1
|
Khatua R, Bhar B, Dey S, Jaiswal C, J V, Mandal BB. Advances in engineered nanosystems: immunomodulatory interactions for therapeutic applications. NANOSCALE 2024; 16:12820-12856. [PMID: 38888201 DOI: 10.1039/d4nr00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Advances in nanotechnology have led to significant progress in the design and fabrication of nanoparticles (NPs) with improved therapeutic properties. NPs have been explored for modulating the immune system, serving as carriers for drug delivery or vaccine adjuvants, or acting as therapeutics themselves against a wide range of deadly diseases. The combination of NPs with immune system-targeting moieties has facilitated the development of improved targeted immune therapies. Targeted delivery of therapeutic agents using NPs specifically to the disease-affected cells, distinguishing them from other host cells, offers the major advantage of concentrating the therapeutic effect and reducing systemic side effects. Furthermore, the properties of NPs, including size, shape, surface charge, and surface modifications, influence their interactions with the targeted biological components. This review aims to provide insights into these diverse emerging and innovative approaches that are being developed and utilized for modulating the immune system using NPs. We reviewed various types of NPs composed of different materials and their specific application for modulating the immune system. Furthermore, we focused on the mechanistic effects of these therapeutic NPs on primary immune components, including T cells, B cells, macrophages, dendritic cells, and complement systems. Additionally, a recent overview of clinically approved immunomodulatory nanomedicines and potential future perspectives, offering new paradigms of this field, is also highlighted.
Collapse
Affiliation(s)
- Rupam Khatua
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Victoria J
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
2
|
Roghani AK, Garcia RI, Roghani A, Reddy A, Khemka S, Reddy RP, Pattoor V, Jacob M, Reddy PH, Sehar U. Treating Alzheimer's disease using nanoparticle-mediated drug delivery strategies/systems. Ageing Res Rev 2024; 97:102291. [PMID: 38614367 DOI: 10.1016/j.arr.2024.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
The administration of promising medications for the treatment of neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) is significantly hampered by the blood-brain barrier (BBB). Nanotechnology has recently come to light as a viable strategy for overcoming this obstacle and improving drug delivery to the brain. With a focus on current developments and prospects, this review article examines the use of nanoparticles to overcome the BBB constraints to improve drug therapy for AD The potential for several nanoparticle-based approaches, such as those utilizing lipid-based, polymeric, and inorganic nanoparticles, to enhance drug transport across the BBB are highlighted. To shed insight on their involvement in aiding effective drug transport to the brain, methods of nanoparticle-mediated drug delivery, such as surface modifications, functionalization, and particular targeting ligands, are also investigated. The article also discusses the most recent findings on innovative medication formulations encapsulated within nanoparticles and the therapeutic effects they have shown in both preclinical and clinical testing. This sector has difficulties and restrictions, such as the need for increased safety, scalability, and translation to clinical applications. However, the major emphasis of this review aims to provide insight and contribute to the knowledge of how nanotechnology can potentially revolutionize the worldwide treatment of NDDs, particularly AD, to enhance clinical outcomes.
Collapse
Affiliation(s)
- Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA.
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ali Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA.
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Korucu Aktas P, Baysal I, Yabanoglu-Ciftci S, Lamprecht A, Arica B. Recent progress in drug delivery systems for tyrosine kinase inhibitors in the treatment of lung cancer. Int J Pharm 2024; 650:123703. [PMID: 38092263 DOI: 10.1016/j.ijpharm.2023.123703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
Lung cancer ranks as the second most commonly diagnosed cancer in both men and women worldwide. Despite the availability of diverse diagnostic and treatment strategies, it remains the leading cause of cancer-related deaths globally. The current treatment approaches for lung cancer involve the utilization of first generation (e.g., erlotinib, gefitinib) and second generation (e.g., afatinib) tyrosine kinase inhibitors (TKIs). These TKIs exert their effects by inhibiting a crucial enzyme called tyrosine kinase, which is responsible for cell survival signaling. However, their clinical effectiveness is hindered by limited solubility and oral bioavailability. Nanotechnology has emerged as a significant application in modern cancer therapy. Nanoparticle-based drug delivery systems, including lipid, polymeric, hybrid, inorganic, dendrimer, and micellar nanoparticles, have been designed to enhance the bioavailability, stability, and retention of these drugs within the targeted lung area. Furthermore, these nanoparticle-based delivery systems offer several advantages, such as increased therapeutic efficacy and reduced side effects and toxicity. This review focuses on the recent advancements in drug delivery systems for some of the most important TKIs, shedding light on their potential in improving lung cancer treatment.
