1
|
Weerachatyanukul W, Pooljun C, Hirono I, Chotwiwatthanakun C, Jariyapong P. Infectivity and virulence of the infectious Macrobrachium rosenbergii nodavirus produced from Drosophila melanogaster cell using Penaeus merguiensis as an infection model. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108474. [PMID: 36481289 DOI: 10.1016/j.fsi.2022.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
It has been established that baculovirus-insect cell line is applicable for shrimp virus replication, propagation and secretion in the in vitro culture system. We thus aimed to produce Macrobrachium rosenbergii nodavirus (MrNV) clone within S2 cell to improve viral production over the previous model using Sf9 cell. Upon the transfection of genomic RNA1 and RNA2 into S2 cells, the recognizable cellular changes including cytoplasmic swelling and clumping of cells were observed within 24 h. The culture media containing secreted MrNV particles were re-transfected into healthy S2 cells and similar cellular changes as with the first transfection were observed. Immunohistochemistry analysis of the re-infecting S2 cell revealed an intense immunoreactivity against MrNV capsid protein confirming that S2 cell was permissive cells for MrNV. In vivo infectivity test using P. merguiensis as a model animal exposed to the secreted MrNV revealed the presence of RNA2 fragment in shrimp tissue accompanied with the sign of whitish abdominal muscle at 24 h post-infection (p.i.). In addition, the number of shrimp hemocytes decreased at 6-24 h p.i. and returned to the normal level at 48 h p.i., whereas a significant up-regulation of immune-related genes including HSP70 and trypsin was noted. These data suggested that rescued MrNV produced in S2 is practically useful for MrNV infection test in which their natural virion inoculae are difficult to obtain. In addition, the molecular basis of viral pathogenesis can further be investigated which should be beneficial for any antiviral therapy developments in the future.
Collapse
Affiliation(s)
- Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Chettupon Pooljun
- Akkhraratchakumari Veterinary College, Walailak University, Thasala District, Nakhonsrithammarat, 80160, Thailand; Center of Excellence for Aquaculture Technology and Innovation, Walailak University, Thasala District, Nakhonsrithammarat, 80161, Thailand
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| | | | - Pitchanee Jariyapong
- Center of Excellence for Aquaculture Technology and Innovation, Walailak University, Thasala District, Nakhonsrithammarat, 80161, Thailand; Department of Medical Science, School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, 80160, Thailand.
| |
Collapse
|
2
|
de Jong RM, Singh SK, Teelen K, van de Vegte-Bolmer M, van Gemert GJ, Stone WJR, Locke E, Plieskatt J, Theisen M, Bousema T, Jore MM. Heterologous Expression and Evaluation of Novel Plasmodium falciparum Transmission Blocking Vaccine Candidates. Front Immunol 2022; 13:909060. [PMID: 35812379 PMCID: PMC9259988 DOI: 10.3389/fimmu.2022.909060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022] Open
Abstract
Malaria transmission blocking vaccines (TBV) aim to induce antibodies that can interrupt Plasmodium falciparum development in the mosquito midgut and thereby prevent onward malaria transmission. A limited number of TBV candidates have been identified and only three (Pfs25, Pfs230 and Pfs48/45) have entered clinical testing. While one of these candidates may emerge as a highly potent TBV candidate, it is premature to determine if they will generate sufficiently potent and sustained responses. It is therefore important to explore novel candidate antigens. We recently analyzed sera from naturally exposed individuals and found that the presence and/or intensity of antibodies against 12 novel putative surface expressed gametocyte antigens was associated with transmission reducing activity. In this study, protein fragments of these novel TBV candidates were designed and heterologously expressed in Drosophila melanogaster S2 cells and Lactococcus lactis. Eleven protein fragments, covering seven TBV candidates, were successfully produced. All tested antigens were recognized by antibodies from individuals living in malaria-endemic areas, indicating that native epitopes are present. All antigens induced antigen-specific antibody responses in mice. Two antigens induced antibodies that recognized a native protein in gametocyte extract, and antibodies elicited by four antigens recognized whole gametocytes. In particular, we found that antigen Pf3D7_0305300, a putative transporter, is abundantly expressed on the surface of gametocytes. However, none of the seven novel TBV candidates expressed here induced an antibody response that reduced parasite development in the mosquito midgut as assessed in the standard membrane feeding assay. Altogether, the antigen fragments used in this study did not prove to be promising transmission blocking vaccine constructs, but led to the identification of two gametocyte surface proteins that may provide new leads for studying gametocyte biology.
