1
|
Bai J, Li Y, Cai L. Clinical implications of forkhead box M1, cyclooxygenase-2 , and glucose-regulated protein 78 in breast invasive ductal carcinoma. World J Clin Cases 2023; 11:7284-7293. [PMID: 37969442 PMCID: PMC10643068 DOI: 10.12998/wjcc.v11.i30.7284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Breast infiltrating ductal carcinoma (BIDC) represents the largest heterotypic tumor group, and an in-depth understanding of the pathogenesis of BIDC is key to improving its prognosis. AIM To analyze the expression profiles and clinical implications of forkhead box M1 (FOXM1), cyclooxygenase-2 (COX-2), and glucose-regulated protein 78 (GRP78) in BIDC. METHODS A total of 65 BIDC patients and 70 healthy controls who presented to our hospital between August 2019 and May 2021 were selected for analysis. The peripheral blood FOXM1, COX-2, and GRP78 levels in both groups were measured and the association between their expression profiles in BIDC was examined. Additionally, we investigated the diagnostic value of FOXM1, COX-2, and GRP78 in patients with BIDC and their correlations with clinicopathological features. Furthermore, BIDC patients were followed for 1 year to identify factors influencing patient prognosis. RESULTS The levels of FOXM1, COX-2, and GRP78 were significantly higher in BIDC patients compared to healthy controls (P < 0.05), and a positive correlation was observed among them (P < 0.05). Receiver operating characteristic analysis demonstrated that FOXM1, COX-2, and GRP78 had excellent diagnostic value in predicting the occurrence of BIDC (P < 0.05). Subsequently, we found significant differences in FOXM1, COX-2, and GRP78 levels among patients with different histological grades and metastasis statuses (with vs without) (P < 0.05). Cox analysis revealed that FOXM1, COX-2, GRP78, increased histological grade, and the presence of tumor metastasis were independent risk factors for prognostic death in BIDC (P < 0.001). CONCLUSION FOXM1, COX-2, and GRP78 exhibit abnormally high expression in BIDC, promoting malignant tumor development and closely correlating with prognosis. These findings hold significant research implications for the future diagnosis and treatment of BIDC.
Collapse
Affiliation(s)
- Jie Bai
- Department of Clinical Laboratory, Joint Logistics Support Unit 940 Hospital, Lanzhou 730030, Gansu Province, China
| | - Ying Li
- Department of Breast Surgery, The Fourth Hospital of Shijiazhuang, Shijiazhuang 050032, Hebei Province, China
| | - Li Cai
- Department of Pathology, Huai’an Maternal and Child Health Care Center, Huai’an 223002, Jiangsu Province, China
| |
Collapse
|
2
|
Bai Y, Wang W, Cheng Y, Yang Y. Research progress on the GRP78 gene in the diagnosis, treatment and immunity of cervical cancer. Eur J Med Res 2023; 28:447. [PMID: 37858217 PMCID: PMC10588224 DOI: 10.1186/s40001-023-01241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/22/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND GRP78 is a molecular chaperone protein in the endoplasmic reticulum that is involved in protein assembly and quality control, and it participates in ER stress regulation of endoplasmic reticulum stress pathways. Studies have confirmed that GRP78 gene is highly expressed in a variety of tumors and is involved in different biological functions. PURPOSE The present review highlights the involvement of the GRP78 gene in regulating the development of cervical cancer by promoting the proliferation and invasion of cervical cancer cells as well as by inhibiting apoptosis and promoting the Warburg effect. High expression of GRP78 is positively correlated with chemotherapy resistance in cervical cancer. GRP78 plays an anticancer role in cervical cancer by regulating autophagy and apoptosis. Mediated immune CD8 + T cells regulate tumor cell immunity and play a role in the application of the HPV vaccine. CONCLUSIONS GRP78 plays a multifunctional role in cervical cancer and has important therapeutic and diagnostic value.