Collapse
Affiliation(s)
- Pelinsu Korucu Aktas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ipek Baysal
- Vocational School of Health Services, Hacettepe University, Ankara,Turkey
| | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Germany
| | - Betul Arica
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
4
|
Imran H, Tang Y, Wang S, Yan X, Liu C, Guo L, Wang E, Xu C. Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review. Molecules 2023; 29:31. [PMID: 38202616 PMCID: PMC10780101 DOI: 10.3390/molecules29010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used for DOX delivery because of their biocompatibility, biodegradability, drug encapsulation efficiency, and target specificity. In this review, various types of chitosan derivatives are discussed in DDSs to enhance the effectiveness of cancer treatments. Modified chitosan-DOX NP drug deliveries with other compounds also increase the penetration and efficiency of DOX against tumor cells. We also highlight the endogenous stimuli (pH, redox, enzyme) and exogenous stimuli (light, magnetic, ultrasound), and their positive effect on DOX drug delivery via chitosan NPs. Our study sheds light on the importance of chitosan NPs for DOX drug delivery in cancer treatment and may inspire the development of more effective approaches for cancer chemotherapy.
Collapse
Affiliation(s)
- HafizMuhammad Imran
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Siyuan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Xiuzhang Yan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Erlei Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| |
Collapse
|
5
|
Gilani SJ, Bin-Jumah MN, Fatima F. Development of Statistically Optimized Piperine-Loaded Polymeric Nanoparticles for Breast Cancer: In Vitro Evaluation and Cell Culture Studies. ACS OMEGA 2023; 8:44183-44194. [PMID: 38027324 PMCID: PMC10666216 DOI: 10.1021/acsomega.3c06605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Piperine (PPN) is a natural alkaloid derived from black pepper (Piper nigrum L.) and has garnered substantial attention for its potential in breast cancer therapy due to its diverse pharmacological properties. However, its highly lipophilic characteristics and poor dissolution in biological fluids limit its clinical application. Therefore, to overcome this limitation, we formulate and evaluate PPN-encapsulated polycaprolactone (PCL) nanoparticles (PPN-PCL-NPs). The nanoparticles were prepared by a single-step nanoprecipitation method and further optimized by a formulation design approach. The influence of selected independent variables PCL (X1), poloxamer 188 (P-188; X2), and stirring speed (SS; X3) were investigated on the particle size (PS), polydispersity index (PDI), and % encapsulation efficiency (EE). The selected optimized nanoparticles were further assessed for stability, in vitro release, and in vitro antibreast cancer activity in the MCF-7 cancer cell line. The PS, PDI, zeta potential, and % EE of the optimized PPN-PCL-NPs were observed to be 107.61 ± 5.28 nm, 0.136 ± 0.011, -20.42 ± 1.82 mV, and 79.53 ± 5.22%, respectively. The developed PPN-PCL-NPs were stable under different temperature conditions with insignificant changes in their pharmaceutical attributes. The optimized PPN-PCL-NPs showed a burst release for the first 6 h and later showed sustained release for 48 h. The PPN-PCL-NPs exhibit exceptional cytotoxic effects in MCF-7 breast tumor cells in comparison with the native PPN. Thus, the formulation of PPN-loaded PCL-NPs can be a promising approach for better therapeutic efficacy against breast cancer.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department
of Basic Health Sciences, Foundation Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology
Department, College of Science, Princess
Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment
and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi
Society for Applied Science, Princess Nourah
Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Farhat Fatima
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
6
|
Korucu Aktas P, Baysal I, Yabanoglu-Ciftci S, Arica B. Development and In Vitro Evaluation of Crizotinib-Loaded Lipid-Polymer Hybrid Nanoparticles Using Box-Behnken Design in Non-small Cell Lung Cancer. AAPS PharmSciTech 2023; 24:178. [PMID: 37658977 DOI: 10.1208/s12249-023-02634-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
