1
|
Xu C, Liu Y, Li K, Zhang J, Wei B, Wang H. Absorption of food-derived peptides: Mechanisms, influencing factors, and enhancement strategies. Food Res Int 2024; 197:115190. [PMID: 39593400 DOI: 10.1016/j.foodres.2024.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Food-derived peptides (FPs) are bioactive molecules produced from dietary proteins through enzymatic hydrolysis or fermentation. These peptides exhibit various biological activities. However, their efficacy largely depends on bioavailability, the ability to cross absorption barriers, and reach target sites within the body. This review addresses key issues in FP absorption, including barriers, pathways, influencing factors, and strategies to enhance absorption. The biochemical and physical barriers to FP absorption include pH variations, enzymes, unstirred water layer, mucus layer, and intestinal epithelial cells. FPs enter the bloodstream via four main pathways: carrier-mediated transport, endocytosis, paracellular, and passive diffusion. The barrier-crossing efficiency depends on the structural properties and state of FPs and coexisting substances. Absorption efficiency can be significantly improved with permeability enhancers, nano-delivery systems, and chemical modifications. These insights provide a scientific basis and practical guidance for optimizing the bioactivity and health benefits of food-derived peptides.
Collapse
Affiliation(s)
- Chengzhi Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yuting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Ke Li
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Juntao Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China.
| |
Collapse
|
2
|
Zhang K, Zhao C, Liu K, Feng R, Zhao Y, Zong Y, Du R. Oral Administration of Deer Bone Collagen Peptide Can Enhance the Skin Hydration Ability and Antioxidant Ability of Aging Mice Induced by D-Gal, and Regulate the Synthesis and Degradation of Collagen. Nutrients 2024; 16:1548. [PMID: 38892482 PMCID: PMC11174718 DOI: 10.3390/nu16111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Skin problems caused by aging have attracted much attention, and marine collagen peptides have been proved to improve these problems, while mammalian collagen peptides are rarely reported. In this study, fermented deer bone collagen peptide (FCP) and non-fermented deer bone collagen peptide (NCP) were extracted from fermented and non-fermented deer bone, respectively, and their peptide sequences and differential proteins were analyzed using LC-MS/MS technology. After they were applied to aging mice induced with D-gal, the skin hydration ability, antioxidant ability, collagen synthesis, and degradation ability of the mice were studied. The results show that FCP and NCP are mainly peptides that constitute type Ⅰ collagen, and their peptide segments are different. In vivo experiments show that FCP and NCP can improve the richness of collagen fibers in the skin of aging mice; improve the hydration ability of skin; promote the activity of antioxidant-related enzymes; and also show that through the TGF-β and MAPK pathways, the synthesis and degradation of collagen in skin are regulated. These results show that deer bone collagen peptide can improve skin problems caused by aging, promote skin hydration and antioxidant capacity of aging mice, and regulate collagen synthesis and degradation through the MAPK pathway.
Collapse
Affiliation(s)
- Ke Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
| | - Chenxu Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
| | - Kaiyue Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
| | - Ruyi Feng
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
| | - Yan Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Safety, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Zhang Y, Chen Y, Liu Z, Peng X, Lu J, Wang K, Zhang L. Encapsulation of a novel peptide derived from histatin-1 in liposomes against initial enamel caries in vitro and in vivo. Clin Oral Investig 2023; 28:35. [PMID: 38147166 DOI: 10.1007/s00784-023-05465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVES Biomimetic mineralization mediated by proteins and peptides is a promising strategy for enamel repair, and its specific application model needs more research. In this work, we exploited a liposomal delivery system for a novel peptide (DK5) derived from histatin-1 (DK5-Lips) as a new biomimetic mineralization strategy against initial enamel caries. MATERIALS AND METHODS The DK5-Lips was prepared using calcium acetate gradient method and then the in vitro release, salivary stability, and cytotoxicity were studied. Initial enamel caries was created in bovine enamel blocks and subjected to pH-cycling model treated with DK5-Lips. Surface microhardness testing, polarized light microscopy (PLM), and transverse microradiography (TMR) were analyzed. Then the biocompatibility of DK5-Lips was evaluated in the caries model of Sprague-Dawley rats, and the anti-caries effect was assessed using Micro-CT analysis, Keyes scores, and PLM in vivo. RESULTS DK5-Lips provided a mean particle size of (97.63 ± 4.94)nm and encapsulation efficiency of (61.46 ± 1.44)%, exhibiting a sustained release profile, excellent stability in saliva, and no significant toxicity on human gingival fibroblasts (HGFs). The DK5-Lips group had higher surface microhardness recovery, shallower caries depth, and less mineral loss in bovine enamel. Animal experiments showed higher volume and density values of residual molar enamel, lower Keyes score, and shallower lesion depth of the DK5-Lips group with good biocompatibility. CONCLUSION As a safe and effective application model, DK5-Lips could significantly promote the remineralization of initial enamel caries both in vitro and in vivo. CLINICAL RELEVANCE The potential of liposome utilization as vehicle for oral delivery of functional peptides may provide a new way for enamel restoration.