Collapse
Affiliation(s)
- Yingying Bai
- Department of Gynecology and obstetrics, Tangdu Hospital, Air Force Medical University, 569Xinsi Road, Baqiao District, Xian, 710038 China
| | - Wenhua Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yuemei Cheng
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yongxiu Yang
- Department of Gynecology and obstetrics, Tangdu Hospital, Air Force Medical University, 569Xinsi Road, Baqiao District, Xian, 710038 China
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, Gansu People’s Republic of China
- No.1, Dong gang West Road, Cheng guan District, Lanzhou, Gansu People’s Republic of China
| |
Collapse
|
3
|
Elgohary S, Eissa RA, El Tayebi HM. Thymoquinone, a Novel Multi-Strike Inhibitor of Pro-Tumorigenic Breast Cancer (BC) Markers: CALR, NLRP3 Pathway and sPD-L1 in PBMCs of HR+ and TNBC Patients. Int J Mol Sci 2023; 24:14254. [PMID: 37762557 PMCID: PMC10531892 DOI: 10.3390/ijms241814254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is not only a mass of malignant cells but also a systemic inflammatory disease. BC pro-tumorigenic inflammation has been shown to promote immune evasion and provoke BC progression. The NOD-like receptor (NLR) family pyrin domain-containing protein 3 (NLRP3) inflammasome is activated when pattern recognition receptors (PRRs) sense danger signals such as calreticulin (CALR) from damaged/dying cells, leading to the secretion of interleukin-1β (IL-1β). CALR is a novel BC biological marker, and its high levels are associated with advanced tumors. NLRP3 expression is strongly correlated with an elevated proliferative index Ki67, BC progression, metastasis, and recurrence in patients with hormone receptor-positive (HR+) and triple-negative BC (TNBC). Tumor-associated macrophages (TAMs) secrete high levels of IL-1β promoting endocrine resistance in HR+ BC. Recently, an immunosuppressive soluble form of programmed death ligand 1 (sPD-L1) has been identified as a novel prognostic biomarker in triple-negative breast cancer (TNBC) patients. Interestingly, IL-1β induces sPD-L1 release. BC Patients with elevated IL-1β and sPD-L1 levels show significantly short progression-free survival. For the first time, this study aims to investigate the inhibitory impact of thymoquinone (TQ) on CALR, the NLRP3 pathway and sPD-L1 in HR+ and TNBC. Blood samples were collected from 45 patients with BC. The effect of differing TQ concentrations for different durations on the expression of CALR, NLRP3 complex components and IL-1β as well as the protein levels of sPD-L1 and IL-1β were investigated in the peripheral blood mononuclear cells (PBMCs) and TAMs of TNBC and HR+ BC patients, respectively. The findings showed that TQ significantly downregulated the expression of CALR, NLRP3 components and IL-1β together with the protein levels of secreted IL-1β and sPD-L1. The current findings demonstrated novel immunomodulatory effects of TQ, highlighting its potential role not only as an excellent adjuvant but also as a possible immunotherapeutic agent in HR+ and TNBC patients.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Reda A. Eissa
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| |
Collapse
|
4
|
Abu-Mahfouz A, Ali M, Elfiky A. Anti-breast cancer drugs targeting cell-surface glucose-regulated protein 78: a drug repositioning in silico study. J Biomol Struct Dyn 2023; 41:7794-7808. [PMID: 36129131 DOI: 10.1080/07391102.2022.2125076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
Abstract
Breast cancer (BC) is prevalent worldwide and is a leading cause of death among women. However, cell-surface glucose-regulated protein 78 (cs-GRP78) is overexpressed in several types of cancer and during pathogen infections. This study examines two well-known BC drugs approved by the FDA as BC treatments to GRP78. The first type consists of inhibitors of cyclin-based kinases 4/6, including abemaciclib, palbociclib, ribociclib, and dinaciclib. In addition, tunicamycin, and doxorubicin, which are among the most effective anticancer drugs for early and late-stage BC, are tested against GRP78. As (-)-epiGallocatechin gallate inhibits GRP78, it is also being evaluated (used as positive control). Thus, using molecular dynamics simulation approaches, this study aims to examine the advantages of targeting GRP78, which represents a promising cancer therapy regime. In light of recent advances in computational drug response prediction models, this study aimed to examine the benefits of GRP78 targeting, which represents a promising cancer therapy regime, by utilizing combined molecular docking and molecular dynamics simulation approaches. The simulated protein (50 ns) was docked with the drugs, then a second round of dynamics simulation was performed for 100 ns. After that, the binding free energies were calculated from 30 to 100 ns for each complex during the simulation period. These findings demonstrate the efficacy of abemaciclib, ribociclib, and tunicamycin in binding to the nucleotide-binding domain of the GRP78, paving the way for elucidating the mode of interactions between these drugs and cancer (and other stressed) cells that overexpress GRP78.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alaa Abu-Mahfouz
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Maha Ali
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Abdo Elfiky
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Zou Y, Shi H, Lin H, Wang X, Wang G, Gao Y, Yi F, Yin Y, Li D, Li M. The abrogation of GRP78 sensitizes liver cancer cells to lysionotin by enhancing ER stress-mediated pro-apoptotic pathway. Cell Stress Chaperones 2023; 28:409-422. [PMID: 37326827 PMCID: PMC10352479 DOI: 10.1007/s12192-023-01358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Glucose-regulated protein 78 (GRP78) is frequently and highly expressed in various human malignancies and protects cancer cells against apoptosis induced by multifarious stresses, particularly endoplasmic reticulum stress (ER stress). The inhibition of GRP78 expression or activity could enhance apoptosis induced by anti-tumor drugs or compounds. Herein, we will evaluate the efficacy of lysionotin in the treatment of human liver cancer as well as the molecular mechanism. Moreover, we will examine whether inhibition of GRP78 enhanced the sensitivity of hepatocellular carcinoma cells to lysionotin. We found that lysionotin significantly suppressed proliferation and induced apoptosis of liver cancer cells. TEM showed that lysionotin-treated liver cancer cells showed an extensively distended and dilated endoplasmic reticulum lumen. Meanwhile, the levels of the ER stress hallmark GRP78 and UPR hallmarks (e.g., IRE1α and CHOP) were significantly increased in response to lysionotin treatment in liver cancer cells. Moreover, the reactive oxygen species (ROS) scavenger NAC and caspase-3 inhibitor Ac-DEVD-CHO visibly attenuated the induction of GRP78 and attenuated the decrease in cell viability induced by lysionotin. More importantly, the knockdown of GRP78 expression by siRNAs or treatment with EGCG, both induced remarkable increase in lysionotin-induced PARP and pro-caspase-3 cleavage and JNK phosphorylation. In addition, knockdown of GRP78 expression by siRNA or suppression GRP78 activity by EGCG both significantly improved the effectiveness of lysionotin. These data indicated that pro-survival GRP78 induction may contribute to lysionotin resistance. The combination of EGCG and lysionotin is suggested to represent a novel approach in cancer chemo-prevention and therapeutics.
