1
|
Munsimbwe L, Suganuma K, Ishikawa Y, Choongo K, Kikuchi T, Shirakura I, Murata T. Benzophenone Glucosides and B-Type Proanthocyanidin Dimers from Zambian Cassia abbreviata and Their Trypanocidal Activities. JOURNAL OF NATURAL PRODUCTS 2022; 85:91-104. [PMID: 34965114 DOI: 10.1021/acs.jnatprod.1c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two benzophenone glucosides (1 and 2), five flavan-3-ol dimers (5-9), and 17 known compounds (3, 4, and 10-24) were identified from the bark extract of Cassia abbreviata. The chemical structures display two points of interest. First, as an unusual characteristic feature of the 1H NMR spectra of 1 and 2, the signals for the protons on glucosidic carbons C-2 are shielded as compared to those generally observed for glucosyl moieties. The geometrically optimized 3D structures derived from conformational analysis and density functional theory (DFT) calculations revealed that this shielding effect originates from intramolecular hydrogen bonds in 1 and 2. Additionally, 3-15 were identified as dimeric B-type proanthocyanidins, which have 2R,3S-absolute-configured C-rings and C-4-C-8″ linkages, as evidenced by X-ray crystallography and by NMR and ECD spectroscopy. These results suggest the structure-determining procedures for some reported dimers need to be reconsidered. The trypanocidal activities of the isolated compounds against Trypanosoma brucei brucei, T. b. gambiense, T. b. rhodesiense, T. congolense, and T. evansi were evaluated, and the active compounds were identified.
Collapse
Affiliation(s)
- Linous Munsimbwe
- Department of Veterinary Services, Ministry of Fisheries and Livestock, P.O. Box 50060, Lusaka 10101, Zambia
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Yoshinobu Ishikawa
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yoko-hama 244-0806, Japan
| | - Kennedy Choongo
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
- School of Animal and Veterinary Sciences, College of Agriculture, Fisheries and Forestry, Fiji National University, Koronivia Campus, Suva, Fiji
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Izumi Shirakura
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, 4-1 Komatsushima 4-chome Aoba-ku, Sendai 981-8558, Japan
| | - Toshihiro Murata
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, 4-1 Komatsushima 4-chome Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
2
|
Showalter HD. Recent Progress in the Discovery and Development of 2-Nitroimidazooxazines and 6-Nitroimidazooxazoles to Treat Tuberculosis and Neglected Tropical Diseases. Molecules 2020; 25:molecules25184137. [PMID: 32927749 PMCID: PMC7576498 DOI: 10.3390/molecules25184137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/02/2022] Open
Abstract
Nitroimidazole drugs have a long history as therapeutic agents to treat bacterial and parasitic diseases. The discovery in 1989 of a bicyclic nitroimidazole lead, displaying in vitro and in vivo antitubercular activity, spurred intensive exploration of this and related scaffolds, which led to the regulatory approval of pretomanid and delamanid as a new class of tuberculosis drugs. Much of the discovery work related to this took place over a 20-year period ending in 2010, which is covered in a number of cited reviews. This review highlights subsequent research published over the 2011–August 2020 timeframe, and captures detailed structure–activity relationship studies and synthetic strategies directed towards uncovering newer generation drugs for both tuberculosis and selected neglected tropical diseases. Additionally, this review presents in silico calculations relating to the drug-like properties of lead compounds and clinical agents, as well as chemical development and manufacturing processes toward providing bulk drug supplies.
Collapse
Affiliation(s)
- Hollis D Showalter
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Turcano L, Battista T, De Haro ET, Missineo A, Alli C, Paonessa G, Colotti G, Harper S, Fiorillo A, Ilari A, Bresciani A. Spiro-containing derivatives show antiparasitic activity against Trypanosoma brucei through inhibition of the trypanothione reductase enzyme. PLoS Negl Trop Dis 2020; 14:e0008339. [PMID: 32437349 PMCID: PMC7269337 DOI: 10.1371/journal.pntd.0008339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/03/2020] [Accepted: 04/30/2020] [Indexed: 11/19/2022] Open
Abstract
Trypanothione reductase (TR) is a key enzyme that catalyzes the reduction of trypanothione, an antioxidant dithiol that protects Trypanosomatid parasites from oxidative stress induced by mammalian host defense systems. TR is considered an attractive target for the development of novel anti-parasitic agents as it is essential for parasite survival but has no close homologue in humans. We report here the identification of spiro-containing derivatives as inhibitors of TR from Trypanosoma brucei (TbTR), the parasite responsible for Human African Trypanosomiasis. The hit series, identified by high throughput screening, was shown to bind TbTR reversibly and to compete with the trypanothione (TS2) substrate. The prototype compound 1 from this series was also found to impede the growth of Trypanosoma brucei parasites in vitro. The X-ray crystal structure of TbTR in complex with compound 1 solved at 1.98 Å allowed the identification of the hydrophobic pocket where the inhibitor binds, placed close to the catalytic histidine (His 461’) and lined by Trp21, Val53, Ile106, Tyr110 and Met113. This new inhibitor is specific for TbTR and no activity was detected against the structurally similar human glutathione reductase (hGR). The central spiro scaffold is known to be suitable for brain active compounds in humans thus representing an attractive starting point for the future treatment of the central nervous system stage of T. brucei infections. Trypanosoma brucei is a parasite responsible for neglected pathologies such as human African trypanosomiasis, also known as sleeping sickness. This disease is endemic in sub-Saharan Africa, with 70 million people at risk of infection. Current treatments for this type of disease are limited by their toxicity, administration in endemic countries and treatment resistance. Therapies against infectious diseases typically rely on targeting one or more components of the parasite that are not present in humans to ensure the best possible therapeutic window. In this case we aimed at targeting the Trypanosoma brucei trypanothione reductase (TR), one enzyme that synthesize the reduced trypanothione a key molecule for preserving the parasite redox balance. This enzyme does not exist in humans that have glutathione instead of trypanothione. Past attempts to identify novel inhibitors of this target has failed to generate drug-like molecules. To overcome this limitation we employed a recent, higher quality, TR activity assay to test a collection of compounds previously reported to be active against these parasites. This approach led to the identification and validation of a new chemotype with a unique mode of inhibition of TR. This chemical series is a drug-like starting point, in fact its core (spiro) is present in drugs approved for human use.
