1
|
Martinez J, Ingram N, Kapur N, Jayne DG, Beales PA. Vesicle-based formulations for pain treatment: a narrative review. Pain Rep 2024; 9:e1196. [PMID: 39399306 PMCID: PMC11469894 DOI: 10.1097/pr9.0000000000001196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 10/15/2024] Open
Abstract
Pain, a complex and debilitating condition, necessitates innovative therapeutic strategies to alleviate suffering and enhance patients' quality of life. Vesicular systems hold the potential to enhance precision of drug localisation and release, prolong the duration of therapeutic action and mitigate adverse events associated with long-term pharmacotherapy. This review critically assesses the current state-of-the-art in vesicle-based formulations (liposomes, polymersomes, ethosomes, and niosomes) for pain management applications. We highlight formulation engineering strategies used to optimise drug pharmacokinetics, present preclinical findings of experimental delivery systems, and discuss the clinical evidence for the benefits of clinically approved formulations. We present the challenges and outlook for future improvements in long-acting anaesthetic and analgesic formulation development.
Collapse
Affiliation(s)
- Juan Martinez
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Nicola Ingram
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - David G. Jayne
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
- The John Goligher Colorectal Surgery Unit, St. James's University Hospital, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, United Kingdom
| | - Paul A. Beales
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|
2
|
Tiwari C, Khan H, Grewal AK, Dhankhar S, Chauhan S, Dua K, Gupta G, Singh TG. Opiorphin: an endogenous human peptide with intriguing application in diverse range of pathologies. Inflammopharmacology 2024; 32:3037-3056. [PMID: 39164607 DOI: 10.1007/s10787-024-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
Mammalian zinc ectopeptidases have significant functions in deactivating neurological and hormonal peptide signals on the cell surface. The identification of Opiorphin, a physiological inhibitor of zinc ectopeptidases that inactivate enkephalin, has revealed its strong analgesic effects in both chemical and mechanical pain models. Opiorphin achieves this by increasing the transmission of endogenous opioids, which are dependent on the body's own opioid system. The function of opiorphin is closely linked to the rat sialorphin peptide, which inhibits pain perception by enhancing the activity of naturally occurring enkephalinergic pathways that depend on μ- and δ-opioid receptors. Opiorphin is highly intriguing in terms of its physiological implications within the endogenous opioidergic pathways, particularly in its ability to regulate mood-related states and pain perception. Opiorphin can induce antidepressant-like effects by influencing the levels of naturally occurring enkephalin, which are released in response to specific physical and/or psychological stimuli. This effect is achieved through the modulation of delta-opioid receptor-dependent pathways. Furthermore, research has demonstrated that opiorphin's impact on the cardiovascular system is facilitated by the renin-angiotensin system (RAS), sympathetic ganglia, and adrenal medulla, rather than the opioid system. Hence, opiorphin shows great potential as a solitary candidate for the treatment of several illnesses such as neurodegeneration, pain, and mood disorders.
