1
|
Chen Y, Yu XY, Xu SJ, Shi XQ, Zhang XX, Sun C. An indel introduced by Neanderthal introgression, rs3835124:ATTTATT > ATT, might contribute to prostate cancer risk by regulating PDK1 expression. Ann Hum Genet 2024; 88:126-137. [PMID: 37846608 DOI: 10.1111/ahg.12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Prostate cancer is one of the most common cancer types in males and rs12621278:A > G has been suggested to be associated with this disease by previous genome-wide association studies. One thousand genomes project data analysis indicated that rs12621278:A > G is within two long-core haplotypes. However, the origin, causal variant(s), and molecular function of these haplotypes were remaining unclear. MATERIALS AND METHODS Population genetics analysis and functional genomics work was performed for this locus. RESULTS Phylogeny analysis verified that the rare haplotype is derived from Neanderthal introgression. Genome annotation suggested that three genetic variants in the core haplotypes, rs116108611:G > A, rs139972066:AAAAAAAA > AAAAAAAAA, and rs3835124:ATTTATT > ATT, are located in functional regions. Luciferase assay indicated that rs139972066:AAAAAAAA > AAAAAAAAA and rs116108611:G > A are not able to alter ITGA6 (integrin alpha 6) and ITGA6 antisense RNA 1 expression, respectively. In contrast, rs3835124:ATTTATT > ATT can significantly influence PDK1 (pyruvate dehydrogenase kinase 1) expression, which was verified by expression quantitative trait locus analysis. This genetic variant can alter transcription factor cut like homeobox 1 interaction efficiency. The introgressed haplotype was observed to be subject to positive selection in East Asian populations. The molecular function of the haplotype suggested that Neanderthal should be with lower PDK1 expression and further different energy homeostasis from modern human. CONCLUSION This study provided new insight into the contribution of Neanderthal introgression to human phenotypes.
Collapse
Affiliation(s)
- Ying Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Xin-Yi Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Shuang-Jia Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Xiao-Qian Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Xin-Xin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Chang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
2
|
Leroux AE, Biondi RM. The choreography of protein kinase PDK1 and its diverse substrate dance partners. Biochem J 2023; 480:1503-1532. [PMID: 37792325 DOI: 10.1042/bcj20220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
The protein kinase PDK1 phosphorylates at least 24 distinct substrates, all of which belong to the AGC protein kinase group. Some substrates, such as conventional PKCs, undergo phosphorylation by PDK1 during their synthesis and subsequently get activated by DAG and Calcium. On the other hand, other substrates, including members of the Akt/PKB, S6K, SGK, and RSK families, undergo phosphorylation and activation downstream of PI3-kinase signaling. This review presents two accepted molecular mechanisms that determine the precise and timely phosphorylation of different substrates by PDK1. The first mechanism involves the colocalization of PDK1 with Akt/PKB in the presence of PIP3. The second mechanism involves the regulated docking interaction between the hydrophobic motif (HM) of substrates and the PIF-pocket of PDK1. This interaction, in trans, is equivalent to the molecular mechanism that governs the activity of AGC kinases through their HMs intramolecularly. PDK1 has been instrumental in illustrating the bi-directional allosteric communication between the PIF-pocket and the ATP-binding site and the potential of the system for drug discovery. PDK1's interaction with substrates is not solely regulated by the substrates themselves. Recent research indicates that full-length PDK1 can adopt various conformations based on the positioning of the PH domain relative to the catalytic domain. These distinct conformations of full-length PDK1 can influence the interaction and phosphorylation of substrates. Finally, we critically discuss recent findings proposing that PIP3 can directly regulate the activity of PDK1, which contradicts extensive in vitro and in vivo studies conducted over the years.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| |
Collapse
|
3
|
Kozlakidis Z, Shi P, Abarbanel G, Klein C, Sfera A. Recent Developments in Protein Lactylation in PTSD and CVD: Novel Strategies and Targets. BIOTECH 2023; 12:38. [PMID: 37218755 PMCID: PMC10204439 DOI: 10.3390/biotech12020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