Collapse
Affiliation(s)
- Lorenzo Turcano
- Department of Translational and Discovery Research, Pomezia (Roma) Italy
| | - Theo Battista
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | | | - Antonino Missineo
- Department of Translational and Discovery Research, Pomezia (Roma) Italy
| | - Cristina Alli
- Department of Translational and Discovery Research, Pomezia (Roma) Italy
| | - Giacomo Paonessa
- Department of Translational and Discovery Research, Pomezia (Roma) Italy
| | - Gianni Colotti
- Istituto di Biologia e Patologia Molecolari del CNR c/o Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | | | - Annarita Fiorillo
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | - Andrea Ilari
- Istituto di Biologia e Patologia Molecolari del CNR c/o Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
- * E-mail: (AI); (AB)
| | - Alberto Bresciani
- Department of Translational and Discovery Research, Pomezia (Roma) Italy
- * E-mail: (AI); (AB)
| |
Collapse
|
4
|
Johnson BM, Shu YZ, Zhuo X, Meanwell NA. Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. J Med Chem 2020; 63:6315-6386. [PMID: 32182061 DOI: 10.1021/acs.jmedchem.9b01877] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applications of fluorine in drug design continue to expand, facilitated by an improved understanding of its effects on physicochemical properties and the development of synthetic methodologies that are providing access to new fluorinated motifs. In turn, studies of fluorinated molecules are providing deeper insights into the effects of fluorine on metabolic pathways, distribution, and disposition. Despite the high strength of the C-F bond, the departure of fluoride from metabolic intermediates can be facile. This reactivity has been leveraged in the design of mechanism-based enzyme inhibitors and has influenced the metabolic fate of fluorinated compounds. In this Perspective, we summarize the literature associated with the metabolism of fluorinated molecules, focusing on examples where the presence of fluorine influences the metabolic profile. These studies have revealed potentially problematic outcomes with some fluorinated motifs and are enhancing our understanding of how fluorine should be deployed.
Collapse
Affiliation(s)
- Benjamin M Johnson
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yue-Zhong Shu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Xiaoliang Zhuo
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Discovery Chemistry Platforms, Small Molecule Drug Discovery, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
5
|
Synthesis, in-vitro antiprotozoal activity and molecular docking study of isothiocyanate derivatives. Bioorg Med Chem 2020; 28:115185. [DOI: 10.1016/j.bmc.2019.115185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 11/22/2022]
|
6
|
Mei H, Han J, Klika KD, Izawa K, Sato T, Meanwell NA, Soloshonok VA. Applications of fluorine-containing amino acids for drug design. Eur J Med Chem 2019; 186:111826. [PMID: 31740056 DOI: 10.1016/j.ejmech.2019.111826] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 01/26/2023]
Abstract
Fluorine-containing amino acids are becoming increasingly prominent in new drugs due to two general trends in the modern pharmaceutical industry. Firstly, the growing acceptance of peptides and modified peptides as drugs; and secondly, fluorine editing has become a prevalent protocol in drug-candidate optimization. Accordingly, fluorine-containing amino acids represent one of the more promising and rapidly developing areas of research in organic, bio-organic and medicinal chemistry. The goal of this Review article is to highlight the current state-of-the-art in this area by profiling 42 selected compounds that combine fluorine and amino acid structural elements. The compounds under discussion represent pharmaceutical drugs currently on the market, or in clinical trials as well as examples of drug-candidates that although withdrawn from development had a significant impact on the progress of medicinal chemistry and/or provided a deeper understanding of the nature and mechanism of biological action. For each compound, we present features of biological activity, a brief history of the design principles and the development of the synthetic approach, focusing on the source of tailor-made amino acid structures and fluorination methods. General aspects of the medicinal chemistry of fluorine-containing amino acids and synthetic methodology are briefly discussed.
Collapse
Affiliation(s)
- Haibo Mei
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan.
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ, 08543-4000, United States.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| |
Collapse
|
7
|
N-substituted noscapine derivatives as new antiprotozoal agents: Synthesis, antiparasitic activity and molecular docking study. Bioorg Chem 2019; 91:103116. [PMID: 31377384 DOI: 10.1016/j.bioorg.2019.103116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022]
Abstract
Novel N-substituted noscapine derivatives were synthesized by a three-component Strecker reaction of cyclic ether of N-nornoscapine with varied aldehydes, in the presence of cyanide ion. Moreover, the corresponding amides were synthesized by the oxidation of cyanide moieties in good yields. The in vitro antiprotozoal activity of the products was also investigated. Interestingly, some analogues did put on display promising antiparasitic activity against Trypanosoma brucei rhodesiense with IC50 values between 2.5 and 10.0 µM and selectivity index (SI) ranged from 0.8 to 13.2. Eight compounds exhibited activity against Plasmodium falciparum K1 strain with IC50 ranging 1.7-6.4 µM, and SI values between 2.8 and 10.5 against L6 rat myoblast cell lines. Molecular docking was carried out on trypanothione reductase (TbTR, PDB ID: 2WOW) and UDP-galactose 4' epimerase (TbUDPGE PDB: 1GY8) as targets for studying the envisaged mechanism of action. Compounds 6j2 and 6b2 displayed excellent docking scores with -8.59 and -8.86 kcal/mol for TbTR and TbUDPGE, respectively.