Collapse
Affiliation(s)
- Chanchal Tiwari
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur Grewal
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Sanchit Dhankhar
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Thakur Gurjeet Singh
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Giannaccare G, Vaccaro S, Borselli M, Rossi C, Carnovale Scalzo G, Scalia G, Di Cesare Mannelli L, Ghelardini C, Zerillo L, Polvere I, Vito P, Zotti T, Stilo R, Scorcia V. A Novel Ophthalmic Solution Containing Glicopro ® Complex for the Treatment of Patients with Dry Eye Disease: Results from a Pilot Study. J Clin Med 2024; 13:1447. [PMID: 38592312 PMCID: PMC10932378 DOI: 10.3390/jcm13051447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
(1) Background: Dry eye disease (DED) is a multifactorial ocular surface disease characterized by an imbalance in ocular surface homeostasis, and tear substitutes constitute the first line of treatment. The present study aimed to evaluate the changes in the signs and symptoms of patients with DED treated with a novel tear substitute containing the GlicoPro® complex. (2) Methods: Patients with DED not successfully responding to other tear substitutes were enrolled and treated with a novel ophthalmic solution (two drops four times daily). Patients were examined before starting the study treatment (T0) and after 30 (T1) and 60 (T2) days of treatment by means of Keratograph for the evaluation of the following: (i) tear meniscus height (TMH); (ii) noninvasive Keratograph break-up time (NIKBUT); (iii) bulbar redness; and (iv) infrared meibography. The SANDE questionnaire was administered to assess ocular discomfort symptoms. Analysis of the tear content of proenkephalin and Met/Leu-enkephalin was also performed. (3) Results: At T2, a significant improvement in NIKBUT first, average, and class, TMH, and SANDE score was found. The tear content of proenkephalins was significantly higher at T1, whereas processed active Met/Leu-enkephalins increased at both T1 and T2. (4) Conclusions: Our novel tear substitute based on GlicoPro® resulted in a significant improvement in ocular discomfort symptoms, tear volume, and stability in the patients treated. The increase in active peptides processed in tears may represent the pathophysiological substrate underlying this finding.
Collapse
Affiliation(s)
- Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (S.V.); (M.B.); (C.R.); (G.C.S.); (G.S.); (V.S.)
- Eye Clinic, Department of Surgical Science, University of Cagliari, 09124 Cagliari, Italy
| | - Sabrina Vaccaro
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (S.V.); (M.B.); (C.R.); (G.C.S.); (G.S.); (V.S.)
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (S.V.); (M.B.); (C.R.); (G.C.S.); (G.S.); (V.S.)
| | - Costanza Rossi
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (S.V.); (M.B.); (C.R.); (G.C.S.); (G.S.); (V.S.)
| | - Giovanna Carnovale Scalzo
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (S.V.); (M.B.); (C.R.); (G.C.S.); (G.S.); (V.S.)
| | - Giovanni Scalia
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (S.V.); (M.B.); (C.R.); (G.C.S.); (G.S.); (V.S.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.D.C.M.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.D.C.M.); (C.G.)
| | - Lucrezia Zerillo
- Department of Science and Technologies, University of Sannio, 82100 Benevento, Italy; (L.Z.); (I.P.); (P.V.); (T.Z.); (R.S.)
- Genus Biotech Srls, University of Sannio, 82100 Benevento, Italy
| | - Immacolata Polvere
- Department of Science and Technologies, University of Sannio, 82100 Benevento, Italy; (L.Z.); (I.P.); (P.V.); (T.Z.); (R.S.)
- Genus Biotech Srls, University of Sannio, 82100 Benevento, Italy
| | - Pasquale Vito
- Department of Science and Technologies, University of Sannio, 82100 Benevento, Italy; (L.Z.); (I.P.); (P.V.); (T.Z.); (R.S.)
- Genus Biotech Srls, University of Sannio, 82100 Benevento, Italy
| | - Tiziana Zotti
- Department of Science and Technologies, University of Sannio, 82100 Benevento, Italy; (L.Z.); (I.P.); (P.V.); (T.Z.); (R.S.)
- Genus Biotech Srls, University of Sannio, 82100 Benevento, Italy
| | - Romania Stilo
- Department of Science and Technologies, University of Sannio, 82100 Benevento, Italy; (L.Z.); (I.P.); (P.V.); (T.Z.); (R.S.)
