1
|
Temerdashev AZ, Dmitrieva EV. Methods for the Determination of Selective Androgen Receptor Modulators. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820070187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Androgen-Regulated microRNAs (AndroMiRs) as Novel Players in Adipogenesis. Int J Mol Sci 2019; 20:ijms20225767. [PMID: 31744106 PMCID: PMC6888160 DOI: 10.3390/ijms20225767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The development, homeostasis, or increase of the adipose tissue is driven by the induction of the adipogenic differentiation (adipogenesis) of undifferentiated mesenchymal stem cells (MSCs). Adipogenesis can be inhibited by androgen stimulation of these MSCs resulting in the transcription initiation or repression of androgen receptor (AR) regulated genes. AR not only regulates the transcription of protein-coding genes but also the transcription of several non-coding microRNAs involved in the posttranscriptional gene regulation (herein designated as AndroMiRs). As microRNAs are largely involved in differentiation processes such as adipogenesis, the involvement of AndroMiRs in the androgen-mediated inhibition of adipogenesis is likely, however, not yet intensively studied. In this review, existing knowledge about adipogenesis-related microRNAs and AndroMiRs is summarized, and putative cross-links are drawn, which are still prone to experimental validation.
Collapse
|
3
|
Simitsidellis I, Esnal-Zuffiaure A, Kelepouri O, O’Flaherty E, Gibson DA, Saunders PTK. Selective androgen receptor modulators (SARMs) have specific impacts on the mouse uterus. J Endocrinol 2019; 242:227-239. [PMID: 31319382 PMCID: PMC6690265 DOI: 10.1530/joe-19-0153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022]
Abstract
Selective androgen receptor modulators (SARMs) have been proposed as therapeutics for women suffering from breast cancer, muscle wasting or urinary incontinence. The androgen receptor (AR) is expressed in the uterus but the impact of SARMs on the function of this organ is unknown. We used a mouse model to compare the impact of SARMs (GTx-007/Andarine®, GTx-024/Enobosarm®), Danazol (a synthetic androstane steroid) and dihydrotestosterone (DHT) on tissue architecture, cell proliferation and gene expression. Ovariectomised mice were treated daily for 7 days with compound or vehicle control (VC). Uterine morphometric characteristics were quantified using high-throughput image analysis (StrataQuest; TissueGnostics), protein and gene expression were evaluated by immunohistochemistry and RT-qPCR, respectively. Treatment with GTx-024, Danazol or DHT induced significant increases in body weight, uterine weight and the surface area of the endometrial stromal and epithelial compartments compared to VC. Treatment with GTx-007 had no impact on these parameters. GTx-024, Danazol and DHT all significantly increased the percentage of Ki67-positive cells in the stroma, but only GTx-024 had an impact on epithelial cell proliferation. GTx-007 significantly increased uterine expression of Wnt4 and Wnt7a, whereas GTx-024 and Danazol decreased their expression. In summary, the impact of GTx-024 and Danazol on uterine cells mirrored that of DHT, whereas GTx-007 had minimal impact on the tested parameters. This study has identified endpoints that have revealed differences in the effects of SARMs on uterine tissue and provides a template for preclinical studies comparing the impact of compounds targeting the AR on endometrial function.
Collapse
Affiliation(s)
- Ioannis Simitsidellis
- Centre for Inflammation Research, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - Arantza Esnal-Zuffiaure
- Centre for Inflammation Research, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - Olympia Kelepouri
- Centre for Inflammation Research, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - Elisabeth O’Flaherty
- Centre for Inflammation Research, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - Douglas A Gibson
- Centre for Inflammation Research, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - Philippa T K Saunders
- Centre for Inflammation Research, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
- Correspondence should be addressed to P T K Saunders:
| |
Collapse
|
4
|
Snow O, Lallous N, Singh K, Lack N, Rennie P, Cherkasov A. Androgen receptor plasticity and its implications for prostate cancer therapy. Cancer Treat Rev 2019; 81:101871. [PMID: 31698174 DOI: 10.1016/j.ctrv.2019.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Acquired resistance to a drug treatment is a common problem across many cancers including prostate cancer (PCa) - one of the major factors for male mortality. The androgen receptor (AR) continues to be the main therapeutic PCa target and despite the success of modern targeted therapies such as enzalutamide, resistance to these drugs eventually develops. The AR has found many ways to adapt to treatments including overexpression and production of functional, constitutively active splice variants. However, of particular importance are point mutations in the ligand binding domain of the protein that convert anti-androgens into potent AR agonists. This mechanism appears to be especially prevalent with the AR in spite of some distant similarities to other hormone nuclear receptors. Despite the AR being one of the most studied and attended targets in cancer, those gain-of-function mutations in the receptor remain a significant challenge for the development of PCa therapies. This drives the need to fully characterize such mutations and to consistently screen PCa patients for their occurrence to prevent adverse reactions to anti-androgen drugs. Novel treatments should also be developed to overcome this resistance mechanism and more attention should be given to the possibility of similar occurrences in other cancers.