In 1938, Corneille Heymans received the Nobel Prize in physiology for discovering that oxygen sensing in the aortic arch and carotid sinus was mediated by the nervous system. The genetics of this process remained unclear until 1991 when Gregg Semenza while studying erythropoietin, came upon hypoxia-inducible factor 1, for which he obtained the Nobel Prize in 2019. The same year, Yingming Zhao found protein lactylation, a posttranslational modification that can alter the function of hypoxia-inducible factor 1, the master regulator of cellular senescence, a pathology implicated in both post-traumatic stress disorder (PTSD) and cardiovascular disease (CVD). The genetic correlation between PTSD and CVD has been demonstrated by many studies, of which the most recent one utilizes large-scale genetics to estimate the risk factors for these conditions. This study focuses on the role of hypertension and dysfunctional interleukin 7 in PTSD and CVD, the former caused by stress-induced sympathetic arousal and elevated angiotensin II, while the latter links stress to premature endothelial cell senescence and early vascular aging. This review summarizes the recent developments and highlights several novel PTSD and CVD pharmacological targets. They include lactylation of histone and non-histone proteins, along with the related biomolecular actors such as hypoxia-inducible factor 1α, erythropoietin, acid-sensing ion channels, basigin, and Interleukin 7, as well as strategies to delay premature cellular senescence by telomere lengthening and resetting the epigenetic clock.
Collapse
Affiliation(s)
- Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization (IARC/WHO), 69372 Lyon, France
| | - Patricia Shi
- Department of Psychiatry, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ganna Abarbanel
- Patton State Hospital, University of California, Riverside, CA 92521, USA
| | | | - Adonis Sfera
- Patton State Hospital, University of California, Riverside, CA 92521, USA
- Department of Psychiatry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Zhang P, Jiang Y, Ye X, Zhang C, Tang Y. PDK1 inhibition reduces autophagy and cell senescence through the PI3K/AKT signalling pathway in a cigarette smoke mouse emphysema model. Exp Ther Med 2023; 25:223. [PMID: 37123206 PMCID: PMC10133799 DOI: 10.3892/etm.2023.11922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/03/2022] [Indexed: 04/03/2023] Open
Abstract
A number of previous studies have demonstrated the pivotal role of PI3K/AKT signalling in cigarette smoke (CS)-induced emphysema, where phosphoinositide dependent protein kinase 1 (PDK1) is a critical component of this pathway. Therefore, the present study aimed to investigate the effects of a PDK1 inhibitor (GSK-2334470) on the expression levels of PI3K, AKT, cyclin-dependent kinase inhibitor 2A (p16) and LC3B in a CS + CS extract (CSE)-induced mouse emphysema model. CS exposure and intraperitoneal injections of CSE were combined for 4 weeks to establish an emphysema model. Mice (n=35) were randomly divided into the normal control, emphysema (CS), PI3K inhibitor (CS3) and PDK1 inhibitor (CS1) groups. Immunohistochemistry staining of lung tissues was used to measure the expression of the PI3K, PDK1 and AKT proteins in airway epithelial tissues. Immunofluorescence staining was also used to measure the levels of p16 and LC3BII protein expression in the airway epithelial tissues. In addition, PI3K, PDK1, AKT, p16 and LC3B protein expression was semi-quantified using western blotting. The expression of PDK1, PI3K and AKT proteins in the airway epithelial tissues was significantly increased in the CS + CSE group compared with that in the control group. The expression levels of p16 and LC3B were also increased as well in the CS + CSE group compared with those in the control group. The expression levels of PI3K, PDK1, AKT, LC3B and p16 in the airway epithelial tissues of the CS3 group were lower compared with those in the CS + CSE group. A decrease in the expression levels of PDK1, AKT, p16 and LC3B in the airway epithelial tissues of the CS1 group compared with those in the CS + CSE group was also observed. However, there were no significant differences in the expression levels of PI3K between the CS1 and the CS groups. The present study concluded that the inhibition of PDK1 can potentially reduce autophagy and cell senescence by downregulating the expression of PI3K/AKT pathway related proteins in airway epithelial cells, thereby protecting against CS + CSE-induced emphysema in mice.
