1
|
Lu DY, Lu TR. Drug Sensitivity Testing for Cancer Therapy, Technique Analysis and Trends. Curr Rev Clin Exp Pharmacol 2023; 18:3-11. [PMID: 34515020 DOI: 10.2174/2772432816666210910104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
The techniques and qualities of drug sensitivity testing (DST) for anticancer treatment have grown rapidly in the past two decades worldwide. Much of DST progress came from advanced systems of technical versatility (faster, highly-throughput, highly-sensitive, and smaller in tumor quantity). As the earliest drug selective system, biomedical knowledge and technical advances for DST are mutually supported. More importantly, many pharmacological controversies are resolved by these technical advances. With this technical stride, the clinical landscape of DST entered into a new phase (>500 samples per testing and extremely low quantity of tumor cells). As a forerunner of the drug selection system, DST awaits a new version that can adapt to complicated therapeutic situations and diverse tumor categories in the clinic. By upholding this goal of pathogenic and therapeutic diversity, DST could eventually cure more cancer patients by establishing high-quality drug selection systems. To smoothen DST development, there is a need to increase the understanding of cancer biology, pathology and pharmacology (cancer heterogeneity, plasticity, metastasis and drug resistance) with well-informative parameters before chemotherapy. In this article, medicinal and technical insights into DST are especially highlighted.
Collapse
Affiliation(s)
- Da-Yong Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Ting-Ren Lu
- College of Science, Shanghai University, Shanghai 200444, P.R. China
| |
Collapse
|
2
|
Lu DY, Lu TR, Yarla NS, Xu B. Drug Sensitivity Testing for Cancer Therapy, Key Areas. Rev Recent Clin Trials 2022; 17:291-299. [PMID: 35986532 DOI: 10.2174/1574887117666220819094528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/15/2023]
Abstract
AIMS Cancer is a high-mortality disease (9.6 million deaths in 2018 worldwide). Given various anticancer drugs, drug selection plays a key role in patient survival in clinical trials. METHODS Drug Sensitivity Testing (DST), one of the leading drug selective systems, was widely practiced for therapeutic promotion in the clinic. Notably, DSTs assist in drug selection that benefits drug responses against cancer from 20-22% to 30-35% over the past two decades. The relationship between drug resistance in vitro and drug treatment benefits was associated with different tumor origins and subtypes. Medical theory and underlying DST mechanisms remain poorly understood until now. The study of the clinical scenario, sustainability and financial support for mechanism and technical promotions is indispensable. RESULTS Despite the great technical advance, therapeutic prediction and drug selection by DST needs to be miniature, versatility and cost-effective in the clinic. Multi-parameters and automation of DST should be a future trend. Advanced biomedical knowledge and clinical approaches to translating oncologic profiles into drug selection were the main focuses of DST developments. With a great technical stride, the clinical architecture of the DST platform was entering higher levels (drug response testing at any stage of cancer patients and miniaturization of tumor samples). DISCUSSION The cancer biology and pharmacology for drug selection mutually benefit the clinic. New proposals to reveal more therapeutic information and drug response prediction at genetic, molecular and omics levels should be estimated overall. CONCLUSION By upholding this goal of non-invasive, versatility and automation, DST could save the life of several thousand annually worldwide. In this article, new insights into DST novelty and development are highlighted.