Collapse
|
8
|
Revisiting tubercidin against kinetoplastid parasites: Aromatic substitutions at position 7 improve activity and reduce toxicity. Eur J Med Chem 2019; 164:689-705. [DOI: 10.1016/j.ejmech.2018.12.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/09/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023]
|
9
|
Ferrins L, Sharma A, Thomas SM, Mehta N, Erath J, Tanghe S, Leed SE, Rodriguez A, Mensa-Wilmot K, Sciotti RJ, Gillingwater K, Pollastri MP. Anilinoquinoline based inhibitors of trypanosomatid proliferation. PLoS Negl Trop Dis 2018; 12:e0006834. [PMID: 30475800 PMCID: PMC6283615 DOI: 10.1371/journal.pntd.0006834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/06/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022] Open
Abstract
We recently reported the medicinal chemistry re-optimization of a series of compounds derived from the human tyrosine kinase inhibitor, lapatinib, for activity against Plasmodium falciparum. From this same library of compounds, we now report potent compounds against Trypanosoma brucei brucei (which causes human African trypanosomiasis), T. cruzi (the pathogen that causes Chagas disease), and Leishmania spp. (which cause leishmaniasis). In addition, sub-micromolar compounds were identified that inhibit proliferation of the parasites that cause African animal trypanosomiasis, T. congolense and T. vivax. We have found that this set of compounds display acceptable physicochemical properties and represent progress towards identification of lead compounds to combat several neglected tropical diseases. As part of our efforts to identify compounds that are active against the parasite that causes malaria (P. falciparum), we employed a “parasite hopping” approach in our drug discovery efforts. This involved screening a library of demonstrated antiparasitic agents against other parasites responsible for a host of neglected tropical diseases (NTDs) including Chagas disease (T. cruzi), human African trypanosomiasis (T. brucei) and cutaneous leishmaniasis (L. major). The compounds we identified generally show improved selectivity for the parasite of interest over the mammalian cell lines tested and, from this work, we have made progress towards the identification of lead compounds against multiple NTDs.
Collapse
Affiliation(s)
- Lori Ferrins
- Northeastern University, Department of Chemistry & Chemical Biology, Boston, United States of America
| | - Amrita Sharma
- University of Georgia, Department of Cellular Biology, Athens, United States of America
| | - Sarah M. Thomas
- University of Georgia, Department of Cellular Biology, Athens, United States of America
| | - Naimee Mehta
- Northeastern University, Department of Chemistry & Chemical Biology, Boston, United States of America
| | - Jessey Erath
- New York University School of Medicine, Department of Microbiology, New York, United States of America
- Anti-Infectives Screening Core, New York University School of Medicine, New York
| | - Scott Tanghe
- New York University School of Medicine, Department of Microbiology, New York, United States of America
- Anti-Infectives Screening Core, New York University School of Medicine, New York
| | - Susan E. Leed
- Experimental Therapeutics, Walter Reed Army Institute for Research, Silver Spring, United States of America
| | - Ana Rodriguez
- New York University School of Medicine, Department of Microbiology, New York, United States of America
- Anti-Infectives Screening Core, New York University School of Medicine, New York
| | - Kojo Mensa-Wilmot
- University of Georgia, Department of Cellular Biology, Athens, United States of America
| | - Richard J. Sciotti
- Experimental Therapeutics, Walter Reed Army Institute for Research, Silver Spring, United States of America
| | - Kirsten Gillingwater
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Socinstrasse 57, Basel, Switzerland
- University of Basel, Petersplatz 1, Basel, Switzerland
| | - Michael P. Pollastri
- Northeastern University, Department of Chemistry & Chemical Biology, Boston, United States of America
- * E-mail:
| |
Collapse
|
10
|
Thompson AM, Marshall AJ, Maes L, Yarlett N, Bacchi CJ, Gaukel E, Wring SA, Launay D, Braillard S, Chatelain E, Mowbray CE, Denny WA. Assessment of a pretomanid analogue library for African trypanosomiasis: Hit-to-lead studies on 6-substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides. Bioorg Med Chem Lett 2017; 28:207-213. [PMID: 29191556 PMCID: PMC5840523 DOI: 10.1016/j.bmcl.2017.10.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 01/16/2023]
Abstract
A 900 compound nitroimidazole-based library derived from our pretomanid backup program with TB Alliance was screened for utility against human African trypanosomiasis (HAT) by the Drugs for Neglected Diseases initiative. Potent hits included 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides, which surprisingly displayed good metabolic stability and excellent cell permeability. Following comprehensive mouse pharmacokinetic assessments on four hits and determination of the most active chiral form, a thiazine oxide counterpart of pretomanid (24) was identified as the best lead. With once daily oral dosing, this compound delivered complete cures in an acute infection mouse model of HAT and increased survival times in a stage 2 model, implying the need for more prolonged CNS exposure. In preliminary SAR findings, antitrypanosomal activity was reduced by removal of the benzylic methylene but enhanced through a phenylpyridine-based side chain, providing important direction for future studies.