Collapse
Affiliation(s)
- Ying Zou
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Hewen Shi
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Haiyan Lin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xiaoxue Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Guoli Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yijia Gao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Fan Yi
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
- Collaborative innovation platform for modernization and industrialization of regional characteristic traditional Chinese medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
- Collaborative innovation platform for modernization and industrialization of regional characteristic traditional Chinese medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Semina SE, Pal P, Kansara NS, Huggins RJ, Alarid ET, Greene GL, Frasor J. Selective pressure of endocrine therapy activates the integrated stress response through NFκB signaling in a subpopulation of ER positive breast cancer cells. Breast Cancer Res 2022; 24:19. [PMID: 35264224 PMCID: PMC8908626 DOI: 10.1186/s13058-022-01515-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/25/2022] [Indexed: 12/23/2022] Open
Abstract
Background While estrogen receptor (ER) positive breast tumors generally respond well to endocrine therapy (ET), up to 40% of patients will experience relapse, either while on endocrine therapy or after ET is completed. We previously demonstrated that the selective pressure of tamoxifen activates the NFκB pathway in ER + patient tumors, breast cancer cell lines, and breast cancer xenograft tumors, and that this activation allows for survival of a subpopulation of NFκB + cells that contribute to cell regrowth and tumor relapse after ET withdrawal. However, the mechanisms contributing to the expansion of an NFκB + cell population on ET are unknown. Methods Here, we utilized single-cell RNA sequencing and bioinformatics approaches to characterize the NFκB + cell population and its clinical relevance. Follow-up studies were conducted to validate our findings and assess the function of the integrated stress response pathway in breast cancer cell lines and patient-derived models. Results We found that the NFκB + population that arises in response to ET is a preexisting population is enriched under the selective pressure of ET. Based on the preexisting NFκB + cell population, we developed a gene signature and found that it is predictive of tumor relapse when expressed in primary ER + tumors and is retained in metastatic cell populations. Moreover, we identified that the integrated stress response (ISR), as indicated by increased phosphorylation of eIF2α, occurs in response to ET and contributes to clonogenic growth under the selective pressure of ET. Conclusions Taken together, our findings suggest that a cell population with active NFκB and ISR signaling can survive and expand under the selective pressure of ET and that targeting this population may be a viable therapeutic strategy to improve patient outcome by eliminating cells that survive ET. Understanding the mechanisms by which breast cancer cells survive the selective pressure of ET may improve relapse rates and overall outcome for patients with ER + breast tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01515-1.
Collapse
Affiliation(s)
- Svetlana E Semina
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, E202 MSB, MC901, Chicago, IL, 60612, USA
| | - Purab Pal
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, E202 MSB, MC901, Chicago, IL, 60612, USA
| | - Nidhi S Kansara
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, E202 MSB, MC901, Chicago, IL, 60612, USA
| | - Rosemary J Huggins
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - Elaine T Alarid
- Department of Oncology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, E202 MSB, MC901, Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Kabakov AE, Gabai VL. HSP70s in Breast Cancer: Promoters of Tumorigenesis and Potential Targets/Tools for Therapy. Cells 2021; 10:cells10123446. [PMID: 34943954 PMCID: PMC8700403 DOI: 10.3390/cells10123446] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The high frequency of breast cancer worldwide and the high mortality among women with this malignancy are a serious challenge for modern medicine. A deeper understanding of the mechanisms of carcinogenesis and emergence of metastatic, therapy-resistant breast cancers would help development of novel approaches to better treatment of this disease. The review is dedicated to the role of members of the heat shock protein 70 subfamily (HSP70s or HSPA), mainly inducible HSP70, glucose-regulated protein 78 (GRP78 or HSPA5) and GRP75 (HSPA9 or mortalin), in the development and pathogenesis of breast cancer. Various HSP70-mediated cellular mechanisms and pathways which contribute to the oncogenic transformation of mammary gland epithelium are reviewed, as well as their role in the development of human breast carcinomas with invasive, metastatic traits along with the resistance to host immunity and conventional therapeutics. Additionally, intracellular and cell surface HSP70s are considered as potential targets for therapy or sensitization of breast cancer. We also discuss a clinical implication of Hsp70s and approaches to targeting breast cancer with gene vectors or nanoparticles downregulating HSP70s, natural or synthetic (small molecule) inhibitors of HSP70s, HSP70-binding antibodies, HSP70-derived peptides, and HSP70-based vaccines.
