1
|
Xu C, Lei C, Hosseinpour S, Ivanovski S, Walsh LJ, Khademhosseini A. Nanotechnology for the management of COVID-19 during the pandemic and in the post-pandemic era. Natl Sci Rev 2022; 9:nwac124. [PMID: 36196115 PMCID: PMC9522393 DOI: 10.1093/nsr/nwac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022] Open
Abstract
Following the global COVID-19 pandemic, nanotechnology has been at the forefront of research efforts and enables the fast development of diagnostic tools, vaccines and antiviral treatment for this novel virus (SARS-CoV-2). In this review, we first summarize nanotechnology with regard to the detection of SARS-CoV-2, including nanoparticle-based techniques such as rapid antigen testing, and nanopore-based sequencing and sensing techniques. Then we investigate nanotechnology as it applies to the development of COVID-19 vaccines and anti-SARS-CoV-2 nanomaterials. We also highlight nanotechnology for the post-pandemic era, by providing tools for the battle with SARS-CoV-2 variants and for enhancing the global distribution of vaccines. Nanotechnology not only contributes to the management of the ongoing COVID-19 pandemic but also provides platforms for the prevention, rapid diagnosis, vaccines and antiviral drugs of possible future virus outbreaks.
Collapse
Affiliation(s)
- Chun Xu
- School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia, QLD 4072 , Australia
| | - Sepanta Hosseinpour
- School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
| | - Saso Ivanovski
- School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
| | - Laurence J Walsh
- School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation , Los Angeles , CA 90064 , USA
| |
Collapse
|
2
|
Ovejero-Paredes K, Díaz-García D, Mena-Palomo I, Marciello M, Lozano-Chamizo L, Morato YL, Prashar S, Gómez-Ruiz S, Filice M. Synthesis of a theranostic platform based on fibrous silica nanoparticles for the enhanced treatment of triple-negative breast cancer promoted by a combination of chemotherapeutic agents. BIOMATERIALS ADVANCES 2022; 137:212823. [PMID: 35929238 DOI: 10.1016/j.bioadv.2022.212823] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
A new series of theranostic silica materials based on fibrous silica particles acting as nanocarriers of two different cytotoxic agents, namely, chlorambucil and an organotin metallodrug have been prepared and structurally characterized. Besides the combined therapeutic activity, these platforms have been decorated with a targeting molecule (folic acid, to selectively target triple negative breast cancer) and a molecular imaging agent (Alexa Fluor 647, to enable their tracking both in vitro and in vivo). The in vitro behaviour of the multifunctional silica systems showed a synergistic activity of the two chemotherapeutic agents in the form of an enhanced cytotoxicity against MDA-MB-231 cells (triple negative breast cancer) as well as by a higher cell migration inhibition. Subsequently, the in vivo applicability of the siliceous nanotheranostics was successfully assessed by observing with in vivo optical imaging techniques a selective tumour accumulation (targeting ability), a marked inhibition of tumour growth paired to a marked antiangiogenic ability after 13 days of systemic administration, thus, confirming the enhanced theranostic activity. The systemic nanotoxicity was also evaluated by analyzing specific biochemical markers. The results showed a positive effect in form of reduced cytotoxicity when both chemotherapeutics are administered in combination thanks to the fibrous silica nanoparticles. Overall, our results confirm the promising applicability of these novel silica-based nanoplatforms as advanced drug-delivery systems for the synergistic theranosis of triple negative breast cancer.
Collapse
Affiliation(s)
- Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Irene Mena-Palomo
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Yurena Luengo Morato
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain.