Collapse
Affiliation(s)
- Peibei Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Youjun Jiang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Xianwei Ye
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Cheng Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Yiling Tang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
5
|
Occhiuzzi MA, Lico G, Ioele G, De Luca M, Garofalo A, Grande F. Recent advances in PI3K/PKB/mTOR inhibitors as new anticancer agents. Eur J Med Chem 2023; 246:114971. [PMID: 36462440 DOI: 10.1016/j.ejmech.2022.114971] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
The biochemical role of the PI3K/PKB/mTOR signalling pathway in cell-cycle regulation is now well known. During the onset and development of different forms of cancer it becomes overactive reducing apoptosis and allowing cell proliferation. Therefore, this pathway has become an important target for the treatment of various forms of malignant tumors, including breast cancer and follicular lymphoma. Recently, several more or less selective inhibitors targeting these proteins have been identified. In general, drugs that act on multiple targets within the entire pathway are more efficient than single targeting inhibitors. Multiple inhibitors exhibit high potency and limited drug resistance, resulting in promising anticancer agents. In this context, the present survey focuses on small molecule drugs capable of modulating the PI3K/PKB/mTOR signalling pathway, thus representing drugs or drug candidates to be used in the pharmacological treatment of different forms of cancer.
Collapse
Affiliation(s)
| | - Gernando Lico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
6
|
Atiya A, Alhumaydhi FA, Sharaf SE, Al Abdulmonem W, Elasbali AM, Al Enazi MM, Shamsi A, Jawaid T, Alghamdi BS, Hashem AM, Ashraf GM, Shahwan M. Identification of 11-Hydroxytephrosin and Torosaflavone A as Potential Inhibitors of 3-Phosphoinositide-Dependent Protein Kinase 1 (PDPK1): Toward Anticancer Drug Discovery. BIOLOGY 2022; 11:1230. [PMID: 36009858 PMCID: PMC9405294 DOI: 10.3390/biology11081230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The 3-phosphoinositide-dependent protein kinase 1 (PDPK1) has a significant role in cancer progression and metastasis as well as other inflammatory disorders, and has been proposed as a promising therapeutic target for several malignancies. In this work, we conducted a systematic virtual screening of natural compounds from the IMPPAT database to identify possible PDPK1 inhibitors. Primarily, the Lipinski rules, ADMET, and PAINS filter were applied and then the binding affinities, docking scores, and selectivity were carried out to find effective hits against PDPK1. Finally, we identified two natural compounds, 11-Hydroxytephrosin and Torosaflavone A, bearing substantial affinity with PDPK1. Both compounds showed drug-likeness as predicted by the ADMET analysis and their physicochemical parameters. These compounds preferentially bind to the ATP-binding pocket of PDPK1 and interact with functionally significant residues. The conformational dynamics and complex stability of PDPK1 with the selected compounds were then studied using interaction analysis and molecular dynamics (MD) simulations for 100 ns. The simulation results revealed that PDPK1 forms stable docked complexes with the elucidated compounds. The findings show that the newly discovered 11-Hydroxytephrosin and Torosaflavone A bind to PDPK1 in an ATP-competitive manner, suggesting that they could one day be used as therapeutic scaffolds against PDPK1-associated diseases including cancer.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy Umm Al-Qura University, Makkah 21961, Saudi Arabia
- Clinical Research Administration, Executive Administration of Research and Innovation, King Abdullah Medical City in the Holy Capital, Makkah 21955, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Maher M. Al Enazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdelaziz University, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Badrah S. Alghamdi
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- College of Pharmacy, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
7
|
The Landscape of PDK1 in Breast Cancer. Cancers (Basel) 2022; 14:cancers14030811. [PMID: 35159078 PMCID: PMC8834120 DOI: 10.3390/cancers14030811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Given that 3-phosphoinositide-dependent kinase 1 (PDK1) plays a crucial role in the malignant biological behaviors of a wide range of cancers, we review the influence of PDK1 in breast cancer (BC). First, we describe the power of PDK1 in cellular behaviors and characterize the interaction networks of PDK1. Then, we establish the roles of PDK1 in carcinogenesis, growth and survival, metastasis, and chemoresistance in BC cells. More importantly, we sort the current preclinical or clinical trials of PDK1-targeted therapy in BC and find that, even though no selective PDK1 inhibitor is currently available for BC therapy, the combination trials of PDK1-targeted therapy and other agents have provided some benefit. Thus, there is increasing anticipation that PDK1-targeted therapy will have its space in future therapeutic approaches related to BC, and we hope the novel approaches of targeted therapy will be conducive to ameliorating the dismal prognosis of BC patients.
