects and underlying mechanisms of Z-LIG against fibrillar aggregates of Aβ25-35 and Aβ1-42-induced neurotoxicity were investigated in both SH-SY5Y cells and differentiated PC12 cells. Z-LIG at 1-30 μM provided an effective neuroprotection, as evidenced by the increase in cell viability, as well as the decrease in LDH release and intracellular accumulation of reactive oxygen species. Additionally, Z-LIG markedly blocked Aβ fibrils-induced condensed nuclei and sub-G1 accumulation suggestive of apoptosis. Furthermore, Z-LIG substantially reversed the activation of phosphorylated p38 and the inhibition of phosphorylated Akt caused by Aβ25-35. LY294002, the specific inhibitor of PI3-K, significantly abrogated the protein expression of up-regulated phosphorylated Akt offered by Z-LIG. Most importantly, siRNA-mediated knockdown of PI3-K and p38 significantly abolished the neuroprotective effects of Z-LIG. The results taken together indicate that Z-LIG protects against Aβ fibrils-induced neurotoxicity possibly through the inhibition of p38 and activation of PI3-K/Akt signaling pathways concurrently. Z-LIG might be a potential candidate for further preclinical study aimed at the prevention and treatment of AD.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Li Yang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ji Li
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
16
|
Shi ZM, Han YW, Han XH, Zhang K, Chang YN, Hu ZM, Qi HX, Ting C, Zhen Z, Hong W. Upstream regulators and downstream effectors of NF-κB in Alzheimer's disease. J Neurol Sci 2016; 366:127-134. [DOI: 10.1016/j.jns.2016.05.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 12/09/2022]
|
17
|
Kim HJ, Kang CH, Jayasooriya RGPT, Dilshara MG, Lee S, Choi YH, Seo YT, Kim GY. Hydrangenol inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-mediated HO-1 pathway. Int Immunopharmacol 2016; 35:61-69. [DOI: 10.1016/j.intimp.2016.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022]
|
18
|
Cheng-Chung Wei J, Huang HC, Chen WJ, Huang CN, Peng CH, Lin CL. Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia. Eur J Pharmacol 2015; 770:16-24. [PMID: 26643169 DOI: 10.1016/j.ejphar.2015.11.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/25/2015] [Accepted: 11/25/2015] [Indexed: 11/29/2022]
Abstract
Microglia are the primary immune cells that contribute to neuroinflammation by releasing various proinflammatory cytokines and neurotoxins in the brain. Microglia-mediated neuroinflammation is one of the key characteristics of Alzheimer's disease (AD). Therefore, inhibitory reagents that prevent microglial activation may be used as potential therapeutic agents for treating AD. Recently, many studies have been performed to determine the bioactivities of green tea polyphenol epigallocatechin-3-gallate (EGCG), an efficient antioxidant that prevents neuroinflammation. However, limited information is available on the effects of EGCG on microglia-mediated neuroinflammation. In this study, we investigated the inhibitory effects of EGCG on amyloid β (Aβ)-induced microglial activation and neurotoxicity. Our results indicated that EGCG significantly suppressed the expression of tumor necrosis factor α (TNFα), interleukin-1β, interleukin-6, and inducible nitric oxide synthase (iNOS) in Aβ-stimulated EOC 13.31 microglia. EGCG also restored the levels of intracellular antioxidants nuclear erythroid-2 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), thus inhibiting reactive oxygen species-induced nuclear factor-κB (NF-κB) activation after Aβ treatment. Furthermore, EGCG effectively protected neuro-2a neuronal cells from Aβ-mediated, microglia-induced cytotoxicity by inhibiting mitogen-activated protein kinase-dependent, Aβ-induced release of TNFα. Taken together, our findings suggested that EGCG suppressed Aβ-induced neuroinflammatory response of microglia and protected against indirect neurotoxicity. These results suggest that EGCG is a possible therapeutic agent for preventing Aβ-induced inflammatory neurodegeneration.