Collapse
Grants
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
Collapse
Affiliation(s)
- Yinmo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
| | - Yue Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
- Department of Stomatology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Science, Beijing, China
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
| | - Xiu Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
| | - Junzhuo Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China.
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China.
| |
Collapse
|
4
|
Pratap-Singh A, Guo Y, Baldelli A, Singh A. Concept for a Unidirectional Release Mucoadhesive Buccal Tablet for Oral Delivery of Antidiabetic Peptide Drugs Such as Insulin, Glucagon-like Peptide 1 (GLP-1), and their Analogs. Pharmaceutics 2023; 15:2265. [PMID: 37765234 PMCID: PMC10534625 DOI: 10.3390/pharmaceutics15092265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
Injectable peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists are being increasingly used for the treatment of diabetes. Currently, the most common route of administration is injection, which is linked to patient discomfort as well as being subjected to refrigerated storage and the requirement for efficient supply chain logistics. Buccal and sublingual routes are recognized as valid alternatives due to their high accessibility and easy administration. However, there can be several challenges, such as peptide selection, drug encapsulation, and delivery system design, which are linked to the enhancement of drug efficacy and efficiency. By using hydrophobic polymers that do not dissolve in saliva, and by using neutral or positively charged nanoparticles that show better adhesion to the negative charges generated by the sialic acid in the mucus, researchers have attempted to improve drug efficiency and efficacy in buccal delivery. Furthermore, unidirectional films and tablets seem to show the highest bioavailability as compared to sprays and other buccal delivery vehicles. This advantageous attribute can be attributed to their capability to mitigate the impact of saliva and inadvertent gastrointestinal enzymatic digestion, thereby minimizing drug loss. This is especially pertinent as these formulations ensure a more directed drug delivery trajectory, leading to heightened therapeutic outcomes. This communication describes the current state of the art with respect to the creation of nanoparticles containing peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists, and theorizes the production of mucoadhesive unidirectional release buccal tablets or films. Such an approach is more patient-friendly and can improve the lives of millions of diabetics around the world; in addition, these shelf-stable formulations ena a more environmentally friendly and sustainable supply chain network.
Collapse
Affiliation(s)
- Anubhav Pratap-Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yigong Guo
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| | - Alberto Baldelli
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Anika Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| |
Collapse
|
5
|
In situ rearranged multifunctional lipid nanoparticles via synergistic potentiation for oral insulin delivery. Int J Pharm 2023; 636:122811. [PMID: 36894044 DOI: 10.1016/j.ijpharm.2023.122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/13/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Oral administration of therapeutic peptides/proteins (TPPs) is confronted with multiple gastrointestinal (GI) barriers such as mucus and intestinal epithelium, and the first-pass metabolism in the liver is also responsible for low bioavailability. In situ rearranged multifunctional lipid nanoparticles (LNs) were developed to overcome these obstacles via synergistic potentiation for oral insulin delivery. After the reverse micelles of insulin (RMI) containing functional components were gavaged, LNs formed in situ under the hydration effect of GI fluid. The nearly electroneutral surface generated by the rearrangement of sodium deoxycholate (SDC) and chitosan (CS) on the reverse micelle core facilitated LNs (RMI@SDC@SB12-CS) to overcome mucus barrier and the sulfobetaine 12 (SB12) modification further promoted epithelial uptake of LNs. Subsequently, chylomicron-like particles formed by the lipid core in the intestinal epithelium were easily transported to the lymphatic circulation and then into the systemic circulation, thus avoiding hepatic first-pass metabolism. Eventually, RMI@SDC@SB12-CS achieved a high pharmacological bioavailability of 13.7% in diabetic rats. In conclusion, this study provides a versatile platform for enhanced oral insulin delivery.