Collapse
|
8
|
Llorach-Pares L, Nonell-Canals A, Avila C, Sanchez-Martinez M. Computer-Aided Drug Design (CADD) to De-Orphanize Marine Molecules: Finding Potential Therapeutic Agents for Neurodegenerative and Cardiovascular Diseases. Mar Drugs 2022; 20:53. [PMID: 35049908 PMCID: PMC8781171 DOI: 10.3390/md20010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022] Open
Abstract
Computer-aided drug design (CADD) techniques allow the identification of compounds capable of modulating protein functions in pathogenesis-related pathways, which is a promising line on drug discovery. Marine natural products (MNPs) are considered a rich source of bioactive compounds, as the oceans are home to much of the planet's biodiversity. Biodiversity is directly related to chemodiversity, which can inspire new drug discoveries. Therefore, natural products (NPs) in general, and MNPs in particular, have been used for decades as a source of inspiration for the design of new drugs. However, NPs present both opportunities and challenges. These difficulties can be technical, such as the need to dive or trawl to collect the organisms possessing the compounds, or biological, due to their particular marine habitats and the fact that they can be uncultivable in the laboratory. For all these difficulties, the contributions of CADD can play a very relevant role in simplifying their study, since, for example, no biological sample is needed to carry out an in-silico analysis. Therefore, the amount of natural product that needs to be used in the entire preclinical and clinical study is significantly reduced. Here, we exemplify how this combination between CADD and MNPs can help unlock their therapeutic potential. In this study, using a set of marine invertebrate molecules, we elucidate their possible molecular targets and associated therapeutic potential, establishing a pipeline that can be replicated in future studies.
Collapse
Affiliation(s)
- Laura Llorach-Pares
- Mind the Byte S.L., 08028 Barcelona, Catalonia, Spain; (L.L.-P.); (A.N.-C.)
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain;
| | | | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain;
| | | |
Collapse
|
9
|
Sinotsko AE, Bespalov AV, Pashchevskaya NV, Dotsenko VV, Aksenov NA, Aksenova IV. N, N'-Diphenyldithiomalonodiamide: Structural Features, Acidic Properties, and In Silico Estimation of Biological Activity. RUSS J GEN CHEM+ 2021; 91:2136-2150. [PMID: 34934303 PMCID: PMC8680065 DOI: 10.1134/s1070363221110037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/14/2021] [Accepted: 09/18/2021] [Indexed: 11/25/2022]
Abstract
The spectral characteristics of dithiomalondianilide (N,N'-diphenyldithiomalonodiamide) were studied, and the dissociation constant was determined by potentiometric titration. Quantum-chemical methods at the B3LYP-D3BJ/6-311+G (2d,p) level were used to calculate the molecular geometry and vibrational spectra of the most stable tautomeric forms of dithiomalondianilide. The bioavailability parameters were calculated, and possible protein targets were predicted by the protein ligand docking method.