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (S.V.); (M.B.); (C.R.); (G.C.S.); (G.S.); (V.S.)
| |
Collapse
|
4
|
Funes M, Tosso RD, Machado ND, Fernández MA, Garro M, Díaz DD, Hikawczuk VJ, Enriz RD. Antinociceptive effect of cyclic and linear diterpenoids as new atypical agonists of κ-opioid receptors obtained from four species of the Baccharis genus, and vehiculated in nanometric niosomes. Fitoterapia 2023; 169:105622. [PMID: 37524126 DOI: 10.1016/j.fitote.2023.105622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
New natural analgesic compounds that act in KORs are important alternatives for potential therapeutical use in medicine. In this work, we report and compare here the antinociceptive activity displayed by cyclic and linear diterpenes, obtained from the genus Baccharis. The antinociceptive activities determined were relatively strong, in comparison whit morphine. The antinociceptive mechanism of action was made through naloxone administration (a non-selective antagonist of opioid receptors). The more active compounds were vehiculized successfully in niosomes at nanometric scale. The observed antinociceptive activity for Bartemidiolide oxide (BARTO), obtain from Baccharis artemisioides, was greater than Flabeloic acid dimer (DACD), the first compound isolated from Baccharis flabellata that was reported possessing antinociceptive effects. We also conducted docking calculations and molecular dynamics simulations, which suggested that the newly identified diterpenes might share the molecular action mechanism reported for Salvinorin A (SalA). Molecular simulations have allowed us to appreciate some subtle differences between molecular interactions of these ligands stabilizing their respective complexes; such information might be useful for designing and searching for new inhibitors of KORs.
Collapse
Affiliation(s)
- Matías Funes
- Pharmacognosy, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, Av. Ejército de los Andes 950, 5700 San Luis, Argentina; Multidisciplinary Institute for Biological Research (IMIBIO-CONICET), Av. Ejército de los Andes 950, 5700 San Luis, Argentina.
| | - Rodrigo D Tosso
- Multidisciplinary Institute for Biological Research (IMIBIO-CONICET), Av. Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Noelia D Machado
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina; Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA-UNC-CONICET), Avda. Vélez Sársfield 1611, Córdoba X5016GCA, Argentina
| | - Mariana A Fernández
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina; Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - María Garro
- Pharmacognosy, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, Av. Ejército de los Andes 950, 5700 San Luis, Argentina
| | - David Díaz Díaz
- Departamento de Química Orgánica, Universidad de la Laguna, La Laguna, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de la Laguna, La Laguna, Spain; Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, Regensburg 93053, Germany
| | - Virginia Juan Hikawczuk
- Organic Chemistry, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, Av. Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Ricardo D Enriz
- Pharmacognosy, School of Chemistry, Biochemistry, and Pharmacy, National University of San Luis, Av. Ejército de los Andes 950, 5700 San Luis, Argentina; Multidisciplinary Institute for Biological Research (IMIBIO-CONICET), Av. Ejército de los Andes 950, 5700 San Luis, Argentina.
| |
Collapse
|
5
|
Jaquilin P J R, Oluwafemi OS, Thomas S, Oyedeji AO. Recent advances in drug delivery nanocarriers incorporated in temperature-sensitive Pluronic F-127–A critical review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
da Silva A, Lepetre-Mouelhi S, Couvreur P. Micro- and nanocarriers for pain alleviation. Adv Drug Deliv Rev 2022; 187:114359. [PMID: 35654211 DOI: 10.1016/j.addr.2022.114359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022]
Abstract
Acute or chronic pain is a major source of impairment in quality of life and affects a substantial part of the population. To date, pain is alleviated by a limited range of treatments with significant toxicity, increased risk of misuse and inconsistent efficacy, owing, in part, to lack of specificity and/or unfavorable pharmacokinetic properties. Thanks to the unique properties of nanoscaled drug carriers, nanomedicine may enhance drug biodistribution and targeting, thus contributing to improved bioavailability and lower off-target toxicity. After a brief overview of the current situation and the main critical issues regarding pain alleviation, this review will examine the most advanced approaches using nanomedicine of each drug class, from the preclinical stage to approved nanomedicines.