Collapse
Affiliation(s)
- Oliver Snow
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada; School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, BC, Canada
| | - Nada Lallous
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada
| | - Kriti Singh
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada
| | - Nathan Lack
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada
| | - Paul Rennie
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak St, Vancouver V6H 3Z6, BC, Canada.
| |
Collapse
|
5
|
Dart DA, Kandil S, Tommasini-Ghelfi S, Serrano de Almeida G, Bevan CL, Jiang W, Westwell AD. Novel Trifluoromethylated Enobosarm Analogues with Potent Antiandrogenic Activity In Vitro and Tissue Selectivity In Vivo. Mol Cancer Ther 2018; 17:1846-1858. [PMID: 29895558 DOI: 10.1158/1535-7163.mct-18-0037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/10/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
Abstract
Prostate cancer often develops antiandrogen resistance, possibly via androgen receptor (AR) mutations, which change antagonists to agonists. Novel therapies with increased anticancer activity, while overcoming current drug resistance are urgently needed. Enobosarm has anabolic effects on muscle and bone while having no effect on the prostate. Here, we describe the activity of novel chemically modified enobosarm analogues. The rational addition of bis-trifluoromethyl groups into ring B of enobosarm, profoundly modified their activity, pharmacokinetic and tissue distribution profiles. These chemical structural modifications resulted in an improved AR binding affinity-by increasing the molecular occupational volume near helix 12 of AR. In vitro, the analogues SK33 and SK51 showed very potent antiandrogenic activity, monitored using LNCaP/AR-Luciferase cells where growth, PSA and luciferase activity were used as AR activity measurements. These compounds were 10-fold more potent than bicalutamide and 100-fold more potent than enobosarm within the LNCaP model. These compounds were also active in LNCaP/BicR cells with acquired bicalutamide resistance. In vivo, using the AR-Luc reporter mice, these drugs showed potent AR inhibitory activity in the prostate and other AR-expressing tissues, e.g., testes, seminal vesicles, and brain. These compounds do not inhibit AR activity in the skeletal muscle, and spleen, thus indicating a selective tissue inhibitory profile. These compounds were also active in vivo in the Pb-Pten deletion model. SK33 and SK51 have significantly different and enhanced activity profiles compared with enobosarm and are ideal candidates for further development for prostate cancer therapy with potentially fewer side effects. Mol Cancer Ther; 17(9); 1846-58. ©2018 AACR.