Collapse
Affiliation(s)
- Alexander E. Kabakov
- Department of Radiation Biochemistry, A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva 4, 249036 Obninsk, Russia;
| | - Vladimir L. Gabai
- CureLab Oncology Inc., Dedham, MA 02026, USA
- Correspondence: ; Tel.: +1-617-319-7314
| |
Collapse
|
8
|
Ramirez MU, Hernandez SR, Soto-Pantoja DR, Cook KL. Endoplasmic Reticulum Stress Pathway, the Unfolded Protein Response, Modulates Immune Function in the Tumor Microenvironment to Impact Tumor Progression and Therapeutic Response. Int J Mol Sci 2019; 21:ijms21010169. [PMID: 31881743 PMCID: PMC6981480 DOI: 10.3390/ijms21010169] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023] Open
Abstract
Despite advances in cancer therapy, several persistent issues remain. These include cancer recurrence, effective targeting of aggressive or therapy-resistant cancers, and selective treatments for transformed cells. This review evaluates the current findings and highlights the potential of targeting the unfolded protein response to treat cancer. The unfolded protein response, an evolutionarily conserved pathway in all eukaryotes, is initiated in response to misfolded proteins accumulating within the lumen of the endoplasmic reticulum. This pathway is initially cytoprotective, allowing cells to survive stressful events; however, prolonged activation of the unfolded protein response also activates apoptotic responses. This balance is key in successful mammalian immune response and inducing cell death in malignant cells. We discuss how the unfolded protein response affects cancer progression, survival, and immune response to cancer cells. The literature shows that targeting the unfolded protein response as a monotherapy or in combination with chemotherapy or immunotherapies increases the efficacy of these drugs; however, systemic unfolded protein response targeting may yield deleterious effects on immune cell function and should be taken into consideration. The material in this review shows the promise of both approaches, each of which merits further research.
Collapse
Affiliation(s)
- Manuel U. Ramirez
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | - David R. Soto-Pantoja
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston Salem, NC 27157, USA
| | - Katherine L. Cook
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston Salem, NC 27157, USA
- Correspondence: ; Tel.: +01-336-716-2234
| |
Collapse
|
9
|
Sisinni L, Pietrafesa M, Lepore S, Maddalena F, Condelli V, Esposito F, Landriscina M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Breast Cancer: The Balance between Apoptosis and Autophagy and Its Role in Drug Resistance. Int J Mol Sci 2019; 20:ijms20040857. [PMID: 30781465 PMCID: PMC6412864 DOI: 10.3390/ijms20040857] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
The unfolded protein response (UPR) is a stress response activated by the accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER) and its uncontrolled activation is mechanistically responsible for several human pathologies, including metabolic, neurodegenerative, and inflammatory diseases, and cancer. Indeed, ER stress and the downstream UPR activation lead to changes in the levels and activities of key regulators of cell survival and autophagy and this is physiologically finalized to restore metabolic homeostasis with the integration of pro-death or/and pro-survival signals. By contrast, the chronic activation of UPR in cancer cells is widely considered a mechanism of tumor progression. In this review, we focus on the relationship between ER stress, apoptosis, and autophagy in human breast cancer and the interplay between the activation of UPR and resistance to anticancer therapies with the aim to disclose novel therapeutic scenarios. The hypothesis that autophagy and UPR may provide novel molecular targets in human malignancies is discussed.
Collapse
Affiliation(s)
- Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, 80131 Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy.
| |
Collapse
|
10
|
Suppression of stress induction of the 78-kilodalton glucose regulated protein (GRP78) in cancer by IT-139, an anti-tumor ruthenium small molecule inhibitor. Oncotarget 2018; 9:29698-29714. [PMID: 30038714 PMCID: PMC6049868 DOI: 10.18632/oncotarget.25679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
In many cancers, combination therapy regimens are successfully improving response and survival rates, but the challenges of toxicity remain. GRP78, the master regulator of the unfolded protein response, is emerging as a target that is upregulated in tumors, specifically following treatment, and one that impacts tumor cell survival and disease recurrence. Here, we show IT-139, an antitumor small molecule inhibitor, suppresses induction of GRP78 from different types of endoplasmic reticulum (ER) stress in a variety of cancer cell lines, including those that have acquired therapeutic resistance, but not in the non-cancer cells being tested. We further determined that IT-139 treatment exacerbates ER stress while at the same time suppresses GRP78 induction at the transcriptional level. Our studies revealed a differential effect of IT-139 on chaperone protein family expression at multiple levels in different cancer cell lines. In xenograft studies, IT-139 decreased BRAF inhibitor upregulation of GRP78 expression in the tumor, while having minimal effect on GRP78 expression in the adjacent normal cells. The preferential decrease in GRP78 levels in tumor cells over normal cells, supported by the manageable safety profile seen in the Phase 1 clinical trial, reinforce the value IT-139 brings to combination therapies as it continues its clinical development.