Collapse
Affiliation(s)
| | | | | | - V. V. Dotsenko
- Kuban State University, 350040 Krasnodar, Russia
- North Caucasus Federal University, 355009 Stavropol, Russia
| | - N. A. Aksenov
- North Caucasus Federal University, 355009 Stavropol, Russia
| | - I. V. Aksenova
- North Caucasus Federal University, 355009 Stavropol, Russia
| |
Collapse
|
10
|
Abstract
INTRODUCTION 3-Phosphoinositide-dependent kinase 1 (PDK1), the 'master kinase of the AGC protein kinase family', plays a key role in cancer development and progression. Although it has been rather overlooked, in the last decades a growing number of molecules have been developed to effectively modulate the PDK1 enzyme. AREAS COVERED This review collects different PDK1 inhibitors patented from October 2014 to December 2018. The molecules have been classified on the basis of the chemical structure/type of inhibition, and for each general structure, examples have been discussed in extenso. EXPERT OPINION The role of PDK1 in cancer development and progression as well as in metastasis formation and in chemoresistance has been confirmed by many studies. Therefore, the pharmaceutical discovery in both public and private institutions is still ongoing despite the plentiful molecules already published. The majority of the new molecules synthetized interact with binding sites different from the ATP binding site (i.e. PIF pocket or DFG-out conformation). However, many researchers are still looking for innovative PDK1 modulation strategy such as combination of well-known inhibitory agents or multitarget ligands, aiming to block, together with PDK1, other different critical players in the wide panorama of proteins involved in tumor pathways.
Collapse
Affiliation(s)
- Simona Sestito
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | | |
Collapse
|
11
|
Mioc M, Avram S, Bercean V, Kurunczi L, Ghiulai RM, Oprean C, Coricovac DE, Dehelean C, Mioc A, Balan-Porcarasu M, Tatu C, Soica C. Design, Synthesis and Biological Activity Evaluation of S-Substituted 1 H-5-Mercapto-1,2,4-Triazole Derivatives as Antiproliferative Agents in Colorectal Cancer. Front Chem 2018; 6:373. [PMID: 30234098 PMCID: PMC6134806 DOI: 10.3389/fchem.2018.00373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is a widespread pathology with complex biochemical etiology based on a significant number of intracellular signaling pathways that play important roles in carcinogenesis, tumor proliferation and metastasis. These pathways function due to the action of key enzymes that can be used as targets for new anticancer drug development. Herein we report the synthesis and biological antiproliferative evaluation of a series of novel S-substituted 1H-3-R-5-mercapto-1,2,4-triazoles, on a colorectal cancer cell line, HT-29. Synthesized compounds were designed by docking based virtual screening (DBVS) of a previous constructed compound library against protein targets, known for their important role in colorectal cancer signaling: MEK1, ERK2, PDK1, VEGFR2. Among all synthesized structures, TZ55.7, which was retained as a possible PDK1 (phospholipid-dependent kinase 1) inhibitor, exhibited the most significant cytotoxic activity against HT-29 tumor cell line. The same compound alongside other two, TZ53.7 and TZ3a.7, led to a significant cell cycle arrest in both sub G0/G1 and G0/G1 phase. This study provides future perspectives for the development of new agents containing the 1,2,4-mercapto triazole scaffold with antiproliferative activities in colorectal cancer.
Collapse
Affiliation(s)
- Marius Mioc
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| | - Sorin Avram
- Department of Computational Chemistry, Institute of Chemistry Timisoara of the Romanian Academy, Timisoara, Romania
| | | | - Ludovic Kurunczi
- Department of Computational Chemistry, Institute of Chemistry Timisoara of the Romanian Academy, Timisoara, Romania
| | - Roxana M Ghiulai
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| | - Camelia Oprean
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania.,"Pius Brinzeu" Timisoara County Emergency Clinical Hospital, Oncogen Institute, Timisoara, Romania
| | - Dorina E Coricovac
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| | | | - Calin Tatu
- "Pius Brinzeu" Timisoara County Emergency Clinical Hospital, Oncogen Institute, Timisoara, Romania
| | - Codruta Soica
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
12
|
Targeting PDK1 for Chemosensitization of Cancer Cells. Cancers (Basel) 2017; 9:cancers9100140. [PMID: 29064423 PMCID: PMC5664079 DOI: 10.3390/cancers9100140] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/01/2023] Open
Abstract
Despite the rapid development in the field of oncology, cancer remains the second cause of mortality worldwide, with the number of new cases expected to more than double in the coming years. Chemotherapy is widely used to decelerate or stop tumour development in combination with surgery or radiation therapy when appropriate, and in many cases this improves the symptomatology of the disease. Unfortunately though, chemotherapy is not applicable to all patients and even when it is, there are many cases where a successful initial treatment period is followed by chemotherapeutic drug resistance. This is caused by a number of reasons, ranging from the genetic background of the patient (innate resistance) to the formation of tumour-initiating cells (acquired resistance). In this review, we discuss the potential role of PDK1 in the development of chemoresistance in different types of malignancy, and the design and application of potent inhibitors which can promote chemosensitization.