Collapse
Affiliation(s)
- D Alwyn Dart
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom. .,Androgen Signaling Laboratory, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Sahar Kandil
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Serena Tommasini-Ghelfi
- Androgen Signaling Laboratory, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Gilberto Serrano de Almeida
- Androgen Signaling Laboratory, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Charlotte L Bevan
- Androgen Signaling Laboratory, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
6
|
Kristina Parr M, Müller-Schöll A. Pharmacology of doping agents—mechanisms promoting muscle hypertrophy. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.2.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Perera L, Li Y, Coons LA, Houtman R, van Beuningen R, Goodwin B, Auerbach SS, Teng CT. Binding of bisphenol A, bisphenol AF, and bisphenol S on the androgen receptor: Coregulator recruitment and stimulation of potential interaction sites. Toxicol In Vitro 2017; 44:287-302. [PMID: 28751236 DOI: 10.1016/j.tiv.2017.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/20/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
Bisphenol A (BPA), bisphenol AF (BPAF), and bisphenol S (BPS) are well known endocrine disruptors. Previous in vitro studies showed that these compounds antagonize androgen receptor (AR) transcriptional activity; however, the mechanisms of action are unclear. In the present study, we investigated interactions of coregulator peptides with BPA, BPAF, or BPS at the AR complexes using Micro Array for Real-time Coregulator Nuclear Receptor Interaction (MARCoNI) assays and assessed the binding of these compounds on AR by molecular dynamics (MD) simulations. The set of coregulator peptides that are recruited by BPA-bound AR, either positively/or negatively, are different from those recruited by the agonist R1881-bound AR. Therefore, the data indicates that BPA shows no similarities to R1881 and suggests that it may recruit other coregulators to the AR complex. BPAF-bound AR recruits about 70-80% of the same coregulator peptides as BPA-bound AR. Meanwhile, BPS-bound AR interacts with only few peptides compared to BPA or BPAF-bound AR. MD results show that multiple binding sites with varying binding affinities are available on AR for BPA, BPAF, and BPS, indicating the availability of modified binding surfaces on AR for coregulator interactions. These findings help explain some of the distinct AR-related toxicities observed with bisphenol chemicals and raise concern for the use of substitutes for BPA in commercial products.
Collapse
Affiliation(s)
- Lalith Perera
- Genome Integrity and Structural Biology Laboratory, United States
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, DIR, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Laurel A Coons
- Reproductive and Developmental Biology Laboratory, DIR, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Rene Houtman
- PamGene International B.V., Wolvenhoek 10, NL-5211 HH 's-Hertogenboch, The Netherlands
| | - Rinie van Beuningen
- PamGene International B.V., Wolvenhoek 10, NL-5211 HH 's-Hertogenboch, The Netherlands
| | - Bonnie Goodwin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, United States
| | - Scott S Auerbach
- Biomolecular Screening Branch, DNTP, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Christina T Teng
- Biomolecular Screening Branch, DNTP, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
8
|
Kandil S, Westwell AD, McGuigan C. 7-Substituted umbelliferone derivatives as androgen receptor antagonists for the potential treatment of prostate and breast cancer. Bioorg Med Chem Lett 2016; 26:2000-4. [PMID: 26965862 DOI: 10.1016/j.bmcl.2016.02.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 01/12/2023]
Abstract
The clinically used androgen receptor (AR) antagonists (bicalutamide, flutamide and nilutamide) bind with low affinity to AR and can induce escape mechanisms. Furthermore, under AR gene amplification or mutation conditions they demonstrate agonist activity and fail to inhibit AR, causing relapse into castration resistant prostate cancer (CRPC). Discovery of new scaffolds distinct from the 4-cyano/nitro-3-(trifluoromethyl)phenyl group common to currently used antiandrogens is urgently needed to avoid cross-resistance with these compounds. In this study, a series of twenty-nine 7-substituted umbelliferone derivatives was prepared and their antiproliferative activities were evaluated. The most active compound 7a demonstrated submicromolar inhibitory activity in the human prostate cancer cell line (22Rv1); IC50=0.93 μM which represents a 50 fold improvement over the clinical antiandrogen bicalutamide (IC50=46 μM) and a more than 30 fold improvement over enzalutamide (IC50=32 μM). Interestingly, this compound showed even better activity against the human breast cancer cell line (MCF-7); IC50=0.47 μM. Molecular modelling studies provided a plausible theoretical explanation for our findings.
Collapse
Affiliation(s)
- Sahar Kandil
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, Wales, United Kingdom.