Collapse
|
11
|
Wang XQ, Aka JA, Li T, Xu D, Doillon CJ, Lin SX. Inhibition of 17beta-hydroxysteroid dehydrogenase type 7 modulates breast cancer protein profile and enhances apoptosis by down-regulating GRP78. J Steroid Biochem Mol Biol 2017. [PMID: 28645527 DOI: 10.1016/j.jsbmb.2017.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
17beta-hydroxysteroid dehydrogenase type 7 (17β-HSD7) promotes breast cancer cell growth via dual-catalytic activity by modulating estradiol and DHT. Here, we clarified the expression pattern of 17β-HSD7 in postmenopausal luminal A type breast cancer with The Cancer Genome Atlas (TCGA) cohort. The impact of 17β-HSD7 inhibition on the proteome of MCF-7 cells was investigated and on cell apoptosis was revealed. MCF-7 cells were treated with an efficient inhibitor of 17β-HSD7 (INH7) or with vehicle, and a differential proteomics study was performed using two-dimensional (2D) gel electrophoresis followed by mass spectrometry and ingenuity pathway analysis (IPA). Cell apoptosis was analyzed by flow cytometry, followed by reverse transcription quantitative real-time PCR (RT-qPCR) and Western blot to investigate the expression of apoptosis-related genes. Our data showed 17β-HSD7 is amplified in primary and progressive breast cancer, inhibition of 17β-HSD7 in MCF-7 cells modulated 104 proteins primarily involved in cell death/survival, cell growth and DNA processing. The expression of 78kDa glucose-regulated protein (GRP78) and anti-apoptosis factor Bcl-2 were significantly suppressed via 17β-HSD7 inhibition with INH7, consequently induced MCF-7 cell apoptosis. However, INH7 treatment of T47D, another widely used epithelial ER+ breast cancer cell line, led to an up-regulation of GRP78 expression, resulting in a limited increase in apoptosis. These results suggest cell-specific effects of INH7 in the breast cancer, which is interesting for further study. An combinatory effect on apoptosis by INH7 and Letrozole (aromatase inhibitor) was further demonstrated in MCF-7. Down-regulation of GRP78 via 17β-HSD7 inhibition enhances cell apoptosis in response to Letrozole. This study highlights GRP78 as a key regulator related to 17β-HSD7 inhibition and effect. Taken together, results from the present study suggest a hypothesis that inhibition of 17β-HSD7 would be a complementary strategy to Letrozole by suppression of GRP78 in ER+ breast cancer. However, from a research perspective, further studies have to be carried out with more breast cancer cell lines as well as in vivo model to assess the efficacy of inhibitor combination.
Collapse
Affiliation(s)
- Xiao-Qiang Wang
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), and Faculty of Medicine, Laval University, Quebec City, Quebec, G1 V 4G2, Canada; Center of Excellent for Molecular Diagnostics, Department of Pathology, Peking University Third Hospital, Beijing, 100091, China
| | - Juliette A Aka
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), and Faculty of Medicine, Laval University, Quebec City, Quebec, G1 V 4G2, Canada
| | - Tang Li
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), and Faculty of Medicine, Laval University, Quebec City, Quebec, G1 V 4G2, Canada
| | - Dan Xu
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), and Faculty of Medicine, Laval University, Quebec City, Quebec, G1 V 4G2, Canada
| | - Charles J Doillon
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), and Faculty of Medicine, Laval University, Quebec City, Quebec, G1 V 4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), and Faculty of Medicine, Laval University, Quebec City, Quebec, G1 V 4G2, Canada.
| |
Collapse
|
12
|
Huang Y, Guo XX, Han B, Zhang XM, An S, Zhang XY, Yang Y, Liu Y, Hao Q, Xu TR. Decoding the full picture of Raf1 function based on its interacting proteins. Oncotarget 2017; 8:68329-68337. [PMID: 28978120 PMCID: PMC5620260 DOI: 10.18632/oncotarget.19353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/18/2017] [Indexed: 01/10/2023] Open
Abstract
Raf1 is a member of the Raf kinase family and regulates many fundamental cell processes, including proliferation, differentiation, apoptosis, motility, and metabolism. However, the functions of Raf1 have not been completely elucidated. To better understand Raf1 function, we investigated the proteins that interacted with Raf1. We identified 198 Raf1 interacting proteins and our data suggested that Raf1 may regulate cell processes through these interactions. These interaction partners were involved in all ten hallmarks of cancer, suggesting that Raf1 is involved in different aspects of carcinogenesis. In addition, we showed that Raf1 interacting proteins were enriched in six signaling pathways and many human diseases. The interaction partners identified in this study may represent oncological candidates for future investigations into Raf1 function. Our findings have provided an overview of Raf1 function from a systems biology perspective.
Collapse
Affiliation(s)
- Ying Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Bing Han
- Institute of Biomedical Sciences, Minhang Hospital, Fudan University, Shanghai, China
| | - Xu-Min Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xin-Yu Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qian Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
Xu D, Aka JA, Wang R, Lin SX. 17beta-hydroxysteroid dehydrogenase type 5 is negatively correlated to apoptosis inhibitor GRP78 and tumor-secreted protein PGK1, and modulates breast cancer cell viability and proliferation. J Steroid Biochem Mol Biol 2017; 171:270-280. [PMID: 28457968 DOI: 10.1016/j.jsbmb.2017.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/15/2017] [Accepted: 04/19/2017] [Indexed: 01/14/2023]
Abstract
17beta-hydroxysteroid dehydrogenase type 5 (17β-HSD5) is an important enzyme associated with sex steroid metabolism in hormone-dependent cancer. However, reports on its expression and its prognostic value in breast cancer are inconsistent. Here, we demonstrate the impact of 17β-HSD5 expression modulation on the proteome of estrogen receptor-positive (ER+) breast cancer cells. RNA interference technique (siRNA) was used to knock down 17β-HSD5 gene expression in the ER+ breast cancer cell line MCF-7 and the proteome of the 17β-HSD5-knockdown cells was compared to that of MCF-7 cells using two-dimensional (2-D) gel electrophoresis followed by mass spectrometry analysis. Ingenuity pathway analysis (IPA) was additionally used to assess functional enrichment analyses of the proteomic dataset, including protein network and canonical pathways. Our proteomic analysis revealed only four differentially expressed protein spots (fold change > 2, p<0.05) between the two cell lines. The four spots were up-regulated in 17β-HSD5-knockdown MCF-7 cells, and comprised 21 proteins involved in two networks and in functions that include apoptosis inhibition, regulation of cell growth and differentiation, signal transduction and tumor metastasis. Among the proteins are nucleoside diphosphate kinase A (NME1), 78kDa glucose-regulated protein (GRP78) and phosphoglycerate kinase 1 (PGK1). We also showed that expression of 17β-HSD5 and that of the apoptosis inhibitor GRP78 are strongly but negatively correlated. Consistent with their opposite regulation, GRP78 knockdown decreased MCF-7 cell viability whereas 17β-HSD5 knockdown or inhibition increased cell viability and proliferation. Besides, IPA analysis revealed that ubiquitination pathway is significantly affected by 17β-HSD5 knockdown. Furthermore, IPA predicted the proto-oncogene c-Myc as an upstream regulator linked to the tumor-secreted protein PGK1. The latter is over-expressed in invasive ductal breast carcinoma as compared with normal breast tissue and its expression increased following 17β-HSD5 knockdown. Our present results indicate a 17β-HSD5 role in down-regulating breast cancer development. We thus propose that 17β-HSD5 may not be a potent target for breast cancer treatment but its low expression could represent a poor prognosis factor.