Collapse
|
6
|
Kanugo A, Dugad T. Design Optimization and Evaluation of Solid Lipid Nanoparticles of Azelnidipine for the treatment of Hypertension. RECENT PATENTS ON NANOTECHNOLOGY 2022; 18:NANOTEC-EPUB-127079. [PMID: 36278461 DOI: 10.2174/1872210517666221019102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Solid lipid nanoparticles (SLN) are the most promising lipid-based drug delivery utilized for enhancing the solubility, bioavailability, and therapeutic efficacy of poorly water-soluble molecules. Azelnidipine (AZN) is a calcium channel blocker widely recommended for the treatment of high blood pressure but its activity is restricted due to high lipophilicity and poor solubility in the GIT. The current research focused on the development of the SLN of AZN and thereby improving the absorption, bioavailability, and therapeutic efficacy in hypertension which is a leading cause of death worldwide. Recent patents on SLN was available as U.S. Patent,10,973,798B2, U.S. Patent 10,251,960B2, U.S. Patent 2021/0069121A1, U.S. Patent 2022/0151945A1. METHODS SLN was developed by hot melt emulsification and ultrasonication method using glyceryl monostearate (GMS) as solid lipid and Poloxamer 188 as a surfactant for the stabilization of colloidal dispersion. RESULTS Box-Behnken model was utilized which predicted 13 batches in which concentration of GMS (X1), Poloxamer 188 (X2) and sonication time (X3) were considered as independent parameters. The particle size (Y1) and entrapment efficiency (Y2) were dependable parameters and optimized batch F2 showed a particle size of 166.4 nm, polydispersity index of 0.40 and zeta potential of -13.7 mV. The entrapment efficiency was observed at 86.21 %. FTIR spectra confirm the identity and compatibility with the formulation components. The differential scanning calorimetry (DSC) confirmed the absence of melting point and interpreted that AZN was entirely incorporated in the lipid matrix and transformed from crystalline to amorphous form. The ANOVA for the particle size (p-value: 0.0203), % EE (p-value: 0.0271) was found significant. The in-vitro drug release showed a sustained release pattern for about 12 h. The AZN-loaded SLN was lyophilized and intended for oral delivery. CONCLUSION AZN-loaded SLN was developed by the hot melt emulsification method which accelerated the solubility and bioavailability and released in a sustained manner for treating hypertension.