Collapse
Affiliation(s)
- Da-Yong Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, PRC, China
| | - Ting-Ren Lu
- College of Science, Shanghai University, Shanghai 200444, PRC, China
| | | | - Bin Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| |
Collapse
|
3
|
Boonyawat B, Monsereenusorn C, Photia A, Lertvivatpong N, Kaewchaivijit V, Jindatanmanusan P, Rujkijyanont P. ITPA:c.94C>A and NUDT15:c.415C>T Polymorphisms and Their Relation to Mercaptopurine-Related Myelotoxicity in Childhood Leukemia in Thailand. APPLICATION OF CLINICAL GENETICS 2021; 14:341-351. [PMID: 34349542 PMCID: PMC8326781 DOI: 10.2147/tacg.s318912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Background Mercaptopurine is a key agent in childhood leukemia treatment. Genetic polymorphism in the genes involving thiopurine metabolisms is related to 6-MP related toxicity. Objective This study aimed to determine the prevalence of ITPA:c.94C>A and NUDT15:c.415C>T polymorphisms among Thai children diagnosed with leukemia and their association with mercaptopurine-related myelotoxicity. Methods Patients and survivors with a diagnosis of leukemia treated with mercaptopurine-containing chemotherapy regimens were enrolled. Clinical data and laboratory parameters during treatment as well as ITPA:c.94C>A and NUDT15:c.415C>T genotypes were analyzed. Results In all, 99 patients with acute leukemia or survivors were enrolled in the study. The prevalences of ITPA:c.94C>A, NUDT15:c.415C>T, and co-occurrence of ITPA:c.94C>A and NUDT15:c.415C>T polymorphisms were 34, 17, and 4%, respectively. Numbers of absolute neutrophil count (ANC) and platelet count significantly decreased among patients carrying NUDT15:c.415C>T compared with NUDT15 wild type patients with p-values<0.001 and 0.019, respectively. The differences were not observed among patients carrying ITPA:c.94C>A compared with ITPA wild type patients. According to multivariate GEE, NUDT15:c.415C>T and co-occurrence of ITPA:c.94C>A and NUDT15:c.415C>T had a significant negative effect on ANC during treatment (coefficient: −463.81; CI: −778.53, −149.09; p-value=0.004 and coefficient: −527.56; CI: −1045.65, −9.48; p-value=0.046). No significant effect of ITPA:c.94C>A on ANC during treatment was observed. Conclusion ITPA:c.94C>A and NUDT15:c.415C>T polymorphisms are common among Thai children with leukemia. A strong association with mercaptopurine-related myelotoxicity was observed among patients carrying either NUDT15:c.415C>T alone or combined with ITPA:c.94C>A.
Collapse
Affiliation(s)
- Boonchai Boonyawat
- Division of Medical Genetics, Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| | - Chalinee Monsereenusorn
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| | - Apichat Photia
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| | - Nawachai Lertvivatpong
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| | - Varissara Kaewchaivijit
- Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| | - Punyanuch Jindatanmanusan
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| | - Piya Rujkijyanont
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| |
Collapse
|
4
|
Micaglio E, Locati ET, Monasky MM, Romani F, Heilbron F, Pappone C. Role of Pharmacogenetics in Adverse Drug Reactions: An Update towards Personalized Medicine. Front Pharmacol 2021; 12:651720. [PMID: 33995067 PMCID: PMC8120428 DOI: 10.3389/fphar.2021.651720] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Adverse drug reactions (ADRs) are an important and frequent cause of morbidity and mortality. ADR can be related to a variety of drugs, including anticonvulsants, anaesthetics, antibiotics, antiretroviral, anticancer, and antiarrhythmics, and can involve every organ or apparatus. The causes of ADRs are still poorly understood due to their clinical heterogeneity and complexity. In this scenario, genetic predisposition toward ADRs is an emerging issue, not only in anticancer chemotherapy, but also in many other fields of medicine, including hemolytic anemia due to glucose-6-phosphate dehydrogenase (G6PD) deficiency, aplastic anemia, porphyria, malignant hyperthermia, epidermal tissue necrosis (Lyell's Syndrome and Stevens-Johnson Syndrome), epilepsy, thyroid diseases, diabetes, Long QT and Brugada Syndromes. The role of genetic mutations in the ADRs pathogenesis has been shown either for dose-dependent or for dose-independent reactions. In this review, we present an update of the genetic background of ADRs, with phenotypic manifestations involving blood, muscles, heart, thyroid, liver, and skin disorders. This review aims to illustrate the growing usefulness of genetics both to prevent ADRs and to optimize the safe therapeutic use of many common drugs. In this prospective, ADRs could become an untoward "stress test," leading to new diagnosis of genetic-determined diseases. Thus, the wider use of pharmacogenetic testing in the work-up of ADRs will lead to new clinical diagnosis of previously unsuspected diseases and to improved safety and efficacy of therapies. Improving the genotype-phenotype correlation through new lab techniques and implementation of artificial intelligence in the future may lead to personalized medicine, able to predict ADR and consequently to choose the appropriate compound and dosage for each patient.