Collapse
Affiliation(s)
- Dan Xu
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Quebec City, Québec G1V 4G2, Canada
| | - Juliette A Aka
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Quebec City, Québec G1V 4G2, Canada
| | - Ruixuan Wang
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Quebec City, Québec G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL) and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Quebec City, Québec G1V 4G2, Canada.
| |
Collapse
|
14
|
Wu S, Zhang H, Luo M, Chen K, Yang W, Bai L, Huang A, Wang D. High Level Soluble Expression and ATPase Characterization of Human Heat Shock Protein GRP78. BIOCHEMISTRY. BIOKHIMIIA 2017; 82:186-191. [PMID: 28320302 DOI: 10.1134/s0006297917020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Human GRP78 has been shown to promote cancer progression and is regarded as a novel target for anticancer drugs. However, generation of recombinant full-length GRP78 remains challenging. This report demonstrates that E. coli autoinduction is an excellent method for the preparation of active recombinant GRP78 protein. The final yield was approximately 50 mg/liter of autoinduction culture. Gel-filtration experiments confirmed that the chaperone is a monomer. The purified human GRP78 catalyzed the conversion of ATP to ADP without requiring metal ions as cofactors. Three mutants, T38A, T229A, and S300A, exhibited much lower activity than wild-type GRP78, indicating that the active sites of the ATPase are located at the negatively charged cavity. Three mutants in the negatively charged cavity region dramatically reduced GRP78 activity, further confirming the region as the site of ATPase activity.
Collapse
Affiliation(s)
- Shuang Wu
- Chongqing Medical University, Key Laboratory of Molecular Biology of Infectious Disease, YiXueYuanlu-1, Chongqing, 400016, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee AS, Brandhorst S, Rangel DF, Navarrete G, Cohen P, Longo VD, Chen J, Groshen S, Morgan TE, Dubeau L. Effects of Prolonged GRP78 Haploinsufficiency on Organ Homeostasis, Behavior, Cancer and Chemotoxic Resistance in Aged Mice. Sci Rep 2017; 7:40919. [PMID: 28145503 PMCID: PMC5286507 DOI: 10.1038/srep40919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023] Open
Abstract
GRP78, a multifunctional protein with potent cytoprotective properties, is an emerging therapeutic target to combat cancer development, progression and drug resistance. The biological consequences of prolonged reduction in expression of this essential chaperone which so far has been studied primarily in young mice, was investigated in older mice, as older individuals are likely to be important recipients of anti-GRP78 therapy. We followed cohorts of Grp78+/+ and Grp78+/- male and female mice up to 2 years of age in three different genetic backgrounds and characterized them with respect to body weight, organ integrity, behavioral and memory performance, cancer, inflammation and chemotoxic response. Our results reveal that body weight, organ development and integrity were not impaired in aged Grp78+/- mice. No significant effect on cancer incidence and inflammation was observed in aging mice. Interestingly, our studies detected some subtle differential trends between the WT and Grp78+/- mice in some test parameters dependent on gender and genetic background. Our studies provide the first evidence that GRP78 haploinsufficiency for up to 2 years of age has no major deleterious effect in rodents of different genetic background, supporting the merit of anti-GRP78 drugs in treatment of cancer and other diseases affecting the elderly.