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| |
Collapse
|
3
|
Lipid Nanocarriers for Anti-HIV Therapeutics: A Focus on Physicochemical Properties and Biotechnological Advances. Pharmaceutics 2021; 13:pharmaceutics13081294. [PMID: 34452255 PMCID: PMC8398060 DOI: 10.3390/pharmaceutics13081294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Since HIV was first identified, and in a relatively short period of time, AIDS has become one of the most devastating infectious diseases of the 21st century. Classical antiretroviral therapies were a major step forward in disease treatment options, significantly improving the survival rates of HIV-infected individuals. Even though these therapies have greatly improved HIV clinical outcomes, antiretrovirals (ARV) feature biopharmaceutic and pharmacokinetic problems such as poor aqueous solubility, short half-life, and poor penetration into HIV reservoir sites, which contribute to the suboptimal efficacy of these regimens. To overcome some of these issues, novel nanotechnology-based strategies for ARV delivery towards HIV viral reservoirs have been proposed. The current review is focused on the benefits of using lipid-based nanocarriers for tuning the physicochemical properties of ARV to overcome biological barriers upon administration. Furthermore, a correlation between these properties and the potential therapeutic outcomes has been established. Biotechnological advancements using lipid nanocarriers for RNA interference (RNAi) delivery for the treatment of HIV infections were also discussed.
Collapse
|
4
|
Ahmad MZ, Ahmad J, Aslam M, Khan MA, Alasmary MY, Abdel-Wahab BA. Repurposed drug against COVID-19: nanomedicine as an approach for finding new hope in old medicines. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abffed] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
The coronavirus disease 2019 (COVID-19) has become a threat to global public health. It is caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) and has triggered over 17 lakh causalities worldwide. Regrettably, no drug or vaccine has been validated for the treatment of COVID-19 and standard treatment for COVID-19 is currently unavailable. Most of the therapeutics moieties which were originally intended for the other disease are now being evaluated for the potential to be effective against COVID-19 (re-purpose). Nanomedicine has emerged as one of the most promising technologies in the field of drug delivery with the potential to deal with various diseases efficiently. It has addressed the limitations of traditional repurposed antiviral drugs including solubility and toxicity. It has also imparted enhanced potency and selectivity to antivirals towards viral cells. This review emphasizes the scope of repositioning of traditional therapeutic approaches, in addition to the fruitfulness of nanomedicine against COVID-19.
Collapse
|
5
|
Muheem A, Baboota S, Ali J. An in-depth analysis of novel combinatorial drug therapy via nanocarriers against HIV/AIDS infection and their clinical perspectives: a systematic review. Expert Opin Drug Deliv 2021; 18:1025-1046. [PMID: 33460332 DOI: 10.1080/17425247.2021.1876660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Conventional antiretroviral therapy against HIV infections is threatening to become outdated due to the low chemical, physical, biological, and pharmacokinetic characteristics of therapeutic molecules, followed by the high chance of emergence of drug resistance. Considering the co-encapsulation of multi-infection agents in a single nanocarrier is emerging to offer various benefits such as synergistic action, improved therapeutic efficacy, reduced drug resistance development, patient compliance, and economical therapy.Areas covered: A systematic review of nano-based combinatorial drug therapy was performed using various databases including Scopus, PubMed, Google Scholar, and Science Direct between 2000 and 2020. The search set was screened as per the inclusion and exclusion criteria, followed by 46 scientific articles and seven clinical studies selected for in-depth analysis.Expert opinion: There has been an immense effort to analyze the mechanism of HIV infection to develop a promising therapeutic approach, although the aim of complete prevention has not been succeeded yet. The key finding is to overcome the challenges associated with conventional therapy by the combinatorial drug in a single nanoformulation, which holds great potential for impact in the management of HIV infection.