Collapse
|
7
|
Giannaccare G, Ghelardini C, Mancini A, Scorcia V, Di Cesare Mannelli L. New Perspectives in the Pathophysiology and Treatment of Pain in Patients with Dry Eye Disease. J Clin Med 2021; 11:108. [PMID: 35011849 PMCID: PMC8745516 DOI: 10.3390/jcm11010108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ocular discomfort and eye pain are frequently reported by patients with dry eye disease (DED), and their management remains a real therapeutic challenge for the Ophthalmologist. In DED patients, injury at the level of each structure of the ocular surface can determine variable symptoms, ranging from mild ocular discomfort up to an intolerable pain evoked by innocuous stimuli. In refractory cases, the persistence of this harmful signal is able to evoke a mechanism of maladaptive plasticity of the nervous system that leads to increased pain responsiveness. Peripheral and, subsequently, central sensitization cause nociceptor hyperexcitability and persistent pain perception that can culminate in the paradoxical situation of perceiving eye pain even in the absence of ocular surface abnormalities. Effective therapeutic strategies of these cases are challenging, and new options are desirable. Recently, a theoretical novel therapeutic approach concerns enkephalins thanks to the evidence that eye pain sensations are modulated by endogenous opioid peptides (enkephalins, endorphins and dynorphins). In this regard, new topical agents open up a new theoretical scenario in the treatment of ocular discomfort and eye pain in the setting of DED, such as, for example, a multimolecular complex based on proteins and glycosaminoglycans also containing opiorphin that may assist the physiological pain-relieving mechanism of the eye.
Collapse
Affiliation(s)
- Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (A.M.); (V.S.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health–NEUROFARBA–Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (C.G.); (L.D.C.M.)
| | - Alessandra Mancini
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (A.M.); (V.S.)
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (A.M.); (V.S.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health–NEUROFARBA–Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (C.G.); (L.D.C.M.)
| |
Collapse
|
8
|
Drug-Loaded Biocompatible Nanocarriers Embedded in Poloxamer 407 Hydrogels as Therapeutic Formulations. MEDICINES 2018; 6:medicines6010007. [PMID: 30597953 PMCID: PMC6473859 DOI: 10.3390/medicines6010007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023]
Abstract
Hydrogels are three-dimensional networks of hydrophilic polymers able to absorb and retain a considerable amount of water or biological fluid while maintaining their structure. Among these, thermo-sensitive hydrogels, characterized by a temperature-dependent sol–gel transition, have been massively used as drug delivery systems for the controlled release of various bioactives. Poloxamer 407 (P407) is an ABA-type triblock copolymer with a center block of hydrophobic polypropylene oxide (PPO) between two hydrophilic polyethyleneoxide (PEO) lateral chains. Due to its unique thermo-reversible gelation properties, P407 has been widely investigated as a temperature-responsive material. The gelation phenomenon of P407 aqueous solutions is reversible and characterized by a sol–gel transition temperature. The nanoencapsulation of drugs within biocompatible delivery systems dispersed in P407 hydrogels is a strategy used to increase the local residence time of various bioactives at the injection site. In this mini-review, the state of the art of the most important mixed systems made up of colloidal carriers localized within a P407 hydrogel will be provided in order to illustrate the possibility of obtaining a controlled release of the entrapped drugs and an increase in their therapeutic efficacy as a function of the biomaterial used.
Collapse
|
9
|
Giuliano E, Paolino D, Fresta M, Cosco D. Mucosal Applications of Poloxamer 407-Based Hydrogels: An Overview. Pharmaceutics 2018; 10:pharmaceutics10030159. [PMID: 30213143 PMCID: PMC6161217 DOI: 10.3390/pharmaceutics10030159] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/23/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Poloxamer 407, also known by the trademark Pluronic® F127, is a water-soluble, non-ionic triblock copolymer that is made up of a hydrophobic residue of polyoxypropylene (POP) between the two hydrophilic units of polyoxyethylene (POE). Poloxamer 407-based hydrogels exhibit an interesting reversible thermal characteristic. That is, they are liquid at room temperature, but they assume a gel form when administered at body temperature, which makes them attractive candidates as pharmaceutical drug carriers. These systems have been widely investigated in the development of mucoadhesive formulations because they do not irritate the mucosal membranes. Based on these mucoadhesive properties, a simple administration into a specific compartment should maintain the required drug concentration in situ for a prolonged period of time, decreasing the necessary dosages and side effects. Their main limitations are their modest mechanical strength and, notwithstanding their bioadhesive properties, their tendency to succumb to rapid elimination in physiological media. Various technological approaches have been investigated in the attempt to modulate these properties. This review focuses on the application of poloxamer 407-based hydrogels for mucosal drug delivery with particular attention being paid to the latest published works.