Collapse
|
13
|
PHD2 Is a Regulator for Glycolytic Reprogramming in Macrophages. Mol Cell Biol 2016; 37:MCB.00236-16. [PMID: 27795296 DOI: 10.1128/mcb.00236-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 10/07/2016] [Indexed: 01/17/2023] Open
Abstract
The prolyl-4-hydroxylase domain (PHD) enzymes are regarded as the molecular oxygen sensors. There is an interplay between oxygen availability and cellular metabolism, which in turn has significant effects on the functionality of innate immune cells, such as macrophages. However, if and how PHD enzymes affect macrophage metabolism are enigmatic. We hypothesized that macrophage metabolism and function can be controlled via manipulation of PHD2. We characterized the metabolic phenotypes of PHD2-deficient RAW cells and primary PHD2 knockout bone marrow-derived macrophages (BMDM). Both showed typical features of anaerobic glycolysis, which were paralleled by increased pyruvate dehydrogenase kinase 1 (PDK1) protein levels and a decreased pyruvate dehydrogenase enzyme activity. Metabolic alterations were associated with an impaired cellular functionality. Inhibition of PDK1 or knockout of hypoxia-inducible factor 1α (HIF-1α) reversed the metabolic phenotype and impaired the functionality of the PHD2-deficient RAW cells and BMDM. Taking these results together, we identified a critical role of PHD2 for a reversible glycolytic reprogramming in macrophages with a direct impact on their function. We suggest that PHD2 serves as an adjustable switch to control macrophage behavior.
Collapse
|
14
|
Abstract
Short-form Ron (sfRon) is an understudied, alternative isoform of the full-length Ron receptor tyrosine kinase. In contrast to Ron, which has been shown to be an important player in many cancers, little is known about the role of sfRon in cancer pathogenesis. Here we report the striking discovery that sfRon expression is required for development of carcinogen-induced malignant ovarian tumors in mice. We also show that sfRon is expressed in several subtypes of human ovarian cancer including high-grade serous carcinomas, which is in contrast to no detectable expression in healthy ovaries. In addition, we report that introduction of sfRon into OVCAR3 cells resulted in epithelial-to-mesenchymal transition, activation of the PI3K and PDK1 pathway, and inhibition of the MAPK pathway. We demonstrated that sfRon confers an aggressive cancer phenotype in vitro characterized by increased proliferation and migration, and decreased adhesion of ovarian cancer cells. Moreover, the in vivo studies show that OVCAR3 tumors expressing sfRon exhibit significantly more robust growth and spreading to the abdominal cavity when compared with the parental sfRon negative OVCAR3 cells. These data suggest that sfRon plays a significant role in ovarian cancer initiation and progression, and may represent a promising therapeutic target for ovarian cancer treatment.