Collapse
Affiliation(s)
- James Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Integrative Medicine, China Medical University, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiu-Chen Huang
- Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan
| | - Wei-Jen Chen
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiung-Huei Peng
- Division of Basic Medical Science, Hungkuang University, Taichung, Taiwan
| | - Chih-Li Lin
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
19
|
Cheng B, Lin Y, Kuang M, Fang S, Gu Q, Xu J, Wang L. Synthesis and Anti-neuroinflammatory Activity of Lactone Benzoyl Hydrazine and 2-nitro-1-phenyl-1H
-Indole Derivatives as p38α
MAPK Inhibitors. Chem Biol Drug Des 2015; 86:1121-30. [DOI: 10.1111/cbdd.12581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Bao Cheng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Guangdong TCM Key Laboratory against Metabolic Diseases; Guangzhou Higher Education Mega Centre; Guangdong Pharmaceutical University; Guangzhou 510006 China
| | - Yongsheng Lin
- Research Center for Drug Discovery; School of Pharmaceutical Sciences; Sun Yat-Sen University; Guangzhou 510006 China
| | - Ming Kuang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Guangdong TCM Key Laboratory against Metabolic Diseases; Guangzhou Higher Education Mega Centre; Guangdong Pharmaceutical University; Guangzhou 510006 China
| | - Sai Fang
- Research Center for Drug Discovery; School of Pharmaceutical Sciences; Sun Yat-Sen University; Guangzhou 510006 China
| | - Qiong Gu
- Research Center for Drug Discovery; School of Pharmaceutical Sciences; Sun Yat-Sen University; Guangzhou 510006 China
| | - Jun Xu
- Research Center for Drug Discovery; School of Pharmaceutical Sciences; Sun Yat-Sen University; Guangzhou 510006 China
| | - Laiyou Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Guangdong TCM Key Laboratory against Metabolic Diseases; Guangzhou Higher Education Mega Centre; Guangdong Pharmaceutical University; Guangzhou 510006 China
| |
Collapse
|
20
|
Kim SA, Jung H. Prevention of cognitive impairment in the midlife women. J Menopausal Med 2015; 21:19-23. [PMID: 26046033 PMCID: PMC4452809 DOI: 10.6118/jmm.2015.21.1.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/17/2015] [Accepted: 03/18/2015] [Indexed: 01/11/2023] Open
Abstract
Forgetfulness is common symptom with age. Especially for midlife women, hormonal cessation by menopausal change is one of the causes in cognitive disorders. And neuropathological changes in brain can lead to mild cognitive impairment (MCI) and eventually dementia. Prevention of MCI is important for decreasing progression to dementia. This article presents therapeutic approaches based on pathophysiologic changes in brain for preventing cognitive decline.
Collapse
Affiliation(s)
- Soo Ah Kim
- Department of Obstetrics and Gynecology, School of Medicine, Chosun University, Gwangju, Korea
| | - Hyuk Jung
- Department of Obstetrics and Gynecology, School of Medicine, Chosun University, Gwangju, Korea
| |
Collapse
|
21
|
Deng J, Liu P, Lv B, Guo J, Liang F, Tang J, Xie H. A rapid and sensitive HPLC-MS/MS method for determination of an aminopyridazine derived anti-neuroinflammatory agent (ZW14) in dog plasma: Application to a pharmacokinetic study. J Pharm Biomed Anal 2015; 111:204-8. [PMID: 25898314 DOI: 10.1016/j.jpba.2015.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
The unclear etiology of Alzheimer's disease leaves a large space for drug exploration. A novel anti-neuroinflammation agent (ZW14) was previously determined to have comparable efficacy to the marketed drug (donepezil) in the Aβ-induced model mice. Herein, a sensitive and rapid HPLC-MS/MS quantitative method was developed and validated for the further evaluation of ZW14 in dogs. Plasma samples were processed by liquid-liquid extraction with ethyl acetate and separated on Luna C18 column (2.1 mm × 50 mm, 1.7 μm) at room temperature with a flow rate of 0.2 mL/min. The analyte and IS were all detected by monitoring the precursor → product ion transition at unit resolution using multiple reaction monitoring (MRM) scan mode with positive ionization mode. No endogenous interference was observed and the linear range was 0.05-1500 ng/mL with the lower limit of quantification of 0.05 ng/mL. The intra- and inter-day precisions were within 10.9%, while the accuracy was all between 96.0% and 110%. The developed method was successfully applied to the pharmacokinetic study of ZW14 in beagle dogs after oral and intravenous administration of 2 mg/kg. The oral bioavailability of ZW14 was 26.3% with half-life of 2.6h.