Collapse
Affiliation(s)
- Elena Giuliano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Massimo Fresta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Donato Cosco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| |
Collapse
|
10
|
Singh P, Kongara K, Harding D, Ward N, Dukkipati VSR, Johnson C, Chambers P. Comparison of electroencephalographic changes in response to acute electrical and thermal stimuli with the tail flick and hot plate test in rats administered with opiorphin. BMC Neurol 2018; 18:43. [PMID: 29673329 PMCID: PMC5907193 DOI: 10.1186/s12883-018-1047-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/13/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The objective of this study was to compare the changes in the electroencephalogram (EEG) in response to noxious stimuli with tail flick and hot plate responses of rats administered opiorphin. METHODS Female Sprague -Dawley rats (n = 8 per group) randomly received intravenous (IV) injection of morphine (1 mg/kg,) or opiorphin (2 mg/kg,) or saline (0.5 ml,) in each of the three testing methods (EEG, tail flick and hot plate). Each type of test (n = 24 per test) was conducted in different population of rats on separate occasions. The tail flick and hot plate latencies were recorded until 5 min after test drug administration to conscious rats. The EEG was recorded in anaesthetised rats subjected to noxious thermal and electrical stimuli after test drug administration. At the end of 5 min in each of the testing methods rats were administered naloxone subcutaneously (SC) (1 mg/kg) and the test procedure was repeated. RESULTS There was no significant increase in the median frequency and spectral edge frequency (F50 & F95) of EEG, indicators of nociception, of morphine and opiorphin groups after noxious stimulation. Noxious stimuli caused a significant increase in both F50 and F95 of the saline group. An injection of naloxone significantly increased the F50, thus blocking the action of both opiorphin and morphine. There was a significant increase in the tail flick latency after administration of opiorphin and morphine as compared to the baseline values. Rats of morphine group spent significantly longer on the hot plate when compared to those of the opiorphin and saline groups. There was no significant difference in the hot plate latencies of opiorphin and saline groups. CONCLUSION The results of this study suggest that the analgesic effect of opiorphin occurs at the spinal level and it is not as effective as morphine at supraspinal level. It may be due to rapid degradation of opiorphin or limited ability of opiorphin to cross the blood brain barrier or a higher dose of opiorphin is required for its action in the brain. Pharmacokinetic/pharmacodynamics studies along with in vivo penetration of opiorphin in the cerebrospinal fluid are required for further evaluation of opiorphin analgesia.
Collapse
Affiliation(s)
- Preet Singh
- Massey University, Institute of Veterinary, Animal and Biomedical Sciences, Palmerston North, New Zealand.
| | - Kavitha Kongara
- Massey University, Institute of Veterinary, Animal and Biomedical Sciences, Palmerston North, New Zealand
| | - David Harding
- Massey University, Institute of Fundamental Sciences, Palmerston North, New Zealand
| | - Neil Ward
- Massey University, Institute of Veterinary, Animal and Biomedical Sciences, Palmerston North, New Zealand
| | | | - Craig Johnson
- Massey University, Institute of Veterinary, Animal and Biomedical Sciences, Palmerston North, New Zealand
| | - Paul Chambers
- Massey University, Institute of Veterinary, Animal and Biomedical Sciences, Palmerston North, New Zealand
| |
Collapse
|
11
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|