The goal of the study was to produce, optimize, characterize, and compare crizotinib-loaded lipid-polymer hybrid nanoparticles (CL-LPHNPs), representing a novel contribution to the existing literature, and to determine their anticancer activity in non-small cell lung cancer cells (NSCLC). Box-Behnken design was used to investigate the effect of three independent variables: polymer amount (X1), soy phosphatidylcholine (X2), and DSPE-PEG (X3), on three responses: particle size (Y1), polydispersity index (Y2), and zeta potential (Y3). Different parameters were evaluated on the optimized LPHNP formulations such as encapsulation efficiency, drug release study, transmission electron microscopy (TEM) image analysis, and in vitro cell evaluations. The mean particle size of the optimized formulation is between 120 and 220 nm with a PDI< 0.2 and a zeta potential of -10 to -15 mV. The encapsulation efficiency values of crizotinib-loaded PLGA-LPHNPs (CL-PLGA-LPHNPs) and crizotinib-loaded PCL-LPHNPs (CL-PCL-LPHNPs) were 79.25±0.07% and 70.93±1.81%, respectively. Drug release study of CL-PLGA-LPHNPs and CL-PCL-LPHNPs showed a controlled and sustained release pattern as a result of core-shell type. Additionally, after 48 h, CL-PLGA-LPHNPs and CL-PCL-LPHNPs significantly reduced the viability of NCI-H2228 cells compared to free crizotinib. Moreover, CL-PLGA-LPHNPs and CL-PCL-LPHNPs exhibited a significant decrease in RAS, RAF, MEK, and ERK gene/protein expression levels after 48-h incubation. In conclusion, this pioneering study introduces lipid-polymer hybrid nanoparticles containing crizotinib as a novel treatment approach, uniting the advantages of a polymeric core and a lipid shell. The successful formulation optimization using Box-Behnken design yielded nanoparticles with adjustable size, remarkable stability, high drug loading, and a customizable drug release profile. Extensive investigations of key parameters, including particle size, PDI, ZP, TEM analysis, drug release, EE%, and in vitro evaluations, validate the potential of these nanoparticles. Moreover, the examination of two different polymers, PLGA and PCL, highlights their distinct impacts on nanoparticle performance. This research opens up new prospects for advanced therapeutic interventions with lipid-polymer hybrid nanoparticles.
Collapse
Affiliation(s)
- Pelinsu Korucu Aktas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Ipek Baysal
- Vocational School of Health Services, Hacettepe University, Ankara, Turkey
| | | | - Betul Arica
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
7
|
Tian B, Hua S, Liu J. Multi-functional chitosan-based nanoparticles for drug delivery: Recent advanced insight into cancer therapy. Carbohydr Polym 2023; 315:120972. [PMID: 37230614 DOI: 10.1016/j.carbpol.2023.120972] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Cancer therapy continues to be a major global concern, with conventional treatments suffering from low efficacy, untargeted drug delivery, and severe side effects. Recent research in nanomedicine suggests that nanoparticles' unique physicochemical properties can be leveraged to surmount the limitations of conventional cancer treatment. Chitosan-based nanoparticles have gained significant attention due to their high drug-carrying capacity, non-toxicity, biocompatibility, and long circulation time. Chitosan is utilized in cancer therapies as a carrier to accurately deliver active ingredients to tumor sites. This review focuses on clinical studies and current market offerings of anticancer drugs. The unique nature of tumor microenvironments presents new opportunities for the development of smart drug delivery systems, and this review explores the design and preparation of chitosan-based smart nanoparticles. Further, we discuss the therapeutic efficacies of these nanoparticles based on various in vitro and in vivo findings. Finally, we present a forward-looking perspective on the challenges and prospects of chitosan-based nanoparticles in cancer therapy, intending to provide fresh ideas for advancing cancer treatment strategies.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Shiyao Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
8
|
Nimbalkar Y, Gharat SA, Tanna V, Nikam VS, Nabar S, Sawarkar SP. Modification and Functionalization of Polymers for Targeting to Bone Cancer and Bone Regeneration. Crit Rev Biomed Eng 2023; 51:21-58. [PMID: 37560878 DOI: 10.1615/critrevbiomedeng.2023043780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Bone is one of the most complex, inaccessible body structures, responsible for calcium storage and haematopoiesis. The second highest cause of death across the world is cancer. Amongst all the types of cancers, bone cancer treatment modalities are limited due to the structural complexity and inaccessibility of bones. The worldwide incidence of bone diseases and bone defects due to cancer, infection, trauma, age-related bone degeneration is increasing. Currently different conventional therapies are available for bone cancer such as chemotherapy, surgery and radiotherapy, but they have several disadvantages associated with them. Nanomedicine is being extensively researched as viable therapeutics to mitigate drug resistance in cancer therapy and promote bone regeneration. Several natural polymers such as chitosan, dextran, alginate, hyaluronic acid, and synthetic polymers like polyglycolic acid, poly(lactic-co-glycolic acid), polycaprolactone are investigated for their application in nanomedicine for bone cancer treatment and bone regeneration. Nanocarriers have shown promising results in preclinical experimental studies. However, they still face a major drawback of inadequate targetability. The paper summarizes the status of research and the progress made so far in modifications and functionalization of natural polymers for improving their site specificity and targeting for effective treatment of bone cancer and enhancing bone regeneration.