Collapse
Affiliation(s)
- Abhishek Kanugo
- SVKM's NMIMS School of Pharmacy and Technology Management Shirpur, Dhule, India-425405
| | - Tejas Dugad
- Department of Pharmaceutics, SVKM NMIMS SPTM Shirpur, Dhule, India-425405
| |
Collapse
|
7
|
Zheng X, Yang N, Mao R, Hao Y, Teng D, Wang J. Pharmacokinetics and Pharmacodynamics of Fungal Defensin NZX Against Staphylococcus aureus-Induced Mouse Peritonitis Model. Front Microbiol 2022; 13:865774. [PMID: 35722282 PMCID: PMC9198545 DOI: 10.3389/fmicb.2022.865774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most common pathogenic bacteria responsible for causing a life-threatening peritonitis disease. NZX, as a variant of fungal defensin plectasin, displayed potent antibacterial activity against S. aureus. In this study, the antibacterial and resistance characteristics, pharmacokinetics, and pharmacodynamics of NZX against the S. aureus E48 and S. aureus E48-induced mouse peritonitis model were studied, respectively. NZX exhibited a more rapid killing activity to S. aureus (minimal inhibitory concentration, 1 μg/ml) compared with linezolid, ampicillin and daptomycin, and serial passaging of S. aureus E48 for 30 days at 1/2 × MIC, NZX had a lower risk of resistance compared with ampicillin and daptomycin. Also, it displayed a high biocompatibility and tolerance to physiological salt, serum environment, and phagolysosome proteinase environment, except for acid environment in phagolysosome. The murine serum protein-binding rate of NZX was 89.25% measured by ultrafiltration method. Based on the free NZX concentration in serum after tail vein administration, the main pharmacokinetic parameters for T1/2, Cmax, Vd, MRT, and AUC ranged from 0.32 to 0.45 h, 2.85 to 20.55 μg/ml, 1469.10 to 2073.90 ml/kg, 0.32 to 0.56 h, and 1.11 to 8.89 μg.h/ml, respectively. Additionally, the in vivo pharmacodynamics against S. aureus demonstrated that NZX administrated two times by tail vein at 20 mg/kg could rescue all infected mice in the lethal mouse peritonitis model. And NZX treatment (20 mg/kg) significantly reduced CFU counts in the liver, lung, and spleen, especially for intracellular bacteria in the peritoneal fluid, which were similar or superior to those of daptomycin. In vivo efficacies of NZX against total bacteria and intracellular bacteria were significantly correlated with three PK/PD indices of ƒAUC/MIC, ƒCmax/MIC, and ƒT% > MIC analyzed by a sigmoid maximum-effect model. These results showed that NZX may be a potential candidate for treating peritonitis disease caused by intracellular S. aureus.
Collapse
Affiliation(s)
- Xueling Zheng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
8
|
Kanugo A, Gautam RK, Kamal MA. Recent advances of nanotechnology in the diagnosis and therapy of triple-negative breast cancer (TNBC). Curr Pharm Biotechnol 2021; 23:1581-1595. [PMID: 34967294 DOI: 10.2174/1389201023666211230113658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of advanced treatment of triple-negative breast cancer (TNBC) is the utmost need of an era. TNBC is recognized as the most aggressive, metastatic cancer and the leading cause of mortality in females worldwide. The lack of expression of triple receptors namely, estrogen, progesterone, and human epidermal receptor2 defined TNBC. OBJECTIVE The current review introduced the novel biomarkers such as miRNA and family, PD1, EGFR, VEGF, TILs, P53, AR and PI3K, etc. contributed significantly to the prognosis and diagnosis of TNBC. Once diagnosed the utilization advanced approaches available for TNBC because of the limitations of chemotherapy. Novel approaches include lipid-based (liposomes, SLN, NLC, and SNEDDS), polymer-based (micelle, nanoparticles, dendrimers, and quantum dots), advanced nanocarriers such as (exosomes, antibody and peptide-drug conjugates), carbon-based nanocarriers (Carbon nanotubes, and graphene oxide). Lipid-based delivery is used for excellent carriers for hydrophobic drugs, biocompatibility, and lesser systemic toxicities than chemotherapeutic agents. Polymer-based approaches are preferred over lipids for providing longer circulation time, nanosize, high loading efficiency, high linking; avoiding the expulsion of drugs, targeted action, diagnostic and biosensing abilities. Advanced approaches like exosomes, conjugated moieties are preferred over polymeric for possessing potency, high penetrability, biomarkers, and avoiding the toxicity of tissues. Carbon-based gained wide applicability for their unique properties like a versatile carrier, prognostic, diagnostic, sensing, photodynamic, and photothermal characteristics. CONCLUSION The survival rate can be increased by utilizing several kinds of biomarkers. The advanced approaches can also be significantly useful in the prognosis and theranostic of triple-negative breast cancer. One of the biggest successes in treating with nanotechnology-based approaches is the marked reduction of systemic toxicity with high therapeutic effectiveness compared with chemotherapy, surgery, etc. The requirements such as prompt diagnosis, longer circulation time, high efficiency, and high potency, can be fulfilled with these nanocarriers.