Collapse
Affiliation(s)
- Roos M. de Jong
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Susheel K. Singh
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Karina Teelen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Will J. R. Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emily Locke
- PATH‘s Malaria Vaccine Initiative, Washington, DC, United States
| | - Jordan Plieskatt
- PATH‘s Malaria Vaccine Initiative, Washington, DC, United States
| | - Michael Theisen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthijs M. Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
- *Correspondence: Matthijs M. Jore,
| |
Collapse
|
3
|
Coker JA, Katis VL, Fairhead M, Schwenzer A, Clemmensen SB, Frandsen BU, de Jongh WA, Gileadi O, Burgess-Brown NA, Marsden BD, Midwood KS, Yue WW. FAS2FURIOUS: Moderate-Throughput Secreted Expression of Difficult Recombinant Proteins in Drosophila S2 Cells. Front Bioeng Biotechnol 2022; 10:871933. [PMID: 35600892 PMCID: PMC9117644 DOI: 10.3389/fbioe.2022.871933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Recombinant protein expression in eukaryotic insect cells is a powerful approach for producing challenging targets. However, due to incompatibility with standard baculoviral platforms and existing low-throughput methodology, the use of the Drosophila melanogaster “S2” cell line lags behind more common insect cell lines such as Sf9 or High-Five™. Due to the advantages of S2 cells, particularly for secreted and secretable proteins, the lack of a simple and parallelizable S2-based platform represents a bottleneck, particularly for biochemical and biophysical laboratories. Therefore, we developed FAS2FURIOUS, a simple and rapid S2 expression pipeline built upon an existing low-throughput commercial platform. FAS2FURIOUS is comparable in effort to simple E. coli systems and allows users to clone and test up to 46 constructs in just 2 weeks. Given the ability of S2 cells to express challenging targets, including receptor ectodomains, secreted glycoproteins, and viral antigens, FAS2FURIOUS represents an attractive orthogonal approach for protein expression in eukaryotic cells.
Collapse
Affiliation(s)
- Jesse A. Coker
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Vittorio L. Katis
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael Fairhead
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anja Schwenzer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | | - Bent U. Frandsen
- ExpreSion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | | | - Opher Gileadi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola A. Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Brian D. Marsden
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Wyatt W. Yue
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Wyatt W. Yue,
| |
Collapse
|
4
|
Aebischer A, Wernike K, König P, Franzke K, Wichgers Schreur PJ, Kortekaas J, Vitikainen M, Wiebe M, Saloheimo M, Tchelet R, Audonnet JC, Beer M. Development of a Modular Vaccine Platform for Multimeric Antigen Display Using an Orthobunyavirus Model. Vaccines (Basel) 2021; 9:vaccines9060651. [PMID: 34203630 PMCID: PMC8232151 DOI: 10.3390/vaccines9060651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging infectious diseases represent an increasing threat to human and animal health. Therefore, safe and effective vaccines that could be available within a short time frame after an outbreak are required for adequate prevention and control. Here, we developed a robust and versatile self-assembling multimeric protein scaffold particle (MPSP) vaccine platform using lumazine synthase (LS) from Aquifex aeolicus. This scaffold allowed the presentation of peptide epitopes by genetic fusion as well as the presentation of large antigens by bacterial superglue-based conjugation to the pre-assembled particle. Using the orthobunyavirus model Schmallenberg virus (SBV) we designed MPSPs presenting major immunogens of SBV and assessed their efficacy in a mouse model as well as in cattle, a target species of SBV. All prototype vaccines conferred protection from viral challenge infection and the multivalent presentation of the selected antigens on the MPSP markedly improved their immunogenicity compared to the monomeric subunits. Even a single shot vaccination protected about 80% of mice from an otherwise lethal dose of SBV. Most importantly, the MPSPs induced a virtually sterile immunity in cattle. Altogether, LS represents a promising platform for modular and rapid vaccine design.
Collapse
Affiliation(s)
- Andrea Aebischer
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
| | - Patricia König
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
| | - Kati Franzke
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
| | - Paul J. Wichgers Schreur
- Laboratory of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (P.J.W.S.); (J.K.)
| | - Jeroen Kortekaas
- Laboratory of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (P.J.W.S.); (J.K.)
| | - Marika Vitikainen
- VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland; (M.V.); (M.W.); (M.S.)
| | - Marilyn Wiebe
- VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland; (M.V.); (M.W.); (M.S.)