Collapse
Affiliation(s)
- Yogesh Nimbalkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Sankalp A Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Vidhi Tanna
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Vandana S Nikam
- Department of Pharmacology, STES's Smt. Kashibai Navale College of Pharmacy, Kondhwa, S.P. Pune University, Pune 411048, India
| | - Swapna Nabar
- Radiation Medicine Centre, Tata Memorial Hospital, Parel, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| |
Collapse
|
9
|
Imam SS, Gilani SJ, Bin Jumah MN, Rizwanullah M, Zafar A, Ahmed MM, Alshehri S. Harnessing Lipid Polymer Hybrid Nanoparticles for Enhanced Oral Bioavailability of Thymoquinone: In Vitro and In Vivo Assessments. Polymers (Basel) 2022; 14:3705. [PMID: 36145851 PMCID: PMC9504729 DOI: 10.3390/polym14183705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
The clinical application of phytochemicals such as thymoquinone (THQ) is restricted due to their limited aqueous solubility and oral bioavailability. Developing mucoadhesive nanocarriers to deliver these natural compounds might provide new hope to enhance their oral bioavailability. Herein, this investigation aimed to develop THQ-loaded lipid-polymer hybrid nanoparticles (THQ-LPHNPs) based on natural polymer chitosan. THQ-LPHNPs were fabricated by the nanoprecipitation technique and optimized by the 3-factor 3-level Box−Behnken design. The optimized LPHNPs represented excellent properties for ideal THQ delivery for oral administration. The optimized THQ-LPHNPs revealed the particles size (PS), polydispersity index (PDI), entrapment efficiency (%EE), and zeta potential (ZP) of <200 nm, <0.25, >85%, and >25 mV, respectively. THQ-LPHNPs represented excellent stability in the gastrointestinal milieu and storage stability in different environmental conditions. THQ-LPHNPs represented almost similar release profiles in both gastric as well as intestinal media with the initial fast release for 4 h and after that a sustained release up to 48 h. Further, the optimized THQ-LPHNPs represent excellent mucin binding efficiency (>70%). Cytotoxicity study revealed much better anti-breast cancer activity of THQ-LPHNPs compared with free THQ against MDA-MB-231 and MCF-7 breast cancer cells. Moreover, ex vivo experiments revealed more than three times higher permeation from the intestine after THQ-LPHNPs administration compared to the conventional THQ suspension. Furthermore, the THQ-LPHNPs showed 4.74-fold enhanced bioavailability after oral administration in comparison with the conventional THQ suspension. Therefore, from the above outcomes, mucoadhesive LPHNPs might be suitable nano-scale carriers for enhanced oral bioavailability and therapeutic efficacy of highly lipophilic phytochemicals such as THQ.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Thobakgale L, Ombinda-Lemboumba S, Mthunzi-Kufa P. Chemical Sensor Nanotechnology in Pharmaceutical Drug Research. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2688. [PMID: 35957119 PMCID: PMC9370582 DOI: 10.3390/nano12152688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The increase in demand for pharmaceutical treatments due to pandemic-related illnesses has created a need for improved quality control in drug manufacturing. Understanding the physical, biological, and chemical properties of APIs is an important area of health-related research. As such, research into enhanced chemical sensing and analysis of pharmaceutical ingredients (APIs) for drug development, delivery and monitoring has become immensely popular in the nanotechnology space. Nanomaterial-based chemical sensors have been used to detect and analyze APIs related to the treatment of various illnesses pre and post administration. Furthermore, electrical and optical techniques are often coupled with nano-chemical sensors to produce data for various applications which relate to the efficiencies of the APIs. In this review, we focus on the latest nanotechnology applied to probing the chemical and biochemical properties of pharmaceutical drugs, placing specific interest on several types of nanomaterial-based chemical sensors, their characteristics, detection methods, and applications. This study offers insight into the progress in drug development and monitoring research for designing improved quality control methods for pharmaceutical and health-related research.