Collapse
Affiliation(s)
- Amy S. Lee
- Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, United States
| | - Sebastian Brandhorst
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, United States
| | - Daisy F. Rangel
- Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, United States
| | - Gerardo Navarrete
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, United States
| | - Pinchas Cohen
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, United States
| | - Valter D. Longo
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, United States
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology & Department of Ophthalmology, University of Southern California Keck School of Medicine, 1501 San Pablo Street, Los Angeles, CA 90033, United States
| | - Susan Groshen
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Todd E. Morgan
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, United States
| | - Louis Dubeau
- Department of Pathology, University of Southern California Keck School of Medicine, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, United States
| |
Collapse
|
16
|
Frazier N, Payne A, Dillon C, Subrahmanyam N, Ghandehari H. Enhanced efficacy of combination heat shock targeted polymer therapeutics with high intensity focused ultrasound. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:1235-1243. [PMID: 27913213 DOI: 10.1016/j.nano.2016.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 11/17/2022]
Abstract
Combination of polymer therapeutics and hyperthermia has been shown to enhance accumulation in selectively heated tumor tissue. The additional use of heat shock (HS)-targeting towards tumor tissues can further enhance accumulation and retention, and improve therapeutic outcomes. In this work, high intensity focused ultrasound (HIFU) was used to generate hyperthermia in prostate tumor tissue. Upregulation of the cell surface HS receptor glucose regulated protein 78 kDa (GRP78) was observed after treatment with HIFU hyperthermia which was then targeted by specific HS-targeting peptides. We used the peptide sequence WDLAWMFRLPVG attached to the side chains of water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers containing docetaxel (DOC) conjugated via a lysosomally degradable linker. It was shown that HIFU-mediated HS-targeted copolymer-DOC conjugates improved treatment efficacy in a murine prostate tumor xenograft model. These results show that the use of HIFU hyperthermia in combination with HS-targeted polymer-drug conjugates has potential to improve therapeutic outcomes in prostate cancer treatment.
Collapse
Affiliation(s)
- Nick Frazier
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Christopher Dillon
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Nithya Subrahmanyam
- Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Towards a transcriptome-based theranostic platform for unfavorable breast cancer phenotypes. Proc Natl Acad Sci U S A 2016; 113:12780-12785. [PMID: 27791177 DOI: 10.1073/pnas.1615288113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inflammatory breast carcinoma (IBC) is one of the most lethal forms of human breast cancer, and effective treatment for IBC is an unmet clinical need in contemporary oncology. Tumor-targeted theranostic approaches are emerging in precision medicine, but only a few specific biomarkers are available. Here we report up-regulation of the 78-kDa glucose-regulated protein (GRP78) in two independent discovery and validation sets of specimens derived from IBC patients, suggesting translational promise for clinical applications. We show that a GRP78-binding motif displayed on either bacteriophage or adeno-associated virus/phage (AAVP) particles or loop-grafted onto a human antibody fragment specifically targets orthotopic IBC and other aggressive breast cancer models in vivo. To evaluate the theranostic value, we used GRP78-targeting AAVP particles to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) transgene, obtaining simultaneous in vivo diagnosis through PET imaging and tumor treatment by selective activation of the prodrug ganciclovir at tumor sites. Translation of this AAVP system is expected simultaneously to image, monitor, and treat the IBC phenotype and possibly other aggressive (e.g., invasive and/or metastatic) subtypes of breast cancer, based on the inducible cell-surface expression of the stress-response chaperone GRP78, and possibily other cell-surface receptors in human tumors.
Collapse
|
18
|
Rajapaksa G, Thomas C, Gustafsson JÅ. Estrogen signaling and unfolded protein response in breast cancer. J Steroid Biochem Mol Biol 2016; 163:45-50. [PMID: 27045680 DOI: 10.1016/j.jsbmb.2016.03.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/11/2016] [Accepted: 03/31/2016] [Indexed: 12/11/2022]
Abstract
Activation of the unfolded protein response (UPR) confers resistance to anti-estrogens and chemotherapeutics in estrogen receptor α (ERα)-positive and triple-negative breast cancers. Among the regulators of the UPR in breast cancer is estrogen signaling. Estrogen regulates major components of the UPR and ER expression is associated with the sensitivity of tumor cells to UPR-regulated apoptosis. Recent studies have confirmed the crosstalk between the ERs and UPR and suggest novel therapeutic strategies that combine targeting of both signaling pathways. These remedies may be more effective in repressing oncogenic adaptive mechanisms and benefit patients with resistant disease.
Collapse
Affiliation(s)
- Gayani Rajapaksa
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Christoforos Thomas
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA.
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA.
| |
Collapse
|
19
|
Cook KL, Soto-Pantoja DR, Clarke PAG, Cruz MI, Zwart A, Wärri A, Hilakivi-Clarke L, Roberts DD, Clarke R. Endoplasmic Reticulum Stress Protein GRP78 Modulates Lipid Metabolism to Control Drug Sensitivity and Antitumor Immunity in Breast Cancer. Cancer Res 2016; 76:5657-5670. [PMID: 27698188 PMCID: PMC5117832 DOI: 10.1158/0008-5472.can-15-2616] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 06/03/2016] [Indexed: 02/07/2023]
Abstract
The unfolded protein response is an endoplasmic reticulum stress pathway mediated by the protein chaperone glucose regulated-protein 78 (GRP78). Metabolic analysis of breast cancer cells shows that GRP78 silencing increases the intracellular concentrations of essential polyunsaturated fats, including linoleic acid. Accumulation of fatty acids is due to an inhibition of mitochondrial fatty acid transport, resulting in a reduction of fatty acid oxidation. These data suggest a novel role of GRP78-mediating cellular metabolism. We validated the effect of GRP78-regulated metabolite changes by treating tumor-bearing mice with tamoxifen and/or linoleic acid. Tumors treated with linoleic acid plus tamoxifen exhibited reduced tumor area and tumor weight. Inhibition of either GRP78 or linoleic acid treatment increased MCP-1 serum levels, decreased CD47 expression, and increased macrophage infiltration, suggesting a novel role for GRP78 in regulating innate immunity. GRP78 control of fatty acid oxidation may represent a new homeostatic function for GRP78. Cancer Res; 76(19); 5657-70. ©2016 AACR.