Collapse
Affiliation(s)
- Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Andrew J Marshall
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Nigel Yarlett
- Haskins Laboratories, Pace University, NY 10038, USA
| | | | - Eric Gaukel
- Scynexis, Inc., Research Triangle Park, NC 27713, USA
| | | | - Delphine Launay
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Stephanie Braillard
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Charles E Mowbray
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Schmidt I, Göllner S, Fuß A, Stich A, Kucharski A, Schirmeister T, Katzowitsch E, Bruhn H, Miliu A, Krauth-Siegel RL, Holzgrabe U. Bistacrines as potential antitrypanosomal agents. Bioorg Med Chem 2017; 25:4526-4531. [PMID: 28698054 DOI: 10.1016/j.bmc.2017.06.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 02/05/2023]
Abstract
Human African Trypanosomiasis (HAT) is caused by two subspecies of the genus Trypanosoma, namely Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. The disease is fatal if left untreated and therapy is limited due to only five non-adequate drugs currently available. In preliminary studies, dimeric tacrine derivatives were found to inhibit parasite growth with IC50-values in the nanomolar concentration range. This prompted the synthesis of a small, but smart library of monomeric and dimeric tacrine-type compounds and their evaluation of antiprotozoal activity. Rhodesain, a lysosomal cathepsin-L like cysteine protease of T. brucei rhodesiense is essential for parasite survival and likely target of the tacrine derivatives. In addition, the inhibition of trypanothione reductase by bistacrines was found. This flavoprotein oxidoreductase is the main defense against oxidative stress in the thiol redox system unique for protozoa.
Collapse
Affiliation(s)
- Ines Schmidt
- Institute for Pharmacy and Food Chemistry, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sarah Göllner
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Antje Fuß
- Medical Mission Institute, Hermann-Schell-Strasse 7, 97074 Würzburg, Germany
| | - August Stich
- Medical Mission Institute, Hermann-Schell-Strasse 7, 97074 Würzburg, Germany
| | - Anna Kucharski
- Institute for Pharmacy and Food Chemistry, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tanja Schirmeister
- Institute for Pharmacy and Biochemistry, Johannes-Gutenberg-University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Elena Katzowitsch
- Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Heike Bruhn
- Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Alexandra Miliu
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - R Luise Krauth-Siegel
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
12
|
Abstract
Infections of the nervous system are an important and challenging aspect of clinical neurology. Immediate correct diagnosis enables to introduce effective therapy, in conditions that without diagnosis may leave the patient with severe neurological incapacitation and sometimes even death. The cerebrospinal fluid (CSF) is a mirror that reflects nervous system pathology and can promote early diagnosis and therapy. The present chapter focuses on the CSF findings in neuro-infections, mainly viral and bacterial. Opening pressure, protein and glucose levels, presence of cells and type of the cellular reaction should be monitored. Other tests can also shed light on the causative agent: serology, culture, staining, molecular techniques such as polymerase chain reaction. Specific examination such as panbacterial and panfungal examinations should be examined when relevant. Our chapter is a guide-text that combines clinical presentation and course with CSF findings as a usuaful tool in diagnosis of neuroinfections.
Collapse
Affiliation(s)
- Felix Benninger
- Department of Neurology, Rabin Medical Center, Petach Tikva, Israel
| | - Israel Steiner
- Department of Neurology, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
13
|
Miller MB, Patkar P, Singha UK, Chaudhuri M, David Nes W. 24-Methylenecyclopropane steroidal inhibitors: A Trojan horse in ergosterol biosynthesis that prevents growth of Trypanosoma brucei. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:305-313. [PMID: 27939999 DOI: 10.1016/j.bbalip.2016.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 01/09/2023]
Abstract
A new class of steroidal therapeutics based on phylogenetic-guided design of covalent inhibitors that target parasite-specific enzymes of ergosterol biosynthesis is shown to prevent growth of the protozoan-Trypanosoma brucei, responsible for sleeping sickness. In the presence of approximately 15±5μM 26,27-dehydrolanosterol, T. brucei procyclic or blood stream form growth is inhibited by 50%. This compound is actively converted by the parasite to an acceptable substrate of sterol C24-methyl transferase (SMT) that upon position-specific side chain methylation at C26 inactivates the enzyme. Treated cells show dose-dependent depletion of ergosterol and other 24β-methyl sterols with no accumulation of intermediates in contradistinction to profiles typical of tight binding inhibitor treatments to azoles showing loss of ergosterol accompanied by accumulation of toxic 14-methyl sterols. HEK cells accumulate 26,27-dehydrolanosterol without effect on cholesterol biosynthesis. During exposure of cloned TbSMT to 26,27-dehydrozymosterol, the enzyme is gradually inactivated (kcat/kinact=0.13min-1/0.08min-1; partition ratio of 1.6) while 26,27-dehydrolanosterol binds nonproductively. GC-MS analysis of the turnover product and bound intermediate released as a C26-methylated diol (C3-OH and C24-OH) confirmed substrate recognition and covalent binding to TbSMT. This study has potential implications for design of a novel class of chemotherapeutic leads functioning as mechanism-based inhibitors of ergosterol biosynthesis to treat neglected tropical diseases.
Collapse
Affiliation(s)
- Matthew B Miller
- Department of Chemistry and Biochemistry and Center for Chemical Biology, Texas Tech University, Lubbock, TX 79409, USA
| | - Presheet Patkar
- Department of Chemistry and Biochemistry and Center for Chemical Biology, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA
| | - W David Nes
- Department of Chemistry and Biochemistry and Center for Chemical Biology, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
14
|
Abdeen S, Salim N, Mammadova N, Summers CM, Goldsmith-Pestana K, McMahon-Pratt D, Schultz PG, Horwich AL, Chapman E, Johnson SM. Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness. Bioorg Med Chem Lett 2016; 26:5247-5253. [PMID: 27720295 DOI: 10.1016/j.bmcl.2016.09.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause African sleeping sickness in humans (also known as Human African Trypanosomiasis-HAT). Without treatment, T. brucei infections are fatal. There is an urgent need for new therapeutic strategies as current drugs are toxic, have complex treatment regimens, and are becoming less effective owing to rising antibiotic resistance in parasites. We hypothesize that targeting the HSP60/10 chaperonin systems in T. brucei is a viable anti-trypanosomal strategy as parasites rely on these stress response elements for their development and survival. We recently discovered several hundred inhibitors of the prototypical HSP60/10 chaperonin system from Escherichia coli, termed GroEL/ES. One of the most potent GroEL/ES inhibitors we discovered was compound 1. While examining the PubChem database, we found that a related analog, 2e-p, exhibited cytotoxicity to Leishmania major promastigotes, which are trypanosomatids highly related to Trypanosoma brucei. Through initial counter-screening, we found that compounds 1 and 2e-p were also cytotoxic to Trypanosoma brucei parasites (EC50=7.9 and 3.1μM, respectively). These encouraging initial results prompted us to develop a library of inhibitor analogs and examine their anti-parasitic potential in vitro. Of the 49 new chaperonin inhibitors developed, 39% exhibit greater cytotoxicity to T. brucei parasites than parent compound 1. While many analogs exhibit moderate cytotoxicity to human liver and kidney cells, we identified molecular substructures to pursue for further medicinal chemistry optimization to increase the therapeutic windows of this novel class of chaperonin-targeting anti-parasitic candidates. An intriguing finding from this study is that suramin, the first-line drug for treating early stage T. brucei infections, is also a potent inhibitor of GroEL/ES and HSP60/10 chaperonin systems.