| | - Andrew D Westwell
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, Wales, United Kingdom
| | - Christopher McGuigan
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, Wales, United Kingdom
| |
Collapse
|
9
|
Sugawara T, Lejeune P, Köhr S, Neuhaus R, Faus H, Gelato KA, Busemann M, Cleve A, Lücking U, von Nussbaum F, Brands M, Mumberg D, Jung K, Stephan C, Haendler B. BAY 1024767 blocks androgen receptor mutants found in castration-resistant prostate cancer patients. Oncotarget 2016; 7:6015-28. [PMID: 26760770 PMCID: PMC4868737 DOI: 10.18632/oncotarget.6864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/24/2015] [Indexed: 11/25/2022] Open
Abstract
Androgen receptor (AR) mutations arise in patients developing resistance to hormone deprivation therapies. Here we describe BAY 1024767, a thiohydantoin derivative with strong antagonistic activity against nine AR variants with mutations located in the AR ligand-binding domain (LBD), and against wild-type AR. Antagonism was maintained, though reduced, at increased androgen levels. Anti-tumor efficacy was evidenced in vivo in the KuCaP-1 prostate cancer model which bears the W741C bicalutamide resistance mutation and in the syngeneic prostate cancer rat model Dunning R3327-G. The prevalence of six selected AR mutations was determined in plasma DNA originating from 100 resistant patients and found to be at least 12%. Altogether the results show BAY 1024767 to be a strong antagonist for several AR mutants linked to therapy resistance, which opens the door for next-generation compounds that can benefit patients based on their mutation profile.
Collapse
Affiliation(s)
| | | | - Silke Köhr
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | | | | | | | | | - Arwed Cleve
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | | | | | | | | | - Klaus Jung
- Berlin Institute of Urologic Research, Berlin, Germany
- Department of Urology, Charité University Hospital, Berlin, Germany
| | - Carsten Stephan
- Berlin Institute of Urologic Research, Berlin, Germany
- Department of Urology, Charité University Hospital, Berlin, Germany
| | | |
Collapse
|
10
|
Caloric restriction and exercise "mimetics'': Ready for prime time? Pharmacol Res 2015; 103:158-66. [PMID: 26658171 DOI: 10.1016/j.phrs.2015.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022]
Abstract
Exercise and diet are powerful interventions to prevent and ameliorate various pathologies. The development of pharmacological agents that confer exercise- or caloric restriction-like phenotypic effects is thus an appealing therapeutic strategy in diseases or even when used as life-style and longevity drugs. Such so-called exercise or caloric restriction "mimetics" have so far mostly been described in pre-clinical, experimental settings with limited translation into humans. Interestingly, many of these compounds activate related signaling pathways, most often postulated to act on the common downstream effector peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in skeletal muscle. In this review, resveratrol and other exercise- and caloric restriction "mimetics" are discussed with a special focus on feasibility, chances and limitations of using such compounds in patients as well as in healthy individuals.
Collapse
|
11
|
Pihlajamaa P, Sahu B, Jänne OA. Determinants of Receptor- and Tissue-Specific Actions in Androgen Signaling. Endocr Rev 2015; 36:357-84. [PMID: 26052734 DOI: 10.1210/er.2015-1034] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The physiological androgens testosterone and 5α-dihydrotestosterone regulate the development and maintenance of primary and secondary male sexual characteristics through binding to the androgen receptor (AR), a ligand-dependent transcription factor. In addition, a number of nonreproductive tissues of both genders are subject to androgen regulation. AR is also a central target in the treatment of prostate cancer. A large number of studies over the last decade have characterized many regulatory aspects of the AR pathway, such as androgen-dependent transcription programs, AR cistromes, and coregulatory proteins, mostly in cultured cells of prostate cancer origin. Moreover, recent work has revealed the presence of pioneer/licensing factors and chromatin modifications that are important to guide receptor recruitment onto appropriate chromatin loci in cell lines and in tissues under physiological conditions. Despite these advances, current knowledge related to the mechanisms responsible for receptor- and tissue-specific actions of androgens is still relatively limited. Here, we review topics that pertain to these specificity issues at different levels, both in cultured cells and tissues in vivo, with a particular emphasis on the nature of the steroid, the response element sequence, the AR cistromes, pioneer/licensing factors, and coregulatory proteins. We conclude that liganded AR and its DNA-response elements are required but are not sufficient for establishment of tissue-specific transcription programs in vivo, and that AR-selective actions over other steroid receptors rely on relaxed rather than increased stringency of cis-elements on chromatin.