Collapse
Affiliation(s)
- Emanuele Micaglio
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Emanuela T Locati
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Federico Romani
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, (Vita-Salute University) for Federico Romani, Milan, Italy
| | | | - Carlo Pappone
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, (Vita-Salute University) for Federico Romani, Milan, Italy
| |
Collapse
|
5
|
Yamazaki S. A retrospective analysis of actionable pharmacogenetic/genomic biomarker language in FDA labels. Clin Transl Sci 2021; 14:1412-1422. [PMID: 33742770 PMCID: PMC8301579 DOI: 10.1111/cts.13000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The primary goal of precision medicine is to maximize the benefit‐risk relationships for individual patients by delivering the right drug to the right patients at the right dose. To achieve this goal, it has become increasingly important to assess gene‐drug interactions (GDIs) in clinical settings. The US Food and Drug Administration (FDA) periodically updates the table of pharmacogenetic/genomic (PGx) biomarkers in drug labeling on their website. As described herein, an effort was made to categorize various PGx biomarkers covered by the FDA‐PGx table into certain groups. There were 2 major groups, oncology molecular targets (OMT) and drug‐metabolizing enzymes and transporters (DMETs), which constitute ~70% of all biomarkers (~33% and ~35%, respectively). These biomarkers were further classified whether their labeling languages could be actionable in clinical practice. For OMT biomarkers, ~70% of biomarkers are considered actionable in clinical practice as they are critical for the selection of appropriate drugs to individual patients. In contrast, ~30% of DMET biomarkers are considered actionable for the dose adjustments or alternative therapies in specific populations, such as CYP2C19 and CYP2D6 poor metabolizers. In addition, the GDI results related to some of the other OMT and DMET biomarkers are considered to provide valuable information to clinicians. However, clinical GDI results on the other DMET biomarkers can possibly be used more effectively for dose recommendation. As the labels of some drugs already recommend the precise doses in specific populations, it will be desirable to have clear language for dose recommendation of other (or new) drugs if appropriate.
Collapse
Affiliation(s)
- Shinji Yamazaki
- Pharmacokinetics, Dynamics & Metabolism, Pfizer Worldwide Research and Development, San Diego, California, USA
| |
Collapse
|
6
|
Jhawat V, Gulia M, Gupta S, Maddiboyina B, Dutt R. Integration of pharmacogenomics and theranostics with nanotechnology as quality by design (QbD) approach for formulation development of novel dosage forms for effective drug therapy. J Control Release 2020; 327:500-511. [PMID: 32858073 DOI: 10.1016/j.jconrel.2020.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
To cater to medication needs in the future healthcare system, we need to shift from the conventional system of drug delivery to modern molecular signature-based drug delivery systems. The current drug therapies are either less effective, ineffective, or produce numerous adverse reactions. One scientific principle or discipline cannot adequately address all the problems, so we need an innovative application of the current scientific principles. Here we are proposing a novel concept of nanoformulation based on pharmacogenomics and theranostics for personalized error-free and targeted therapeutic agent delivery. The addition of more knowledge about the human genome opens the new way to study disease-gene, gene-drug, and drug-effect interactions, which is the basis of future medicines. Pharmacogenomics provides information about the disease etiology, role in genes in disease pathophysiology, disease biomarkers, drug targets, drug effects, and the fate of drugs inside the body. Theranostics approach utilizes the above information in diagnosis, treatment, and monitoring of the disease on a real-time basis. Personalized dosage forms can be formulated into a nanoformulation that provides a better therapeutic effect and minimizes adverse drug reactions. The therapeutic system needs to be shifted from the principle of one drug fits all to one drug unique population. In the present manuscript, we tried to conceptualize a modern therapeutic system by combining the three approaches viz. pharmacogenomics, theranostics, and nanotechnology applied in the area of formulation development to produce a multifunctional single tiny entity.
Collapse
Affiliation(s)
- Vikas Jhawat
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, India.
| | - Monika Gulia
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, Haryana, India
| | - Balaji Maddiboyina
- Department of Pharmaceutical Sciences, Vishwa Bharathi College of Pharmaceutical Sciences, Guntur, A.P, India
| | - Rohit Dutt
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
7
|
Lu DY, Lu TR. Drug sensitivity testing, a unique drug selection strategy. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2020. [DOI: 10.1016/j.abst.2020.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
8
|
Pharmaco-Geno-Proteo-Metabolomics and Translational Research in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31713161 DOI: 10.1007/978-3-030-24100-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The diagnosis, prognosis and treatment of cancer has had a great improvement due to the "omics" technologies such as genomics, proteomics, epigenomics, pharmacogenomics, and metabolomics. The technological progress of these technologies has allowed precision medicine to become a clinical reality. The study of different biomolecules such as DNA, RNA and proteins has helped to detect alterations in genes, changes in gene expression profiles and loss or gain of protein function, which allows us to make associations and better understand the cancer biology. Data obtained from different "omics" technologies gives a complementary spectrum of information that helps us to understand and unveil new information for a better diagnosis, prognosis, prediction of new molecular targets of anticancer therapies, etc. This chapter presents a general landscape of the interaction between the Pharmaco-Geno-Proteo-Metabolomic and translational medicine research in cancer.