Collapse
Affiliation(s)
- Sanofar Abdeen
- Indiana University, School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Nilshad Salim
- Indiana University, School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Najiba Mammadova
- Indiana University, School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Corey M Summers
- Indiana University, School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Karen Goldsmith-Pestana
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College St., New Haven, CT 06520, United States
| | - Diane McMahon-Pratt
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College St., New Haven, CT 06520, United States
| | - Peter G Schultz
- The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Rd., La Jolla, CA 92037, United States
| | - Arthur L Horwich
- HHMI, Department of Genetics, Yale School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Ave., New Haven, CT 06510, United States
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., Tucson, AZ 85721, United States
| | - Steven M Johnson
- Indiana University, School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
| |
Collapse
|
15
|
Russell S, Rahmani R, Jones AJ, Newson HL, Neilde K, Cotillo I, Rahmani Khajouei M, Ferrins L, Qureishi S, Nguyen N, Martinez-Martinez MS, Weaver DF, Kaiser M, Riley J, Thomas J, De Rycker M, Read KD, Flematti GR, Ryan E, Tanghe S, Rodriguez A, Charman SA, Kessler A, Avery VM, Baell JB, Piggott MJ. Hit-to-Lead Optimization of a Novel Class of Potent, Broad-Spectrum Trypanosomacides. J Med Chem 2016; 59:9686-9720. [DOI: 10.1021/acs.jmedchem.6b00442] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Stephanie Russell
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Raphaël Rahmani
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Amy J. Jones
- Eskitis
Institute for Drug Discovery, Griffith University, Brisbane Innovation Park, Don Young
Road, Nathan, Queensland 4111, Australia
| | - Harriet L. Newson
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Kevin Neilde
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- GlaxoSmithKline, 28760 Tres Cantos, Spain
| | | | - Marzieh Rahmani Khajouei
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Lori Ferrins
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sana Qureishi
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Nghi Nguyen
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Donald F. Weaver
- Department
of Chemistry, Dalhousie University, Halifax Nova Scotia B3H 4R2, Canada
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse, 4051 Basel, Switzerland
- University of Basel, Petesplatz
1, 4003 Basel, Switzerland
| | - Jennifer Riley
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - John Thomas
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - Manu De Rycker
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - Kevin D. Read
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, DD1 5EH Dundee, U.K
| | - Gavin R. Flematti
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| | - Eileen Ryan
- Centre
for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | - Scott Tanghe
- Anti-Infectives
Screening Core, New York University School of Medicine, New York, New York 10010, United States
| | - Ana Rodriguez
- Anti-Infectives
Screening Core, New York University School of Medicine, New York, New York 10010, United States
| | - Susan A. Charman
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Centre
for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | | | - Vicky M. Avery
- Eskitis
Institute for Drug Discovery, Griffith University, Brisbane Innovation Park, Don Young
Road, Nathan, Queensland 4111, Australia
| | - Jonathan B. Baell
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Matthew J. Piggott
- School
of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
| |
Collapse
|
16
|
Leaver DJ, Patkar P, Singha UK, Miller MB, Haubrich BA, Chaudhuri M, Nes WD. Fluorinated Sterols Are Suicide Inhibitors of Ergosterol Biosynthesis and Growth in Trypanosoma brucei. ACTA ACUST UNITED AC 2016; 22:1374-83. [PMID: 26496686 DOI: 10.1016/j.chembiol.2015.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/20/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022]
Abstract
Trypanosoma brucei, the causal agent for sleeping sickness, depends on ergosterol for growth. Here, we describe the effects of a mechanism-based inhibitor, 26-fluorolanosterol (26FL), which converts in vivo to a fluorinated substrate of the sterol C24-methyltransferase essential for sterol methylation and function of ergosterol, and missing from the human host. 26FL showed potent inhibition of ergosterol biosynthesis and growth of procyclic and bloodstream forms while having no effect on cholesterol biosynthesis or growth of human epithelial kidney cells. During exposure of cloned TbSMT to 26-fluorocholesta-5,7,24-trienol, the enzyme is gradually killed as a consequence of the covalent binding of the intermediate C25 cation to the active site (kcat/kinact = 0.26 min(-1)/0.24 min(-1); partition ratio of 1.08), whereas 26FL is non-productively bound. These results demonstrate that poisoning of ergosterol biosynthesis by a 26-fluorinated Δ(24)-sterol is a promising strategy for developing a new treatment for trypanosomiasis.