Collapse
Affiliation(s)
- Lebogang Thobakgale
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of Kwa-Zulu Natal, University Road, Westville, Durban 3630, South Africa
| | - Saturnin Ombinda-Lemboumba
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Patience Mthunzi-Kufa
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of Kwa-Zulu Natal, University Road, Westville, Durban 3630, South Africa
| |
Collapse
|
11
|
Chaturvedi S, Garg A. A comprehensive review on novel delivery approaches for exemestane. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
13
|
Wang X, Cao W, Sun C, Wang Y, Wang M, Wu J. Development of pH-sensitive dextran-based methotrexate nanodrug for rheumatoid arthritis therapy through inhibition of JAK-STAT pathways. Int J Pharm 2022; 622:121874. [PMID: 35636630 DOI: 10.1016/j.ijpharm.2022.121874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 11/08/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic and symmetrical autoimmune disease that primarily characterized with articular synovial hyperplasia, joint swelling, cartilage and bone destruction. The in-depth understanding of the role of immune signaling pathway inhibitors provides inspiration for the construction of new and more effective strategy for RA therapy. In this study, by loading methotrexate (MTX) into an acetalated dextran biopolymer, AcDEX, we developed a pH-sensitive, MTX-loaded and molecularly targeted nanodrug MTX@pH-AcDEX NPs) to decrease the toxicity of MTX and simultaneously enhance its therapeutic effect. The resultant MTX@pH-AcDEX NPs showed the spherical morphology and notable pH-responsiveness with high drug loading of 88.32%. As demonstrated in vitro and in vivo, the reduced cytotoxicity of both RAW264.7 cells and LPS-activated RAW264.7 cells treated with MTX@pH-AcDEX NPs was found compared to free MTX. Upon intravenous administration into adjuvant-induced arthritis (AIA) rat model, the nanodrug had potent pharmacokinetic and pharmacodynamic profiles, which can accumulate in RA lesions and release MTX inhibitors for regulating the JAK-STAT pathways. As a result, the MTX@pH-AcDEX NPs achieved the cartilage and bone protective and a better anti-inflammatory effect with negligible systemic toxicity, suggesting the strong potential of safe and effective nanodrug for RA therapy as well as other autoimmune diseases.
Collapse
Affiliation(s)
- Xianbin Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Wenjun Cao
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Chuanfen Sun
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Yutie Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Mingyu Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China.
| | - Jiarong Wu
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China.
| |
Collapse
|
14
|
Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, Wang L, Sun T, Li N, Han L, Shi J, Huang Y, Guo W, Peng S, Zhou W, Gao H. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Podkościelna B, Klimek K, Karczmarzyk Z, Wysocki W, Brodacka M, Serafin K, Kozyra P, Kowalczuk D, Ginalska G, Pitucha M. Polymer microspheres modified with pyrazole derivatives as potential agents in anticancer therapy – preliminary studies. Bioorg Chem 2022; 123:105765. [DOI: 10.1016/j.bioorg.2022.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
|
16
|
Nokhodi F, Nekoei M, Goodarzi MT. Hyaluronic acid-coated chitosan nanoparticles as targeted-carrier of tamoxifen against MCF7 and TMX-resistant MCF7 cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:24. [PMID: 35157166 PMCID: PMC8843906 DOI: 10.1007/s10856-022-06647-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/17/2022] [Indexed: 05/07/2023]
Abstract
Tamoxifen (TMX) is used to treat hormone-receptor-positive breast cancers at early stages. This research aimed to assess the potential of NPs in targeted delivery of TMX against MCF7 and TMX-resistant MCF7 breast cancer cell lines. For this purpose, a targeted delivery system including chitosan NPs coated with hyaluronic acid (HA-CS NPs) was created and examined in vitro. Chitosan NPs were first fabricated and loaded with TMX using the ionic-gelation method to prepare a drug-delivery system. Then, TMX-loaded CS NPs were coated by crosslinking the amino groups of chitosan to the carboxylic group of hyaluronic acid. The developed TMX delivery system was then optimized and characterized for particle fabrication, drug release, and targeting against cancer cells. The HA-CS particle size was 210 nm and its zeta potential was +25 mv. The encapsulation efficiency of TMX in NPs was 55%. TMX released from the NPs in acidic pH (5-6) was higher than the physiological pH (7.4). The cytotoxic effect of TMX-loaded HA-CS NPs on MCF7 and TMX-resistant MCF7 cells was significantly higher than TMX-loaded CS NPs and free drug. The findings confirmed the significant suppressive impact of TMX-loaded HA-CS NPs on MCF7 and TMX-resistant MCF7 cancer cells compared to the TMX-loaded CS NPs and free TMX. Graphical abstract.