Collapse
Affiliation(s)
- Abdul Muheem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| |
Collapse
|
6
|
Varahachalam SP, Lahooti B, Chamaneh M, Bagchi S, Chhibber T, Morris K, Bolanos JF, Kim NY, Kaushik A. Nanomedicine for the SARS-CoV-2: State-of-the-Art and Future Prospects. Int J Nanomedicine 2021; 16:539-560. [PMID: 33519200 PMCID: PMC7837559 DOI: 10.2147/ijn.s283686] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/25/2020] [Indexed: 01/08/2023] Open
Abstract
The newly emerged ribonucleic acid (RNA) enveloped human beta-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection caused the COVID-19 pandemic, severely affects the respiratory system, and may lead to death. Lacking effective diagnostics and therapies made this pandemic challenging to manage since the SARS-CoV-2 transmits via human-to-human, enters via ACE2 and TMPSSR2 receptors, and damages organs rich in host cells, spreads via symptomatic carriers and is prominent in an immune-compromised population. New SARS-CoV-2 informatics (structure, strains, like-cycles, functional sites) motivated bio-pharma experts to investigate novel therapeutic agents that act to recognize, inhibit, and knockdown combinations of drugs, vaccines, and antibodies, have been optimized to manage COVID-19. However, successful targeted delivery of these agents to avoid off-targeting and unnecessary drug ingestion is very challenging. To overcome these obstacles, this mini-review projects nanomedicine technology, a pharmacologically relevant cargo of size within 10 to 200 nm, for site-specific delivery of a therapeutic agent to recognize and eradicate the SARS-CoV-2, and improving the human immune system. Such combinational therapy based on compartmentalization controls the delivery and releases of a drug optimized based on patient genomic profile and medical history. Nanotechnology could help combat COVID-19 via various methods such as avoiding viral contamination and spraying by developing personal protective equipment (PPE) to increase the protection of healthcare workers and produce effective antiviral disinfectants surface coatings capable of inactivating and preventing the virus from spreading. To quickly recognize the infection or immunological response, design highly accurate and sensitive nano-based sensors. Development of new drugs with improved activity, reduced toxicity, and sustained release to the lungs, as well as tissue targets; and development of nano-based immunizations to improve humoral and cellular immune responses. The desired and controlled features of suggested personalized therapeutics, nanomedicine, is a potential therapy to manage COVID-19 successfully. The state-of-the-art nanomedicine, challenges, and prospects of nanomedicine are carefully and critically discussed in this report, which may serve as a key platform for scholars to investigate the role of nanomedicine for higher efficacy to manage the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sree Pooja Varahachalam
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Masoumeh Chamaneh
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Sounak Bagchi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Tanya Chhibber
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Kevin Morris
- Maharashtra University of Health Sciences (MUHS), Nashik, Maharashtra422004, India
| | - Joe F Bolanos
- Facultad De Ciencias De La Salud “Dr.Luis Edmundo Vasquez” Santa Tecla, Universidad Dr. Jose Matias Delgado, Cd Merliot, El Salvador
| | - Nam-Young Kim
- RFIC Bio Center, Department of Electronics Engineering, Kwangwoon University, Seoul01897, South Korea
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, and Mathematics, Florida Polytechnic University, Lakeland, FL3385, USA
| |
Collapse
|
7
|
Elkateb H, Tatham LM, Cauldbeck H, Niezabitowska E, Owen A, Rannard S, McDonald T. Optimization of the synthetic parameters of lipid polymer hybrid nanoparticles dual loaded with darunavir and ritonavir for the treatment of HIV. Int J Pharm 2020; 588:119794. [PMID: 32828978 DOI: 10.1016/j.ijpharm.2020.119794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Human Immunodeficiency Virus (HIV) is a global health concern to which nanomedicine approaches provide opportunities to improve the bioavailability of existing drugs used to treat HIV.In this article, lipid polymer hybrid nanoparticles (LPHNs) were developed as a system to provide a combination drug delivery of two leading antiretroviral drugs; darunavir (DRV) and its pharmacokinetic enhancer ritonavir (RTV).The LPHNs were designed with a poly(D, l-lactide-co-glycolide) (PLGA) core, and soybean lecithin (SBL) and Brij 78 as the stabilizers. The LPHNs were prepared by modified nanoprecipitation and the effect of synthetic conditions on the particle properties was studied, which included the Z-average diameter and polydispersity index of LPHNs in water and phosphate buffered saline, and the morphology of the particles. This investigation aimed to prepare a formulation that could be stored in its dry and redispersible form, therefore avoiding the challenges associated with storage of dispersions. The optimum ratio of stabilizer to polymer core was established at 20% w/w, and Brij 78 was found to be crucial in providing colloidal stability in physiological solutions; the minimum amount of Brij 78 required to provide stability in phosphate buffered saline was 70% w/w of the total stabilizer mass. Viable formulations of LPHNs containing DRV and RTV in the clinically used 8:1 ratio were prepared containing 20% w/w DRV with respect to the PLGA mass. The use of cryoprotectant, polyethylene glycol, combined with freeze-drying yielded LPHNs with a Z-average diameter of 150 nm when the particles were re-dispersed in water. The oral absorption behavior was assessed using an in vitro triple culture model. Whilst the use of cryoprotectant and freeze-drying led to no improvement of the transcellular permeability compared to the unformulated drugs, the non-freeze-dried samples with the highest soybean lecithin led to increased transcellular permeability, revealing the potential of LPHNs for enhancing HIV treatment.