Collapse
Affiliation(s)
- David J Leaver
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA; Institute of Chemistry and Biomedical Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Presheet Patkar
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, 1005 Doctor D. B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | - Matthew B Miller
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Brad A Haubrich
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, 1005 Doctor D. B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | - W David Nes
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA.
| |
Collapse
|
17
|
Sun YN, No JH, Lee GY, Li W, Yang SY, Yang G, Schmidt TJ, Kang JS, Kim YH. Phenolic Constituents of Medicinal Plants with Activity against Trypanosoma brucei. Molecules 2016; 21:480. [PMID: 27077842 PMCID: PMC6273235 DOI: 10.3390/molecules21040480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/24/2022] Open
Abstract
Neglected tropical diseases (NTDs) affect over one billion people all over the world. These diseases are classified as neglected because they impact populations in areas with poor financial conditions and hence do not attract sufficient research investment. Human African Trypanosomiasis (HAT or sleeping sickness), caused by the parasite Trypanosoma brucei, is one of the NTDs. The current therapeutic interventions for T. brucei infections often have toxic side effects or require hospitalization so that they are not available in the rural environments where HAT occurs. Furthermore, parasite resistance is increasing, so that there is an urgent need to identify novel lead compounds against this infection. Recognizing the wide structural diversity of natural products, we desired to explore and identify novel antitrypanosomal chemotypes from a collection of natural products obtained from plants. In this study, 440 pure compounds from various medicinal plants were tested against T. brucei by in a screening using whole cell in vitro assays. As the result, twenty-two phenolic compounds exhibited potent activity against cultures of T. brucei. Among them, eight compounds—4, 7, 11, 14, 15, 18, 20, and 21—showed inhibitory activity against T. brucei, with IC50 values below 5 µM, ranging from 0.52 to 4.70 μM. Based on these results, we attempt to establish some general trends with respect to structure-activity relationships, which indicate that further investigation and optimization of these derivatives might enable the preparation of potentially useful compounds for treating HAT.
Collapse
Affiliation(s)
- Ya Nan Sun
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Joo Hwan No
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-400, Korea.
| | - Ga Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Wei Li
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Gyongseon Yang
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-400, Korea.
| | - Thomas J Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, PharmaCampus, Corrensstrasse 48, D-48149 Münster, Germany.
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| |
Collapse
|
18
|
Glaser J, Holzgrabe U. Focus on PAINS: false friends in the quest for selective anti-protozoal lead structures from Nature? MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00481k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pan-assay interference compounds (PAINS) are molecules showing promising but deceptive activities in various biochemical screenings mainly due to unselective interactions with the target.
Collapse
Affiliation(s)
- J. Glaser
- Institute of Pharmacy and Food Chemistry
- University of Wuerzburg
- 97074 Wuerzburg
- Germany
| | - U. Holzgrabe
- Institute of Pharmacy and Food Chemistry
- University of Wuerzburg
- 97074 Wuerzburg
- Germany
| |
Collapse
|
19
|
Di Pietro O, Vicente-García E, Taylor MC, Berenguer D, Viayna E, Lanzoni A, Sola I, Sayago H, Riera C, Fisa R, Clos MV, Pérez B, Kelly JM, Lavilla R, Muñoz-Torrero D. Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity. Eur J Med Chem 2015; 105:120-37. [PMID: 26479031 PMCID: PMC4638191 DOI: 10.1016/j.ejmech.2015.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022]
Abstract
Human African trypanosomiasis (HAT), Chagas disease and leishmaniasis, which are caused by the trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania species, are among the most deadly neglected tropical diseases. The development of drugs that are active against several trypanosomatids is appealing from a clinical and economic viewpoint, and seems feasible, as these parasites share metabolic pathways and hence might be treatable by common drugs. From benzonapthyridine 1, an inhibitor of acetylcholinesterase (AChE) for which we have found a remarkable trypanocidal activity, we have designed and synthesized novel benzo[h][1,6]naphthyridines, pyrrolo[3,2-c]quinolines, azepino[3,2-c]quinolines, and pyrano[3,2-c]quinolines through 2–4-step sequences featuring an initial multicomponent Povarov reaction as the key step. To assess the therapeutic potential of the novel compounds, we have evaluated their in vitro activity against T. brucei, T. cruzi, and Leishmania infantum, as well as their brain permeability, which is of specific interest for the treatment of late-stage HAT. To assess their potential toxicity, we have determined their cytotoxicity against rat myoblast L6 cells and their AChE inhibitory activity. Several tricyclic heterofused quinoline derivatives were found to display an interesting multi-trypanosomatid profile, with one-digit micromolar potencies against two of these parasites and two-digit micromolar potency against the other. Pyranoquinoline 39, which displays IC50 values of 1.5 μM, 6.1 μM and 29.2 μM against T. brucei, L. infantum and T. cruzi, respectively, brain permeability, better drug-like properties (lower lipophilicity and molecular weight and higher CNS MPO desirability score) than hit 1, and the lowest AChE inhibitory activity of the series (IC50 > 30 μM), emerges as an interesting multi-trypanosomatid lead, amenable to further optimization particularly in terms of its selectivity index over mammalian cells. Novel classes of tricyclic heterofused quinolines have been synthesized. Their 2–4-step syntheses involve a multicomponent Povarov reaction as the key step. Some compounds exhibit single digit micromolar potencies against 2 trypanosomatids. All compounds with multi-trypanosomatid activity can cross the blood–brain barrier. Most compounds with multi-trypanosomatid activity have drug like properties.