Collapse
Affiliation(s)
- Fariba Nokhodi
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Mehdi Nekoei
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | |
Collapse
|
17
|
Mundel R, Thakur T, Chatterjee M. Emerging uses of PLA-PEG copolymer in cancer drug delivery. 3 Biotech 2022; 12:41. [PMID: 35070631 PMCID: PMC8748584 DOI: 10.1007/s13205-021-03105-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
Traditional therapies need high systematic dosages that not only destroys cancerous cells but also healthy cells. To overcome this problem recent advancement in nanotechnology specifically in nanomaterials has been extensively done for various biological applications, such as targeted drug delivery. Nanotechnology, as a frontier science, has the potential to break down all the obstacles to be more effective and secure drug delivery system. It is possible to develop nanopolymer based drug carrier that can target drugs with extreme accuracy. Polymers can advance drug delivery technologies by allowing controlled release of therapeutic drugs in stable amounts over long duration of time. For controlled drug delivery, biodegradable synthetic polymers have various benefits over non-biodegradable polymers. Biodegradable polymer either are less toxic or non-toxic. Polylactic Acid (PLA) is one of the most remarkable amphipathic polymers which make it one of the most suitable materials for polymeric micelles. Amphiphilic nanomaterial, such as Polyethylene Glycol (PEG), is one of the most promising carrier for tumor targeting. PLA-PEG as a copolymer has been generally utilized as drug delivery system for the various types of cancer. Chemotherapeutic drugs are stacked into PLA-PEG copolymer and as a result their duration time delays, hence medications arrive at specific tumor site.
Collapse
Affiliation(s)
- Rohit Mundel
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Sector-25, South Campus, Chandigarh, 160014 India
| | - Tanya Thakur
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Sector-25, South Campus, Chandigarh, 160014 India
| | - Mary Chatterjee
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Sector-25, South Campus, Chandigarh, 160014 India
| |
Collapse
|
18
|
Ramalho MJ, Loureiro JA, Coelho MAN, Pereira MC. Transferrin Receptor-Targeted Nanocarriers: Overcoming Barriers to Treat Glioblastoma. Pharmaceutics 2022; 14:pharmaceutics14020279. [PMID: 35214012 PMCID: PMC8880499 DOI: 10.3390/pharmaceutics14020279] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal type of brain tumor, and the clinically available approaches for its treatment are not curative. Despite the intensive research, biological barriers such as the blood–brain barrier (BBB) and tumor cell membranes are major obstacles to developing novel effective therapies. Nanoparticles (NPs) have been explored as drug delivery systems (DDS) to improve GBM therapeutic strategies. NPs can circumvent many of the biological barriers posed by this devastating disease, enhancing drug accumulation in the target site. This can be achieved by employing strategies to target the transferrin receptor (TfR), which is heavily distributed in BBB and GBM cells. These targeting strategies comprise the modification of NPs’ surface with various molecules, such as transferrin (Tf), antibodies, and targeting peptides. This review provides an overview and discussion on the recent advances concerning the strategies to target the TfR in the treatment of GBM, as their benefits and limitations.
Collapse
|
19
|
Mancipe JMA, Lobianco FA, Dias ML, da Silva Moreira Thiré RM. Electrospinning: New Strategies for the Treatment of Skin Melanoma. Mini Rev Med Chem 2022; 22:564-578. [PMID: 34254914 DOI: 10.2174/1389557521666210712111809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
Recent studies have shown a significant growth of skin cancer cases in northern regions of the world, in which its presence was not common. Skin cancer is one of the cancers that mostly affects the world's population, ranking fifth in studies conducted in the United States (USA). Melanoma is cancer that has the highest number of deaths worldwide since it is the most resistant skin cancer to current treatments. This is why alternatives for its treatment has been investigated considering nanomedicine concepts. This study approaches the role of this field in the creation of promising electrospun devices, composed of nanoparticles and nanofibers, among other structures, capable of directing and/or loading active drugs and/or materials with the objective of inhibiting the growth of melanoma cells or even eliminating those cells.