Collapse
Affiliation(s)
- Heba Elkateb
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El Gomhouria Street, 35516, Egypt
| | - Lee M Tatham
- Department of Molecular and Clinical Pharmacology, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK; Tandem Nano Ltd., Liverpool, UK
| | - Helen Cauldbeck
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Edyta Niezabitowska
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK; Tandem Nano Ltd., Liverpool, UK
| | - Steve Rannard
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK; Tandem Nano Ltd., Liverpool, UK
| | - Tom McDonald
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK.
| |
Collapse
|
8
|
Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS NANO 2020; 14:7760-7782. [PMID: 32571007 PMCID: PMC7325519 DOI: 10.1021/acsnano.0c04006] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 05/04/2023]
Abstract
The current global health threat by the novel coronavirus disease 2019 (COVID-19) requires an urgent deployment of advanced therapeutic options available. The role of nanotechnology is highly relevant to counter this "virus" nano enemy. Nano intervention is discussed in terms of designing effective nanocarriers to counter the conventional limitations of antiviral and biological therapeutics. This strategy directs the safe and effective delivery of available therapeutic options using engineered nanocarriers, blocking the initial interactions of viral spike glycoprotein with host cell surface receptors, and disruption of virion construction. Controlling and eliminating the spread and reoccurrence of this pandemic demands a safe and effective vaccine strategy. Nanocarriers have potential to design risk-free and effective immunization strategies for severe acute respiratory syndrome coronavirus 2 vaccine candidates such as protein constructs and nucleic acids. We discuss recent as well as ongoing nanotechnology-based therapeutic and prophylactic strategies to fight against this pandemic, outlining the key areas for nanoscientists to step in.
Collapse
Affiliation(s)
- Gaurav Chauhan
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
| | - Marc J. Madou
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
- Department of Mechanical and Aerospace
Engineering, University of California
Irvine, Engineering Gateway 4200, Irvine,
California 92697, United States
| | - Sourav Kalra
- Department of Pharmaceutical Technology
(Process Chemistry), National Institute of Pharmaceutical
Education and Research, Sector 67, S.A.S. Nagar,
Punjab 160062, India
| | - Vianni Chopra
- Institute of Nano Science
and Technology, Habitat Centre, Phase 10 Mohali,
160062 Punjab, India
| | - Deepa Ghosh
- Institute of Nano Science
and Technology, Habitat Centre, Phase 10 Mohali,
160062 Punjab, India
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
| |
Collapse
|
9
|
Ovejero Paredes K, Díaz-García D, García-Almodóvar V, Lozano Chamizo L, Marciello M, Díaz-Sánchez M, Prashar S, Gómez-Ruiz S, Filice M. Multifunctional Silica-Based Nanoparticles with Controlled Release of Organotin Metallodrug for Targeted Theranosis of Breast Cancer. Cancers (Basel) 2020; 12:E187. [PMID: 31940937 PMCID: PMC7017138 DOI: 10.3390/cancers12010187] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Three different multifunctional nanosystems based on the tethering onto mesoporous silica nanoparticles (MSN) of different fragments such as an organotin-based cytotoxic compound Ph3Sn{SCH2CH2CH2Si(OMe)3} (MSN-AP-Sn), a folate fragment (MSN-AP-FA-Sn), and an enzyme-responsive peptide able to release the metallodrug only inside cancer cells (MSN-AP-FA-PEP-S-Sn), have been synthesized and fully characterized by applying physico-chemical techniques. After that, an in vitro deep determination of the therapeutic potential of the achieved multifunctional nanovectors was