Collapse
Affiliation(s)
- Abhishek Kanugo
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule, India
| | - Rupesh K Gautam
- Department of Pharmacology, MM School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala (Haryana) India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
9
|
Tiwari R, Sethiya NK, Gulbake AS, Mehra NK, Murty USN, Gulbake A. A review on albumin as a biomaterial for ocular drug delivery. Int J Biol Macromol 2021; 191:591-599. [PMID: 34562538 DOI: 10.1016/j.ijbiomac.2021.09.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Development of ocular drug delivery system is one of the most technically challenging tasks, when compared with other routes of drug delivery. Eye (an intricate organ) is highly sophisticated and sensitive organ due to presence of various structurally differed anatomical layers, which many times limits the drug delivery approaches. Despite several limitations, many advancements have been made as evidence from various recent studies involving improvement of both residence time and permeation of the drug at the ocular region. In the last few decades, albumin(s) based ophthalmic products have been gained most attention to solve the major challenges associated with conventional ocular drug delivery systems. Interestingly, an albumin-based micro, nano, conjugates, and genetically fused target specific to ligand(s) formulation being exploited through many studies for successful ocular delivery of bioactives (mostly repurposed drugs). Past and current studies suggested that albumin(s) based ocular drug delivery system is multifunctional in nature and capable of extending both drug residence time and sustaining the release of drugs to deliver desired pharmacological outcomes. Despite wide applications, still complete progress made in albumin based ocular drug delivery is limited in literature and missing in market. So, herein we presented an overview to explore the key concepts of albumin-based nanocarrier(s) including strategies involved in the treatment of ocular disease, that have yet to be explored.
Collapse
Affiliation(s)
- Rahul Tiwari
- Faculty of Pharmacy, DIT University, Mussoorie Diversion Road, Dehradun, Uttarakhand 248009, India
| | - Neeraj K Sethiya
- Faculty of Pharmacy, DIT University, Mussoorie Diversion Road, Dehradun, Uttarakhand 248009, India
| | - Anamika Sahu Gulbake
- Faculty of Pharmacy, DIT University, Mussoorie Diversion Road, Dehradun, Uttarakhand 248009, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana 500037, India
| | - U S N Murty
- National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781101, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
10
|
Travers W, Kelleher F. Studies of the highly potent lantibiotic peptide nisin Z in aqueous solutions of salts and biological buffer components. Biophys Chem 2021; 274:106603. [PMID: 33945991 DOI: 10.1016/j.bpc.2021.106603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
The lantibiotic nisin, usually used as a 2.5%w/w in NaCl and milk solids, has activity against a wide range of Gram-positive bacteria, especially food-borne pathogens, and has been used as a food preservative for decades without the development of significant resistance. It has been reported that the high purity (>95%) nisin Z form has activity against the Gram-negative speciesE. coli, which is significantly reduced in the presence of NaCl. This current study examined, by1H NMR spectroscopy, the effects of NaCl, and a range of other salts, on the observed aqueous solution1H NMR spectra of nisin Z in the pH 3-4 range, where nisin Z has its maximum stability. Nisin's mechanism of action involves binding to the polyoxygenated pyrophosphate moiety of lipid II, and in acidic solution the positively charged C-terminus region is reported to interact with the negative sulfate groups of SDS micelles, so the study was extended to include a number of polyoxygenated anions commonly used as buffers in many biological assays. In general, the biggest changes found were in the chemical shifts of protons in the hydrophobic N-terminus region, rather than the more polar C-terminus region. The effects seen on the addition of the salts (cations and anions) were not just an overall non-specific ionic strength effect, as different salts caused different effects, in an unpredictive manner. Similarly, the polyoxygenated anions behaved differently and not predictably, and neither the cations/anions, or polyoxygenated anions, constitute a Hofmeister or inverse Hofmeister series.
Collapse
Affiliation(s)
- Wayne Travers
- Molecular Design & Synthesis Group, Centre of Applied Science for Health, TU Dublin Tallaght, Dublin D24 FKT9, Ireland
| | - Fintan Kelleher
- Molecular Design & Synthesis Group, Centre of Applied Science for Health, TU Dublin Tallaght, Dublin D24 FKT9, Ireland.
| |
Collapse
|