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland; (M.V.); (M.W.); (M.S.)
| | - Ronen Tchelet
- Dyadic Netherland B.V., 6709 PA Wageningen, The Netherlands;
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
- Correspondence:
| |
Collapse
|
5
|
Differentiation of Antibodies against Selected Simbu Serogroup Viruses by a Glycoprotein Gc-Based Triplex ELISA. Vet Sci 2021; 8:vetsci8010012. [PMID: 33477718 PMCID: PMC7831895 DOI: 10.3390/vetsci8010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
The Simbu serogroup of orthobunyaviruses includes several pathogens of veterinary importance, among them Schmallenberg virus (SBV), Akabane virus (AKAV) and Shuni virus (SHUV). They infect predominantly ruminants and induce severe congenital malformation. In adult animals, the intra vitam diagnostics by direct virus detection is limited to only a few days due to a short-lived viremia. For surveillance purposes the testing for specific antibodies is a superior approach. However, the serological differentiation is hampered by a considerable extent of cross-reactivity, as viruses were assigned into this serogroup based on antigenic relatedness. Here, we established a glycoprotein Gc-based triplex enzyme-linked immunosorbent assay (ELISA) for the detection and differentiation of antibodies against SBV, AKAV, and SHUV. A total of 477 negative samples of various ruminant species, 238 samples positive for SBV-antibodies, 36 positive for AKAV-antibodies and 53 SHUV antibody-positive samples were tested in comparison to neutralization tests. For the newly developed ELISA, overall diagnostic specificities of 84.56%, 94.68% and 89.39% and sensitivities of 89.08%, 69.44% and 84.91% were calculated for SBV, AKAV and SHUV, respectively, with only slight effects of serological cross-reactivity on the diagnostic specificity. Thus, this test system could be used for serological screening in suspected populations or as additional tool during outbreak investigations.
Collapse
|
6
|
Engineered Fragments of the PSMA-Specific 5D3 Antibody and Their Functional Characterization. Int J Mol Sci 2020; 21:ijms21186672. [PMID: 32932591 PMCID: PMC7555429 DOI: 10.3390/ijms21186672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022] Open
Abstract
Prostate-Specific Membrane Antigen (PSMA) is an established biomarker for the imaging and experimental therapy of prostate cancer (PCa), as it is strongly upregulated in high-grade primary, androgen-independent, and metastatic lesions. Here, we report on the development and functional characterization of recombinant single-chain Fv (scFv) and Fab fragments derived from the 5D3 PSMA-specific monoclonal antibody (mAb). These fragments were engineered, heterologously expressed in insect S2 cells, and purified to homogeneity with yields up to 20 mg/L. In vitro assays including ELISA, immunofluorescence and flow cytometry, revealed that the fragments retain the nanomolar affinity and single target specificity of the parent 5D3 antibody. Importantly, using a murine xenograft model of PCa, we verified the suitability of fluorescently labeled fragments for in vivo imaging of PSMA-positive tumors and compared their pharmacokinetics and tissue distribution to the parent mAb. Collectively, our data provide an experimental basis for the further development of 5D3 recombinant fragments for future clinical use.
Collapse
|
7
|
Pilatti L, Mancini Astray R, Rocca MP, Barbosa FF, Jorge SAC, Butler M, de Fátima Pires Augusto E. Purification of rabies virus glycoprotein produced in Drosophila melanogaster S2 cells: An efficient immunoaffinity method. Biotechnol Prog 2020; 36:e3046. [PMID: 32628317 DOI: 10.1002/btpr.3046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 11/12/2022]
Abstract
Most rabies vaccines are based on inactivated virus, which production process demands a high level of biosafety structures. In the past decades, recombinant rabies virus glycoprotein (RVGP) produced in several expression systems has been extensively studied to be used as an alternative vaccine. The immunogenic characteristics of this protein depend on its correct conformation, which is present only after the correct post-translational modifications, typically performed by animal cells. The main challenge of using this protein as a vaccine candidate is to keep its trimeric conformation after the purification process. We describe here a new immunoaffinity chromatography method using a monoclonal antibody for RVGP Site II for purification of recombinant rabies virus glycoprotein expressed on the membrane of Drosophila melanogaster S2 cells. RVGP recovery achieved at least 93%, and characterization analysis showed that the main antigenic proprieties were preserved after purification.