carried out. The results showed a high cytotoxic potential of the MSN-AP-FA-PEP-S-Sn material against triple negative breast cancer cell line (MDA-MB-231). Moreover, a dose-dependent metallodrug-related inhibitory effect on the migration mechanism of MDA-MB-231 tumor cells was shown. Subsequently, the organotin-functionalized nanosystems have been further modified with the NIR imaging agent Alexa Fluor 647 to give three different theranostic silica-based nanoplatforms, namely, MSN-AP-Sn-AX (AX-1), MSN-AP-FA-Sn-AX (AX-2), and MSN-AP-FA-PEP-S-Sn-AX (AX-3). Their in vivo potential as theranostic markers was further evaluated in a xenograft mouse model of human breast adenocarcinoma. Owing to the combination of the receptor-mediated site targeting and the specific fine-tuned release mechanism of the organotin metallodrug, the nanotheranostic drug MSN-AP-FA-PEP-S-Sn-AX (AX-3) has shown targeted diagnostic ability in combination with enhanced therapeutic activity by promoting the inhibition of tumor growth with reduced hepatic and renal toxicity upon the repeated administration of the multifunctional nanodrug.
Collapse
Affiliation(s)
- Karina Ovejero Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Victoria García-Almodóvar
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Laura Lozano Chamizo
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
| | - Miguel Díaz-Sánchez
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Sanjiv Prashar
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Santiago Gómez-Ruiz
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| |
Collapse
|
10
|
Gao Y, Kraft JC, Yu D, Ho RJY. Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. Eur J Pharm Biopharm 2018; 138:75-91. [PMID: 29678735 DOI: 10.1016/j.ejpb.2018.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 01/20/2023]
Abstract
Combination antiretroviral therapy (cART) given orally has transformed HIV from a terminal illness to a manageable chronic disease. Yet despite the recent development of newer and more potent drugs for cART and suppression of virus in blood to undetectable levels, residual virus remains in tissues. Upon stopping cART, virus rebounds and progresses to AIDS. Current oral cART regimens have several drawbacks including (1) challenges in patient adherence due to pill fatigue or side-effects, (2) the requirement of life-long daily drug intake, and (3) limited penetration and retention in cells within lymph nodes. Appropriately designed injectable nano-drug combinations that are long-acting and retained in HIV susceptible cells within lymph nodes may address these challenges. While a number of nanomaterials have been investigated for delivery of HIV drugs and drug combinations, key challenges involve developing and scaling delivery systems that provide a drug combination targeted to HIV host cells and tissues where residual virus persists. With validation of the drug-insufficiency hypothesis in lymph nodes, progress has been made in the development of drug combination nanoparticles that are long-acting and targeted to lymph nodes and cells. Unique drug combination nanoparticles (DcNPs) composed of three HIV drugs-lopinavir, ritonavir, and tenofovir-have been shown to provide enhanced drug levels in lymph nodes; and elevated drug-combination levels in HIV-host cells in the blood and plasma for two weeks. This review summarizes the progress in the development of nanoparticle-based drug delivery systems for HIV therapy. It discusses how injectable nanocarriers may be designed to enable delivery of drug combinations that are long-lasting and target-selective in physiological contexts (in vivo) to provide safe and effective use. Consistent drug combination exposure in the sites of residual HIV in tissues and cells may overcome drug insufficiency observed in patients on oral cART.