Collapse
Affiliation(s)
- Javier Mauricio Anaya Mancipe
- Programa de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro - PEMM/COPPE/ UFRJ, Rio de Janeiro, RJ. Brazil
- Instituto de Macromolécula Professora Eloisa Mano, Universidade Federal do Rio de Janeiro - IMA/UFRJ, Rio de Janeiro, RJ. Brazil
| | - Franz Acker Lobianco
- Programa de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro - PEMM/COPPE/ UFRJ, Rio de Janeiro, RJ. Brazil
| | - Marcos Lopes Dias
- Instituto de Macromolécula Professora Eloisa Mano, Universidade Federal do Rio de Janeiro - IMA/UFRJ, Rio de Janeiro, RJ. Brazil
| | | |
Collapse
|
20
|
Nanocarriers as a Tool for the Treatment of Colorectal Cancer. Pharmaceutics 2021; 13:pharmaceutics13081321. [PMID: 34452282 PMCID: PMC8399070 DOI: 10.3390/pharmaceutics13081321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is a promising tool for the treatment of cancer. In the past decades, major steps have been made to bring nanotechnology into the clinic in the form of nanoparticle-based drug delivery systems. The great hope of drug delivery systems is to reduce the side effects of chemotherapeutics while simultaneously increasing the efficiency of the therapy. An increased treatment efficiency would greatly benefit the quality of life as well as the life expectancy of cancer patients. However, besides its many advantages, nanomedicines have to face several challenges and hurdles before they can be used for the effective treatment of tumors. Here, we give an overview of the hallmarks of cancer, especially colorectal cancer, and discuss biological barriers as well as how drug delivery systems can be utilized for the effective treatment of tumors and metastases.
Collapse
|
21
|
Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm 2021; 165:219-243. [PMID: 33979661 DOI: 10.1016/j.ejpb.2021.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Extensive research into prodrug modification of active pharmaceutical ingredients and nanoparticle drug delivery systems has led to unprecedented levels of control over the pharmacological properties of drugs and resulted in the approval of many prodrug or nanoparticle-based therapies. In recent years, the combination of these two strategies into prodrug-based nanoparticle drug delivery systems (PNDDS) has been explored as a way to further advance nanomedicine and identify novel therapies for difficult-to-treat indications. Many of the PNDDS currently in the clinical development pipeline are expected to enter the market in the coming years, making the rapidly evolving field of PNDDS highly relevant to pharmaceutical scientists. This review paper is intended to introduce PNDDS to the novice reader while also updating those working in the field with a comprehensive summary of recent efforts. To that end, first, an overview of FDA-approved prodrugs is provided to familiarize the reader with their advantages over traditional small molecule drugs and to describe the chemistries that can be used to create them. Because this article is part of a themed issue on nanoparticles, only a brief introduction to nanoparticle-based drug delivery systems is provided summarizing their successful application and unfulfilled opportunities. Finally, the review's centerpiece is a detailed discussion of rationally designed PNDDS formulations in development that successfully leverage the strengths of prodrug and nanoparticle approaches to yield highly effective therapeutic options for the treatment of many diseases.
Collapse
|
22
|
Levit SL, Tang C. Polymeric Nanoparticle Delivery of Combination Therapy with Synergistic Effects in Ovarian Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1048. [PMID: 33923947 PMCID: PMC8072532 DOI: 10.3390/nano11041048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Treatment of ovarian cancer is challenging due to late stage diagnosis, acquired drug resistance mechanisms, and systemic toxicity of chemotherapeutic agents. Combination chemotherapy has the potential to enhance treatment efficacy by activation of multiple downstream pathways to overcome drug resistance and reducing required dosages. Sequence of delivery and the dosing schedule can further enhance treatment efficacy. Formulation of drug combinations into nanoparticles can further enhance treatment efficacy. Due to their versatility, polymer-based nanoparticles are an especially promising tool for clinical translation of combination therapies with tunable dosing schedules. We review polymer nanoparticle (e.g., micelles, dendrimers, and lipid nanoparticles) carriers of drug combinations formulated to treat ovarian cancer. In particular, the focus on this review is combinations of platinum and taxane agents (commonly used first line treatments for ovarian cancer) combined with other small molecule therapeutic agents. In vitro and in vivo drug potency are discussed with a focus on quantifiable synergistic effects. The effect of drug sequence and dosing schedule is examined. Computational approaches as a tool to predict synergistic drug combinations and dosing schedules as a tool for future nanoparticle design are also briefly discussed.
Collapse
Affiliation(s)
- Shani L Levit
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
23
|
Mumtaz SM, Bhardwaj G, Goswami S, Tonk RK, Goyal RK, Abu-Izneid T, Pottoo FH. Management of Glioblastoma Multiforme by Phytochemicals: Applications of Nanoparticle-Based Targeted Drug Delivery System. Curr Drug Targets 2021; 22:429-442. [PMID: 32718288 DOI: 10.2174/1389450121666200727115454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhorts tumors of star-shaped glial cells in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorders like neurofibromatosis and schwannomatosis, which develop the tumor in the nervous system. The management of GBM with chemo-radiotherapy leads to resistance, and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind the failure of drugs are due to DNA alkylation in the cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bioactive compounds from plants referred as phytochemicals, serve as vital sources for anti-cancer drugs. Some prototypical examples include taxol analogs, vinca alkaloids (vincristine, vinblastine), podophyllotoxin analogs, camptothecin, curcumin, aloe-emodin, quercetin, berberine etc. These phytochemicals often regulate diverse molecular pathways, which are implicated in the growth and progression of cancers. However, the challenges posed by the presence of BBB/BBTB to restrict the passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review, we integrated nanotech as a novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.