Collapse
Affiliation(s)
- Jifeng Deng
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou 510640, PR China
| | - Peng Liu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, PR China
| | - Bijun Lv
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Jiayin Guo
- Zhongshan PharmaSS Corporation, Zhongshan 528437, PR China
| | - Fenghua Liang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Jiawen Tang
- Zhongshan PharmaSS Corporation, Zhongshan 528437, PR China
| | - Hui Xie
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China.
| |
Collapse
|
22
|
Leviton A, Gressens P, Wolkenhauer O, Dammann O. Systems approach to the study of brain damage in the very preterm newborn. Front Syst Neurosci 2015; 9:58. [PMID: 25926780 PMCID: PMC4396381 DOI: 10.3389/fnsys.2015.00058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/26/2015] [Indexed: 12/11/2022] Open
Abstract
Background: A systems approach to the study of brain damage in very preterm newborns has been lacking. Methods: In this perspective piece, we offer encephalopathy of prematurity as an example of the complexity and interrelatedness of brain-damaging molecular processes that can be initiated inflammatory phenomena. Results: Using three transcription factors, nuclear factor-kappa B (NF-κB), Notch-1, and nuclear factor erythroid 2 related factor 2 (NRF2), we show the inter-connectedness of signaling pathways activated by some antecedents of encephalopathy of prematurity. Conclusions: We hope that as biomarkers of exposures and processes leading to brain damage in the most immature newborns become more readily available, those who apply a systems approach to the study of neuroscience can be persuaded to study the pathogenesis of brain disorders in the very preterm newborn.
Collapse
Affiliation(s)
- Alan Leviton
- Neuroepidemiology Unit, Boston Children's Hospital Boston, MA, USA ; Department of Neurology, Harvard Medical School Boston, MA, USA
| | - Pierre Gressens
- Inserm, U1141 Paris, France ; Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital London, UK
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock Rostock, Germany ; Stellenbosch Institute for Advanced Study (STIAS) Stellenbosch, South Africa
| | - Olaf Dammann
- Department of Public Health and Community Medicine, Tufts University School of Medicine Boston, MA, USA ; Perinatal Epidemiology Unit, Department of Gynecology and Obstetrics, Hannover Medical School Hannover, Germany
| |
Collapse
|
23
|
Sabatini S, Manfroni G, Barreca ML, Bauer SM, Gargaro M, Cannalire R, Astolfi A, Brea J, Vacca C, Pirro M, Massari S, Tabarrini O, Loza MI, Fallarino F, Laufer SA, Cecchetti V. The Pyrazolobenzothiazine Core as a New Chemotype of p38 Alpha Mitogen-Activated Protein Kinase Inhibitors. Chem Biol Drug Des 2015; 86:531-45. [DOI: 10.1111/cbdd.12516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/19/2014] [Accepted: 01/05/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Stefano Sabatini
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Silke M. Bauer
- Department of Pharmaceutical & Medicinal Chemistry; Institute of Pharmacy; Eberhard-Karls University Tuebingen; Auf der Morgenstelle 8 72076 Tuebingen Germany
| | - Marco Gargaro
- Department of Experimental Medicine; University of Perugia; Piazzale Gambuli 06100 Perugia Italy
| | - Rolando Cannalire
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Jose Brea
- CIMUS Research Center; University of Santiago de Compostela; Avda de Barcelona s/n, Planta 3. Despacho 1 15782 Santiago de Compostela Spain
| | - Carmine Vacca
- Department of Experimental Medicine; University of Perugia; Piazzale Gambuli 06100 Perugia Italy
| | - Matteo Pirro
- Department of Medicine; University of Perugia; Piazzale Gambuli 06100 Perugia Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| | - Maria Isabel Loza
- CIMUS Research Center; University of Santiago de Compostela; Avda de Barcelona s/n, Planta 3. Despacho 1 15782 Santiago de Compostela Spain
| | - Francesca Fallarino
- Department of Experimental Medicine; University of Perugia; Piazzale Gambuli 06100 Perugia Italy
| | - Stefan A. Laufer
- Department of Pharmaceutical & Medicinal Chemistry; Institute of Pharmacy; Eberhard-Karls University Tuebingen; Auf der Morgenstelle 8 72076 Tuebingen Germany
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences; University of Perugia; Via A. Fabretti, 48 06123 Perugia Italy
| |
Collapse
|
24
|
Geldenhuys WJ, Darvesh AS. Pharmacotherapy of Alzheimer’s disease: current and future trends. Expert Rev Neurother 2014; 15:3-5. [DOI: 10.1586/14737175.2015.990884] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|