Collapse
|
15
|
Fan Y, Wang Y, Wang K. Prostaglandin E2 stimulates normal bronchial epithelial cell growth through induction of c-Jun and PDK1, a kinase implicated in oncogenesis. Respir Res 2015; 16:149. [PMID: 26684827 PMCID: PMC4699375 DOI: 10.1186/s12931-015-0309-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/04/2015] [Indexed: 02/05/2023] Open
Abstract
Background Cyclooxygenase-2-derived prostaglandin E2 (PGE2), a bioactive eicosanoid, has been implicated in many biological processes including reproduction, inflammation and tumor growth. We previously showed that PGE2 stimulated lung cancer cell growth and progression through PGE2 receptor EP2/EP4-mediated kinase signaling pathways. However, the role of PGE2 in controlling lung airway epithelial cell phenotype remains unknown. We evaluated the effects of c-Jun and 3-phosphoinositede dependent protein kinase-1 (PDK1) in mediating epithelial cell hyperplasia induced by PGE2. Method The bronchial epithelial cell lines BEAS-2B and HBEc14-KT were cultured and then treated with PGE2. PDK1 small interfering RNA (siRNA) and a PDK1 inhibitor, an antagonist of the PGE2 receptor subtype EP4 and EP4 siRNA, c-Jun siRNA, and overexpressions of c-Jun and PDK1 have been used to evaluate the effects on cell proliferation. Results We demonstrated that PGE2 increased normal bronchial epithelial cell proliferation through induction of PDK1, an ankyrin repeat-containing Ser/Thr kinase implicated in the induction of apoptosis and the suppression of tumor growth. PDK1 siRNA and a PDK1 inhibitor blocked the effects of PGE2 on normal cell growth. The PGE2-induced PDK1 expression was blocked by an antagonist of the PGE2 receptor subtype EP4 and by EP4 siRNA. In addition, we showed that induction of PDK1 by PGE2 was associated with induction of the transcription factor, c-Jun protein. Silencing of c-Jun using siRNA and point mutations of c-Jun sites in the PDK1 gene promoter resulted in blockade of PDK1 expression and promoter activity induced by PGE2. In contrast, overexpression of c-Jun induced PDK1 gene promoter activity and expression followed increased cell proliferation. Conclusion PGE2 increases normal bronchial epithelial cell proliferation through increased PDK1 gene expression that is dependent on EP4 and induction of c-Jun. Therewith, our data suggest a new role of c-Jun and PDK1 in mediating epithelial cell hyperplasia induced by PGE2.
Collapse
Affiliation(s)
- Yu Fan
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China. .,Department of Radiotherapy, Sichuan Cancer Hospital, Chengdu, Sichuan Province, 610041, China.
| | - Ye Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Ke Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
16
|
PDK1: A signaling hub for cell migration and tumor invasion. Biochim Biophys Acta Rev Cancer 2015; 1856:178-88. [DOI: 10.1016/j.bbcan.2015.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/28/2015] [Indexed: 01/22/2023]
|
17
|
Hossen MJ, Kim SC, Yang S, Kim HG, Jeong D, Yi YS, Sung NY, Lee JO, Kim JH, Cho JY. PDK1 disruptors and modulators: a patent review. Expert Opin Ther Pat 2015; 25:513-37. [PMID: 25684022 DOI: 10.1517/13543776.2015.1014801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION 3-Phosphoinositide-dependent kinase 1 (PDK1) is a master regulator of the AGC protein kinase family and is a critical activator of multiple pro-survival and oncogenic protein kinases, for which it has garnered considerable interest as an oncology drug target. AREAS COVERED This manuscript reviews small molecule patent literature disclosures between October 2011 and September 2014 for both PDK1 activators and inhibitors and restates the selective patents published before September 2011. PDK1 modulators are organized according to pharmaceutical company and chemical structural class. EXPERT OPINION Many academic institutions and pharmaceutical companies continue to research into the development of small molecules that can function as PDK1 inhibitors or modulators. To date, >50 patent publications on PDK1 disruptors and modulators have been published since the protein was first discovered in 1998. Most of these molecules act as ATP mimetics, forming similar hydrogen bonding patterns to PDK1 as ATP and functioning as hydrophobic pharmacophores. To achieve selectivity in PDK1 inhibition, the discovery of binding pockets structurally distinctive from the ATP site is a challenging but promising strategy.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Sungkyunkwan University, Department of Genetic Engineering , 300 Chuncheon-Dong, Suwon 440-746 , Korea +82 31 290 7868 ; +82 31 290 7870 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Synthesis and biological evaluation of 2-anilino-4-substituted-7H-pyrrolopyrimidines as PDK1 inhibitors. Bioorg Med Chem 2014; 22:3879-86. [DOI: 10.1016/j.bmc.2014.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/30/2014] [Accepted: 06/08/2014] [Indexed: 11/20/2022]
|
19
|
Medina JR. Selective 3-Phosphoinositide-Dependent Kinase 1 (PDK1) Inhibitors: Dissecting the Function and Pharmacology of PDK1. J Med Chem 2013; 56:2726-37. [DOI: 10.1021/jm4000227] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jesús R. Medina
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|