Collapse
|
9
|
Clark DP, Pazdernik NJ, McGehee MR. Genomics and Systems Biology. Mol Biol 2019. [DOI: 10.1016/b978-0-12-813288-3.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zhu D, Guo H, Chang Y, Ni Y, Li L, Zhang ZM, Hao P, Xu Y, Ding K, Li Z. Cell- and Tissue-Based Proteome Profiling and Dual Imaging of Apoptosis Markers with Probes Derived from Venetoclax and Idasanutlin. Angew Chem Int Ed Engl 2018; 57:9284-9289. [PMID: 29768700 DOI: 10.1002/anie.201802003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Dongsheng Zhu
- Guangdong Provincial Key Laboratory of Biocomputing; Guangzhou Institutes of Biomedicine and Health; Chinese Academy of Sciences; 190 Kaiyuan Avenue, Science Park Guangzhou 510530 China
- University of Chinese Academy of Sciences; 19 Yuquan Road Beijing 100049 China
| | - Haijun Guo
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Yu Chang
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Yun Ni
- Institute of Advanced Materials (IAM); Nanjing Tech University; China
| | - Lin Li
- Institute of Advanced Materials (IAM); Nanjing Tech University; China
| | - Zhi-Min Zhang
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Piliang Hao
- School of Life Science and Technology; ShanghaiTech University; China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing; Guangzhou Institutes of Biomedicine and Health; Chinese Academy of Sciences; 190 Kaiyuan Avenue, Science Park Guangzhou 510530 China
- University of Chinese Academy of Sciences; 19 Yuquan Road Beijing 100049 China
| | - Ke Ding
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Zhengqiu Li
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| |
Collapse
|
11
|
Zhu D, Guo H, Chang Y, Ni Y, Li L, Zhang ZM, Hao P, Xu Y, Ding K, Li Z. Cell- and Tissue-Based Proteome Profiling and Dual Imaging of Apoptosis Markers with Probes Derived from Venetoclax and Idasanutlin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dongsheng Zhu
- Guangdong Provincial Key Laboratory of Biocomputing; Guangzhou Institutes of Biomedicine and Health; Chinese Academy of Sciences; 190 Kaiyuan Avenue, Science Park Guangzhou 510530 China
- University of Chinese Academy of Sciences; 19 Yuquan Road Beijing 100049 China
| | - Haijun Guo
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Yu Chang
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Yun Ni
- Institute of Advanced Materials (IAM); Nanjing Tech University; China
| | - Lin Li
- Institute of Advanced Materials (IAM); Nanjing Tech University; China
| | - Zhi-Min Zhang
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Piliang Hao
- School of Life Science and Technology; ShanghaiTech University; China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing; Guangzhou Institutes of Biomedicine and Health; Chinese Academy of Sciences; 190 Kaiyuan Avenue, Science Park Guangzhou 510530 China
- University of Chinese Academy of Sciences; 19 Yuquan Road Beijing 100049 China
| | - Ke Ding
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Zhengqiu Li
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| |
Collapse
|
12
|
Abstract
Studies on genetic and epigenetic mechanisms of carcinogenesis have led to the discovery of crucial genetic events for many of particular malignancies. This was followed by invention of new therapeutic approaches based on molecular mechanisms underlying cancer development and progression that bears the name of personalised medicine. In the case of gliomas, ascertainment of genetic/epigenetic markers was the basis for re-classification of tumours that until now depended on histopathological analysis. This article reviews recent advances in personalised medicine and the new World Health Organisation classification of gliomas.
Collapse
|
13
|
Krisl JC, Doan VP. Chemotherapy and Transplantation: The Role of Immunosuppression in Malignancy and a Review of Antineoplastic Agents in Solid Organ Transplant Recipients. Am J Transplant 2017; 17:1974-1991. [PMID: 28394486 DOI: 10.1111/ajt.14238] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/07/2017] [Accepted: 02/11/2017] [Indexed: 01/25/2023]
Abstract
It is estimated that solid organ transplant recipients have a two- to fourfold greater overall risk of malignancy than the general population. Some of the most common malignancies after transplant include skin cancers and posttransplant lymphoproliferative disorder. In addition to known risk factors such as environmental exposures, genetics, and infection with oncogenic viruses, immunosuppression plays a large role in the development of cancer through the loss of the immunosurveillance process. The purpose of this article is to explain the role of immunosuppression in cancer and to review the classes of chemotherapeutics. The field of anticancer drugs is continually expanding and developing, with limited data on use in transplant recipients. This article aims to provide information on class review, adverse effects, dose adjustments, and drug interactions that are pertinent to the care of transplant recipients.
Collapse
Affiliation(s)
- J C Krisl
- Houston Methodist Hospital, Houston, TX
| | - V P Doan
- The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|