Collapse
Affiliation(s)
- Päivi Pihlajamaa
- Department of Physiology (P.P., B.S., O.A.J.), and Research Programs Unit, Genome-Scale Biology (P.P., B.S.), Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Biswajyoti Sahu
- Department of Physiology (P.P., B.S., O.A.J.), and Research Programs Unit, Genome-Scale Biology (P.P., B.S.), Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Olli A Jänne
- Department of Physiology (P.P., B.S., O.A.J.), and Research Programs Unit, Genome-Scale Biology (P.P., B.S.), Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
12
|
Ullrich T, Sasmal S, Boorgu V, Pasagadi S, Cheera S, Rajagopalan S, Bhumireddy A, Shashikumar D, Chelur S, Belliappa C, Pandit C, Krishnamurthy N, Mukherjee S, Ramanathan A, Ghadiyaram C, Ramachandra M, Santos PG, Lagu B, Bock MG, Perrone MH, Weiler S, Keller H. 3-Alkoxy-pyrrolo[1,2-b]pyrazolines as Selective Androgen Receptor Modulators with Ideal Physicochemical Properties for Transdermal Administration. J Med Chem 2014; 57:7396-411. [DOI: 10.1021/jm5009049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Sanjita Sasmal
- Aurigene Discovery
Technologies Ltd, Bollaram Road, Miyapur, Hyderabad 500 049, India
| | - Venkatesham Boorgu
- Aurigene Discovery
Technologies Ltd, Bollaram Road, Miyapur, Hyderabad 500 049, India
| | - Srinivasu Pasagadi
- Aurigene Discovery
Technologies Ltd, Bollaram Road, Miyapur, Hyderabad 500 049, India
| | - Srisailam Cheera
- Aurigene Discovery
Technologies Ltd, Bollaram Road, Miyapur, Hyderabad 500 049, India
| | - Sujatha Rajagopalan
- Aurigene Discovery
Technologies Ltd, 39-40, KIADB Industrial
Area, Electronic City Phase II, Hosur Road, Bangalore 560 100, India
| | - Archana Bhumireddy
- Aurigene Discovery
Technologies Ltd, 39-40, KIADB Industrial
Area, Electronic City Phase II, Hosur Road, Bangalore 560 100, India
| | - Dhanya Shashikumar
- Aurigene Discovery
Technologies Ltd, Bollaram Road, Miyapur, Hyderabad 500 049, India
| | - Shekar Chelur
- Aurigene Discovery
Technologies Ltd, 39-40, KIADB Industrial
Area, Electronic City Phase II, Hosur Road, Bangalore 560 100, India
| | - Charamanna Belliappa
- Aurigene Discovery
Technologies Ltd, 39-40, KIADB Industrial
Area, Electronic City Phase II, Hosur Road, Bangalore 560 100, India
| | - Chetan Pandit
- Aurigene Discovery
Technologies Ltd, 39-40, KIADB Industrial
Area, Electronic City Phase II, Hosur Road, Bangalore 560 100, India
| | - Narasimharao Krishnamurthy
- Aurigene Discovery
Technologies Ltd, 39-40, KIADB Industrial
Area, Electronic City Phase II, Hosur Road, Bangalore 560 100, India
| | - Subhendu Mukherjee
- Aurigene Discovery
Technologies Ltd, 39-40, KIADB Industrial
Area, Electronic City Phase II, Hosur Road, Bangalore 560 100, India
| | - Anuradha Ramanathan
- Aurigene Discovery
Technologies Ltd, 39-40, KIADB Industrial
Area, Electronic City Phase II, Hosur Road, Bangalore 560 100, India
| | - Chakshusmathi Ghadiyaram
- Aurigene Discovery
Technologies Ltd, 39-40, KIADB Industrial
Area, Electronic City Phase II, Hosur Road, Bangalore 560 100, India
| | - Murali Ramachandra
- Aurigene Discovery
Technologies Ltd, 39-40, KIADB Industrial
Area, Electronic City Phase II, Hosur Road, Bangalore 560 100, India
| | - Paulo G. Santos
- Technical
Research
and Development, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Bharat Lagu
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge Massachusetts 02139, United States
| | - Mark G. Bock
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge Massachusetts 02139, United States
| | - Mark H. Perrone
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge Massachusetts 02139, United States
| | | | | |
Collapse
|