Collapse
Affiliation(s)
- Sayed M Mumtaz
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Shikha Goswami
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Ramesh K Goyal
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
24
|
Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol 2021; 12:601626. [PMID: 33613290 PMCID: PMC7887387 DOI: 10.3389/fphar.2021.601626] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Advances in nanotechnology have favored the development of novel colloidal formulations able to modulate the pharmacological and biopharmaceutical properties of drugs. The peculiar physico-chemical and technological properties of nanomaterial-based therapeutics have allowed for several successful applications in the treatment of cancer. The size, shape, charge and patterning of nanoscale therapeutic molecules are parameters that need to be investigated and modulated in order to promote and optimize cell and tissue interaction. In this review, the use of polymeric nanoparticles as drug delivery systems of anticancer compounds, their physico-chemical properties and their ability to be efficiently localized in specific tumor tissues have been described. The nanoencapsulation of antitumor active compounds in polymeric systems is a promising approach to improve the efficacy of various tumor treatments.
Collapse
Affiliation(s)
- Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Elena Giuliano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eeda Venkateswararao
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
25
|
|
26
|
Biodegradable diblock copolymeric PEG-PCL nanoparticles: Synthesis, characterization and applications as anticancer drug delivery agents. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122901] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Bagheri N, Mansour Lakouraj M, Nabavi SR, Tashakkorian H, Mohseni M. Synthesis of bioactive polyaniline- b-polyacrylic acid copolymer nanofibrils as an effective antibacterial and anticancer agent in cancer therapy, especially for HT29 treatment. RSC Adv 2020; 10:25290-25304. [PMID: 35517464 PMCID: PMC9055239 DOI: 10.1039/d0ra03779f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
In this work, a new highly water-soluble copolymer of polyacrylic acid with polyaniline is introduced. Acrylic acid was polymerized via the Reversible Addition Fragmentation Chain Transfer method (RAFT) in the presence of an initiator and the obtained polyacrylic acid was copolymerized with aniline at room temperature. As the main achievements of this work, the resulting block copolymer with nanosized structure revealed favorable solubility in polar solvents, as well as excellent antibacterial and anticancer activities. Therefore, it is an appropriate candidate for medical applications such as wound healing and cancer therapy, especially in HT29 treatment.
Collapse
Affiliation(s)
- Nazanin Bagheri
- Polymer Chemistry Laboratory, Department of Organic-Polymer Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar 47416 Iran
| | - Moslem Mansour Lakouraj
- Polymer Chemistry Laboratory, Department of Organic-Polymer Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar 47416 Iran
| | - Seyed Reza Nabavi
- Departments of Applied Chemistry, University of Mazandaran Babolsar 47416 Iran
| | - Hamed Tashakkorian
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Mojtaba Mohseni
- Departments of Microbiology, Faculty of Basic Science, University of Mazandaran Babolsar 47416 Iran
| |
Collapse
|
28
|
Nanodelivery of nitazoxanide: impact on the metabolism of Taenia crassiceps cysticerci intracranially inoculated in mice. Ther Deliv 2020; 11:329-339. [PMID: 32486970 DOI: 10.4155/tde-2020-0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To formulate nanocapsules and nanoemulsions of nitazoxanide (NTZ) and evaluate the metabolic effect on Taenia crassiceps cysticerci inoculated intracranially into mice. Materials & methods: NTZ nanosystems were formulated through solvent diffusion methodology. These nanoformulations were administered perorally and their impact on glycolysis, the tricarboxylic acid cycle and fatty acid metabolism in T. crassiceps cysticerci was investigated. Results: Gluconeogenesis and protein catabolism were significantly increased by the nanoformulations when compared with the control group and the NTZ-treated group. All the other metabolic pathways were inhibited by the nanoformulation treatments. Conclusion: The remarkable metabolic modifications that occur in this in vivo model through the application of these developed nanosystems confirm their capability to deliver NTZ into targeted tissues.
Collapse
|