Collapse
Affiliation(s)
- Livia Pilatti
- Science and Technology Institute, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil.,Viral Immunology Laboratory, Butantan Institute, São Paulo, Brazil
| | | | | | | | | | - Michael Butler
- National Institute for Biotechnology Research and Training (NIBRT), Dublin, Ireland
| | | |
Collapse
|
8
|
Samadder S. Drosophila melanogaster: A Robust Tool to Study Candidate Drug against Epidemic and Pandemic Diseases. ANIMAL MODELS IN MEDICINE AND BIOLOGY 2020. [DOI: 10.5772/intechopen.90073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Zitzmann J, Schreiber C, Eichmann J, Bilz RO, Salzig D, Weidner T, Czermak P. Single-cell cloning enables the selection of more productive Drosophila melanogaster S2 cells for recombinant protein expression. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 19:e00272. [PMID: 29998071 PMCID: PMC6037645 DOI: 10.1016/j.btre.2018.e00272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
The generation of monoclonal cell lines is an important early process development step for recombinant protein production. Although single-cell cloning is an established method in mammalian cell lines, straightforward protocols are not yet available for insect cells. We describe a new method for the generation of monoclonal insect cells without using fetal bovine serum and/or feeder cells pretreated by irradiation or exposure to mitomycin. Highly productive clones of Drosophila melanogaster S2 cells were prepared in a two-step procedure, comprising the establishment of a polyclonal population and subsequent single cell isolation by limiting dilution. Necessary growth factors were provided by co-cultivation of single transformants with untransfected feeder cells, which were later removed by antibiotic selection. Enhanced expression of EGFP and two target peptides was confirmed by flow cytometry and dot/western blotting. Highly productive clones were stable, showed a uniform expression profile and typically a sixfold to tenfold increase in cell-specific productivity.
Collapse
Key Words
- AMP, antimicrobial peptide/protein
- BR021, Harmonia axyridis antimicrobial peptide BR021
- BSA, bovine serum albumin
- D. melanogaster S2 cells
- DMSO, dimethyl sulfoxide
- EGFP, enhanced green fluorescent protein
- FACS, fluorescence activated cell sorting
- FBS, fetal bovine serum
- GMP, good manufacturing practice
- GmGlv, Galleria mellonella antimicrobial peptide Gloverin
- Insect cell culture
- Monoclonal cell line
- OD600, optical density at 600nm
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PVDF, polyvinylidene difluoride
- RMCE, recombinase mediated cassette exchange
- Recombinant protein expression
- SDS-PAGE, sodium dodecylsulfate polyacrylamide gel electrophoresis
- SFM, serum free medium
- Sf9, clonal isolate of Spodoptera frugiperda Sf21 cells
- Single-cell cloning
- Stably transformed
- rS2, recombinant Drosophila melanogaster Schneider 2 cells
Collapse
Affiliation(s)
- Jan Zitzmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Christine Schreiber
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Joel Eichmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Roberto Otmar Bilz
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Chemical Engineering, Kansas State University, Manhattan KS, USA
- Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
| |
Collapse
|
10
|
Chen T, Li D, Song Y, Yang X, Liu Q, Jin X, Zhou D, Huang Z. A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice. Antiviral Res 2017; 145:54-59. [PMID: 28733113 DOI: 10.1016/j.antiviral.2017.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 11/29/2022]
Abstract
Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development.
Collapse
Affiliation(s)
- Tan Chen
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dapeng Li
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yufeng Song
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Yang
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingwei Liu
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Jin
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongming Zhou
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhong Huang
- Vaccinology Division, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
11
|
Zitzmann J, Weidner T, Czermak P. Optimized expression of the antimicrobial protein Gloverin from Galleria mellonella using stably transformed Drosophila melanogaster S2 cells. Cytotechnology 2017; 69:371-389. [PMID: 28132128 PMCID: PMC5366974 DOI: 10.1007/s10616-017-0068-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial proteins and peptides (AMPs) are valuable as leads in the pharmaceutical industry for the development of novel anti-infective drugs. Here we describe the efficient heterologous expression and basic characterization of a Gloverin-family AMP derived from the greater wax moth Galleria mellonella. Highly productive single-cell clones prepared by limiting dilution achieved a 100% increase in productivity compared to the original polyclonal Drosophila melanogaster S2 cell line. Comprehensive screening for suitable expression conditions using statistical experimental designs revealed that optimal induction was achieved using 600 µM CuSO4 at the mid-exponential growth phase. Under these conditions, 25 mg/L of the AMP was expressed at the 1-L bioreactor scale, with optimal induction and harvest times ensured by dielectric spectroscopy and the online measurement of optical density. Gloverin was purified from the supernatant by immobilized metal ion affinity chromatography followed by dialysis. In growth assays, the purified protein showed specific antimicrobial activity against two different strains of Escherichia coli.