Collapse
Affiliation(s)
- Ornella Di Pietro
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | | | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Diana Berenguer
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Elisabet Viayna
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Anna Lanzoni
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Irene Sola
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Helena Sayago
- Barcelona Science Park, Baldiri Reixac, 10-12, E-08028, Barcelona, Spain
| | - Cristina Riera
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Roser Fisa
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - M Victòria Clos
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Belén Pérez
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Rodolfo Lavilla
- Barcelona Science Park, Baldiri Reixac, 10-12, E-08028, Barcelona, Spain; Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| |
Collapse
|
20
|
In Vitro and In Vivo Investigation of the Inhibition of Trypanosoma brucei Cell Growth by Lipophilic Bisphosphonates. Antimicrob Agents Chemother 2015; 59:7530-9. [PMID: 26392508 DOI: 10.1128/aac.01873-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022] Open
Abstract
We report the results of a screen of a library of 925 potential prenyl synthase inhibitors against Trypanosoma brucei farnesyl diphosphate synthase (TbFPPS) and against T. brucei, the causative agent of human African trypanosomiasis. The most potent compounds were lipophilic analogs of the bone resorption drug zoledronate, some of which had submicromolar to low micromolar activity against bloodstream form T. brucei and selectivity indices of up to ∼ 300. We evaluated the effects of two such inhibitors on survival and parasitemia in a T. brucei mouse model of infection and found that survival increased by up to 16 days. We also investigated the binding of three lipophilic bisphosphonates to an expressed TbFPPS using crystallography and investigated the thermodynamics of binding using isothermal titration calorimetry.
Collapse
|
21
|
Rahmani R, Ban K, Jones AJ, Ferrins L, Ganame D, Sykes ML, Avery VM, White KL, Ryan E, Kaiser M, Charman SA, Baell JB. 6-Arylpyrazine-2-carboxamides: A New Core for Trypanosoma brucei Inhibitors. J Med Chem 2015; 58:6753-65. [PMID: 26247439 DOI: 10.1021/acs.jmedchem.5b00438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
From a whole-organism high throughput screen of approximately 87000 compounds against Trypanosoma brucei brucei, we recently identified eight new unique compounds for the treatment of human African trypanosomiasis. In an effort to understand the structure-activity relationships around these compounds, we report for the first time our results on a new class of trypanocides, the pyrazine carboxamides. Attracted by the low molecular weight (270 g·mol(-1)) of our starting hit (9) and its potency (0.49 μM), the SAR around the core was explored, leading to compounds having an EC50 as low as 25 nM against T. b. brucei and being more than 1500 times less toxic against mammalian L6 and HEK293 cell lines. The most potent compounds in the series were exquisitely selective for T. brucei over a panel of other protozoan parasites, showing an excellent correlation with the human infective parasite Trypanosoma brucei rhodesiense, the most potent compound (65) having an EC50 of 24 nM. The compounds are highly drug-like and are able to penetrate the CNS, their only limitation currently being their rate of microsomal metabolism. To that effect, efforts to identify potential metabolites of selected compounds are also reported.
Collapse
Affiliation(s)
- Raphaël Rahmani
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kung Ban
- The Walter and Eliza Hall Institute , 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Amy J Jones
- Eskitis Institute for Drug Discovery, Griffith University , Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Lori Ferrins
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Danny Ganame
- The Walter and Eliza Hall Institute , 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Melissa L Sykes
- Eskitis Institute for Drug Discovery, Griffith University , Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Vicky M Avery
- Eskitis Institute for Drug Discovery, Griffith University , Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Eileen Ryan
- Centre for Drug Candidate Optimisation, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Marcel Kaiser
- University of Basel , Petersplatz 1, Basel, 4003, Switzerland.,Swiss Tropical and Public Health Institute , Socinstrasse 57, Basel, 4051, Switzerland
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
22
|
Predicting antiprotozoal activity of benzyl phenyl ether diamine derivatives through QSAR multi-target and molecular topology. Mol Divers 2015; 19:357-66. [DOI: 10.1007/s11030-015-9575-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/22/2015] [Indexed: 01/12/2023]
|
23
|
Sola I, Castellà S, Viayna E, Galdeano C, Taylor MC, Gbedema SY, Pérez B, Clos MV, Jones DC, Fairlamb AH, Wright CW, Kelly JM, Muñoz-Torrero D. Synthesis, biological profiling and mechanistic studies of 4-aminoquinoline-based heterodimeric compounds with dual trypanocidal-antiplasmodial activity. Bioorg Med Chem 2015; 23:5156-67. [PMID: 25678015 DOI: 10.1016/j.bmc.2015.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/13/2022]
Abstract
Dual submicromolar trypanocidal-antiplasmodial compounds have been identified by screening and chemical synthesis of 4-aminoquinoline-based heterodimeric compounds of three different structural classes. In Trypanosoma brucei, inhibition of the enzyme trypanothione reductase seems to be involved in the potent trypanocidal activity of these heterodimers, although it is probably not the main biological target. Regarding antiplasmodial activity, the heterodimers seem to share the mode of action of the antimalarial drug chloroquine, which involves inhibition of the haem detoxification process. Interestingly, all of these heterodimers display good brain permeabilities, thereby being potentially useful for late stage human African trypanosomiasis. Future optimization of these compounds should focus mainly on decreasing cytotoxicity and acetylcholinesterase inhibitory activity.