Collapse
Affiliation(s)
- Katherine L Cook
- Department of Surgery and Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina. Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.
| | - David R Soto-Pantoja
- Department of Surgery and Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Pamela A G Clarke
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - M Idalia Cruz
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Alan Zwart
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Anni Wärri
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Leena Hilakivi-Clarke
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - David D Roberts
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Robert Clarke
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
20
|
Abstract
Over 230,000 new cases of invasive breast cancer are diagnosed annually within the USA. Recurrent breast cancer remains a mostly incurable disease with drug resistance, tumor latency and distant metastases driving breast tumor recurrence and morbidity. Understanding drug resistance is a critical component of combating breast cancer. Recently, the protein chaperone GRP78 and the unfolded protein response were implicated as drivers of drug resistance. Preclinical studies show inhibiting GRP78 can reverse drug resistance. Furthermore, drugs developed to target GRP78 show clinical promise in several ongoing clinical trials.
Collapse
|
21
|
Clarke R, Cook KL. Unfolding the Role of Stress Response Signaling in Endocrine Resistant Breast Cancers. Front Oncol 2015; 5:140. [PMID: 26157705 PMCID: PMC4475795 DOI: 10.3389/fonc.2015.00140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/03/2015] [Indexed: 11/24/2022] Open
Abstract
The unfolded protein response (UPR) is an ancient stress response that enables a cell to manage the energetic stress that accompanies protein folding. There has been a significant recent increase in our understanding of the UPR, how it integrates physiological processes within cells, and how this integration can affect cancer cells and cell fate decisions. Recent publications have highlighted the role of UPR signaling components on mediating various cell survival pathways, cellular metabolism and bioenergenics, and autophagy. We address the role of UPR on mediating endocrine therapy resistance and estrogen receptor-positive breast cancer cell survival.
Collapse
Affiliation(s)
- Robert Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center , Washington, DC , USA
| | - Katherine L Cook
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center , Washington, DC , USA
| |
Collapse
|
22
|
Cook KL, Clarke PAG, Parmar J, Hu R, Schwartz-Roberts JL, Abu-Asab M, Wärri A, Baumann WT, Clarke R. Knockdown of estrogen receptor-α induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death. FASEB J 2014; 28:3891-905. [PMID: 24858277 DOI: 10.1096/fj.13-247353] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/12/2014] [Indexed: 01/08/2023]
Abstract
Approximately 70% of all newly diagnosed breast cancers express estrogen receptor (ER)-α. Although inhibiting ER action using targeted therapies such as fulvestrant (ICI) is often effective, later emergence of antiestrogen resistance limits clinical use. We used antiestrogen-sensitive and -resistant cells to determine the effect of antiestrogens/ERα on regulating autophagy and unfolded protein response (UPR) signaling. Knockdown of ERα significantly increased the sensitivity of LCC1 cells (sensitive) and also resensitized LCC9 cells (resistant) to antiestrogen drugs. Interestingly, ERα knockdown, but not ICI, reduced nuclear factor (erythroid-derived 2)-like (NRF)-2 (UPR-induced antioxidant protein) and increased cytosolic kelch-like ECH-associated protein (KEAP)-1 (NRF2 inhibitor), consistent with the observed increase in ROS production. Furthermore, autophagy induction by antiestrogens was prosurvival but did not prevent ERα knockdown-mediated death. We built a novel mathematical model to elucidate the interactions among UPR, autophagy, ER signaling, and ROS regulation of breast cancer cell survival. The experimentally validated mathematical model explains the counterintuitive result that knocking down the main target of ICI (ERα) increased the effectiveness of ICI. Specifically, the model indicated that ERα is no longer present in excess and that the effect on proliferation from further reductions in its level by ICI cannot be compensated for by increased autophagy. The stimulation of signaling that can confer resistance suggests that combining autophagy or UPR inhibitors with antiestrogens would reduce the development of resistance in some breast cancers.
Collapse
Affiliation(s)
- Katherine L Cook
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Pamela A G Clarke
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | | | - Rong Hu
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jessica L Schwartz-Roberts
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Mones Abu-Asab
- Section of Immunopathology and Laboratory of Immunology, National Eye Institute, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Anni Wärri
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - William T Baumann
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA; and
| | - Robert Clarke
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA;
| |
Collapse
|
23
|
Abstract
The glucose-regulated proteins (GRPs) are stress-inducible chaperones that mostly reside in the endoplasmic reticulum or the mitochondria. Recent advances show that the GRPs have functions that are distinct from those of the related heat shock proteins, and they can be actively translocated to other cellular locations and assume novel functions that control signalling, proliferation, invasion, apoptosis, inflammation and immunity. Mouse models further identified their specific roles in development, tumorigenesis, metastasis and angiogenesis. This Review describes their discovery and regulation, as well as their biological functions in cancer. Promising agents that use or target the GRPs are being developed, and their efficacy as anticancer therapeutics is also discussed.
Collapse
Affiliation(s)
- Amy S Lee
- Department of Biochemistry and Molecular Biology, University of Southern California Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Room 5308, Los Angeles, California 900899176, USA
| |
Collapse
|
24
|
Forward: combating resistance: infectious diseases. Future Med Chem 2013; 5:1175-6. [PMID: 23859196 DOI: 10.4155/fmc.13.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
|