Collapse
Affiliation(s)
- Jan Zitzmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany.
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
- Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, Giessen, Germany.
- Project Group Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
12
|
Santos NGL, Rocca MP, Pereira CA, Ventini DC, Puglia ALP, Jorge SAC, Lemos MAN, Astray RM. Impact of recombinant Drosophila S2 cell population enrichment on expression of rabies virus glycoprotein. Cytotechnology 2016; 68:2605-2611. [PMID: 27216014 PMCID: PMC5101331 DOI: 10.1007/s10616-016-9984-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022] Open
Abstract
Recombinant Drosophila S2 cells have been used for the expression of many proteins of medical interest. However, membrane-attached glycoproteins, which commonly exhibit lower expression levels compared to soluble proteins, may require special procedures in order to attain high levels of expression. In this study, two S2 cell population enrichment methods (antibiotic and immunomagnetic selection) were evaluated for their ability to enhance expression of the membrane-anchored rabies virus glycoprotein (RVGP). Quantification of RVGP production and determination of its cDNA copy number in transformed cells showed that both enrichment methods increased RVGP expression without significantly affecting its gene copy number. More interestingly, RVGP mRNA levels measured after cycloheximide treatment were poorly correlated with glycoprotein levels. Both enrichment methods enhanced expression of RVGP by recombinant S2 cells, with the highest level of expression achieved using immunomagnetic selection.
Collapse
Affiliation(s)
- Nayara G L Santos
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900, Brazil
| | - Mayra P Rocca
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900, Brazil
| | - Carlos A Pereira
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900, Brazil
| | - Daniella C Ventini
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900, Brazil
| | - Ana Lia P Puglia
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900, Brazil
| | - Soraia A C Jorge
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900, Brazil
| | - Marcos A N Lemos
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900, Brazil
| | - Renato M Astray
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900, Brazil.
| |
Collapse
|
13
|
Insect cell entrapment, growth and recovering using a single-use fixed-bed bioreactor. Scaling up and recombinant protein production. J Biotechnol 2015; 216:110-5. [DOI: 10.1016/j.jbiotec.2015.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 11/23/2022]
|
14
|
Expression and purification of HER2 extracellular domain proteins in Schneider2 insect cells. Protein Expr Purif 2015; 125:26-33. [PMID: 26363121 DOI: 10.1016/j.pep.2015.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
Abstract
Overexpression of human epidermal growth factor receptor 2 (HER2/ErbB2/Neu) results in ligand independent activation of kinase signaling and is found in about 30% of human breast cancers, and is correlated with a more aggressive tumor phenotype. The HER2 extracellular domain (ECD) consists of four domains - I, II, III and IV. Although the role of each domain in the dimerization and activation of the receptor has been extensively studied, the role of domain IV (DIV) is not clearly understood yet. In our previous studies, we reported peptidomimetic molecules inhibit HER2:HER3 heterodimerization. In order to study the binding interactions of peptidomimetics with HER2 DIV in detail, properly folded recombinant HER2 protein in pure form is important. We have expressed and purified HER2 ECD and DIV proteins in the Drosophila melanogaster Schneider2 (S2) cell line. Using the commercial Drosophila expression system (DES), we transfected S2 cells with plasmids designed to direct the expression of secreted recombinant HER2 ECD and DIV proteins. The secreted proteins were purified from the conditioned medium by filtration, ultrafiltration, dialysis and nickel affinity chromatography techniques. The purified HER2 proteins were then analyzed using Western blot, mass spectrometry and circular dichroism (CD) spectroscopy.
Collapse
|
15
|
Kaiser SC, Kraume M, Eibl D, Eibl R. Single-Use Bioreactors for Animal and Human Cells. CELL ENGINEERING 2015. [DOI: 10.1007/978-3-319-10320-4_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|