Collapse
Affiliation(s)
- Irene Sola
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Sílvia Castellà
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Elisabet Viayna
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Carles Galdeano
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Stephen Y Gbedema
- Bradford School of Pharmacy, University of Bradford, West Yorkshire BD7 1 DP, United Kingdom; Department of Pharmaceutics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Belén Pérez
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - M Victòria Clos
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Deuan C Jones
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Alan H Fairlamb
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Colin W Wright
- Bradford School of Pharmacy, University of Bradford, West Yorkshire BD7 1 DP, United Kingdom
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
24
|
Sola I, Artigas A, Taylor MC, Gbedema SY, Pérez B, Clos MV, Wright CW, Kelly JM, Muñoz-Torrero D. Synthesis and antiprotozoal activity of oligomethylene- and p-phenylene-bis(methylene)-linked bis(+)-huprines. Bioorg Med Chem Lett 2014; 24:5435-8. [DOI: 10.1016/j.bmcl.2014.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/04/2014] [Accepted: 10/08/2014] [Indexed: 01/24/2023]
|
25
|
Haubrich BA, Singha UK, Miller MB, Nes CR, Anyatonwu H, Lecordier L, Patkar P, Leaver DJ, Villalta F, Vanhollebeke B, Chaudhuri M, Nes WD. Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth. J Lipid Res 2014; 56:331-41. [PMID: 25424002 DOI: 10.1194/jlr.m054643] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ergosterol biosynthesis and homeostasis in the parasitic protozoan Trypanosoma brucei was analyzed by RNAi silencing and inhibition of sterol C24β-methyltransferase (TbSMT) and sterol 14α-demethylase [TbSDM (TbCYP51)] to explore the functions of sterols in T. brucei growth. Inhibition of the amount or activity of these enzymes depletes ergosterol from cells at <6 fg/cell for procyclic form (PCF) cells or <0.01 fg/cell for bloodstream form (BSF) cells and reduces infectivity in a mouse model of infection. Silencing of TbSMT expression by RNAi in PCF or BSF in combination with 25-azalanosterol (AZA) inhibited parasite growth and this inhibition was restored completely by adding synergistic cholesterol (7.8 μM from lipid-depleted media) with small amounts of ergosterol (1.2 μM) to the medium. These observations are consistent with the proposed requirement for ergosterol as a signaling factor to spark cell proliferation while imported cholesterol or the endogenously formed cholesta-5,7,24-trienol act as bulk membrane components. To test the potential chemotherapeutic importance of disrupting ergosterol biosynthesis using pairs of mechanism-based inhibitors that block two enzymes in the post-squalene segment, parasites were treated with AZA and itraconazole at 1 μM each (ED50 values) resulting in parasite death. Taken together, our results demonstrate that the ergosterol pathway is a prime drug target for intervention in T. brucei infection.
Collapse
Affiliation(s)
- Brad A Haubrich
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Matthew B Miller
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Craigen R Nes
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Hosanna Anyatonwu
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Laurence Lecordier
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, B6041 Gosselies, Belgium
| | - Presheet Patkar
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - David J Leaver
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409 Institute of Chemistry and Biomedical Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Fernando Villalta
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Benoit Vanhollebeke
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, B6041 Gosselies, Belgium
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - W David Nes
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
26
|
Mackey TK, Liang BA, Cuomo R, Hafen R, Brouwer KC, Lee DE. Emerging and reemerging neglected tropical diseases: a review of key characteristics, risk factors, and the policy and innovation environment. Clin Microbiol Rev 2014; 27:949-79. [PMID: 25278579 PMCID: PMC4187634 DOI: 10.1128/cmr.00045-14] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In global health, critical challenges have arisen from infectious diseases, including the emergence and reemergence of old and new infectious diseases. Emergence and reemergence are accelerated by rapid human development, including numerous changes in demographics, populations, and the environment. This has also led to zoonoses in the changing human-animal ecosystem, which are impacted by a growing globalized society where pathogens do not recognize geopolitical borders. Within this context, neglected tropical infectious diseases have historically lacked adequate attention in international public health efforts, leading to insufficient prevention and treatment options. This subset of 17 infectious tropical diseases disproportionately impacts the world's poorest, represents a significant and underappreciated global disease burden, and is a major barrier to development efforts to alleviate poverty and improve human health. Neglected tropical diseases that are also categorized as emerging or reemerging infectious diseases are an even more serious threat and have not been adequately examined or discussed in terms of their unique risk characteristics. This review sets out to identify emerging and reemerging neglected tropical diseases and explore the policy and innovation environment that could hamper or enable control efforts. Through this examination, we hope to raise awareness and guide potential approaches to addressing this global health concern.
Collapse
Affiliation(s)
- Tim K Mackey
- Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California, USA Division of Global Public Health, University of California, San Diego, Department of Medicine, San Diego, California, USA
| | - Bryan A Liang
- Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California, USA
| | - Raphael Cuomo
- Joint Doctoral Program in Global Public Health, University of California, San Diego, and San Diego State University, San Diego, California, USA
| | - Ryan Hafen
- Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California, USA Internal Medicine, University of California, San Diego, School of Medicine, San Diego, California, USA
| | - Kimberly C Brouwer
- Division of Global Public Health, University of California, San Diego, Department of Medicine, San Diego, California, USA
| | - Daniel E Lee
- Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California, USA Pediatrics Department, University of California, San Diego, School of Medicine, San Diego, California, USA
| |
Collapse
|
27
|
Ferrins L, Gazdik M, Rahmani R, Varghese S, Sykes ML, Jones AJ, Avery VM, White KL, Ryan E, Charman SA, Kaiser M, Bergström CAS, Baell JB. Pyridyl Benzamides as a Novel Class of Potent Inhibitors for the Kinetoplastid Trypanosoma brucei. J Med Chem 2014; 57:6393-402. [DOI: 10.1021/jm500191u] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Michelle Gazdik
- Department
of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | | | - Swapna Varghese
- Department
of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Melissa L. Sykes
- Eskitis
Institute
for Drug Discovery, Griffith University, Brisbane Innovation Park, Don Young
Road, Nathan, Queensland 4111, Australia
| | - Amy J. Jones
- Eskitis
Institute
for Drug Discovery, Griffith University, Brisbane Innovation Park, Don Young
Road, Nathan, Queensland 4111, Australia
| | - Vicky M. Avery
- Eskitis
Institute
for Drug Discovery, Griffith University, Brisbane Innovation Park, Don Young
Road, Nathan, Queensland 4111, Australia
| | | | | | | | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, 4051, Switzerland
- University of Basel, Petersplatz
1, Basel, 4003, Switzerland
| | - Christel A. S. Bergström
- Department
of Pharmacy, Uppsala University, Biomedical Center P.O. Box 580, SE-751
23 Uppsala, Sweden
| | - Jonathan B. Baell
- The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
28
|
|