Collapse
Affiliation(s)
- Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Danni Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States; Department of Bioengineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
11
|
Nanoformulation strategies for the enhanced oral bioavailability of antiretroviral therapeutics. Ther Deliv 2016; 6:469-90. [PMID: 25996045 DOI: 10.4155/tde.15.4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The oral delivery of drugs with poor aqueous solubility is challenging and often results in poor bioavailability. Various nanoformulation platforms have demonstrated improved oral bioavailability of a range of drugs for different indications. The focus of this review is to provide an overview of the application of nanomedicine to oral antiretroviral therapy and outline how the current short-falls of this life-long therapy may be resolved using nanotechnology. As well as highlighting the rationale for a nanomedicine-based approach, the review focuses on the various strategies used to enhance oral bioavailability and describes the mechanisms of particle absorption across the GI tract. The recent advances in the development of long-acting formulations for both HIV treatment and pre-exposure prophylaxis are also discussed.
Collapse
|
12
|
Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.01.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Vacas-Córdoba E, Climent N, De La Mata FJ, Plana M, Gómez R, Pion M, García F, Muñoz-Fernández MÁ. Dendrimers as nonviral vectors in dendritic cell-based immunotherapies against human immunodeficiency virus: steps toward their clinical evaluation. Nanomedicine (Lond) 2015; 9:2683-702. [PMID: 25529571 DOI: 10.2217/nnm.14.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although the antiretroviral therapy has led to a long-term control of HIV-1, it does not cure the disease. Therefore, several strategies are being explored to develop an effective HIV vaccine, such as the use of dendritic cells (DCs). DC-based immunotherapies bear different limitations, but one of the most critical point is the antigen loading into DCs. Nanotechnology offers new tools to overcome these constraints. Dendrimers have been proposed as carriers for targeted delivery of HIV antigens in DCs. These nanosystems can release the antigens in a controlled manner leading to a more potent specific immune response. This review focuses on the first steps for clinical development of dendrimers to assess their safety and potential use in DC-based immunotherapies against HIV.
Collapse
Affiliation(s)
- Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Sección Inmunologia, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sánchez-Rodríguez J, Vacas-Córdoba E, Gómez R, De La Mata FJ, Muñoz-Fernández MÁ. Nanotech-derived topical microbicides for HIV prevention: the road to clinical development. Antiviral Res 2014; 113:33-48. [PMID: 25446339 DOI: 10.1016/j.antiviral.2014.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/29/2014] [Indexed: 11/15/2022]
Abstract
More than three decades since its discovery, HIV infection remains one of the most aggressive epidemics worldwide, with more than 35 million people infected. In sub-Saharan Africa, heterosexual transmissions represent nearly 80% of new infections, with 50% of these occurring in women. In an effort to stop the dramatic spread of the HIV epidemic, new preventive treatments, such as microbicides, have been developed. Nanotechnology has revolutionized this field by designing and engineering novel highly effective nano-sized materials as microbicide candidates. This review illustrates the most recent advances in nanotech-derived HIV prevention strategies, as well as the main steps required to translate promising in vitro results into clinical trials.
Collapse
Affiliation(s)
- Javier Sánchez-Rodríguez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - F Javier De La Mata
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
15
|
|
16
|
Coulter J, Hyland W, Nicol J, Currell F. Radiosensitising Nanoparticles as Novel Cancer Therapeutics — Pipe Dream or Realistic Prospect? Clin Oncol (R Coll Radiol) 2013; 25:593-603. [DOI: 10.1016/j.clon.2013.06.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/01/2013] [Accepted: 06/27/2013] [Indexed: 01/30/2023]
|
17
|
Dhama K, Chakraborty S, Wani MY, Verma AK, Deb R, Tiwari R, Kapoor S. Novel and emerging therapies safeguarding health of humans and their companion animals: a review. Pak J Biol Sci 2013; 16:101-111. [PMID: 24171271 DOI: 10.3923/pjbs.2013.101.111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Modern medicine has helped to a great extent to eradicate and cure several diseases of mankind and animals. But the existence of incurable diseases like cancer, Acquired Immunodeficiency Syndrome (AIDS), diabetes or rheumatoid arthritis, side effects of allopathic medicine, increasing trend of antibiotic resistance and chemicals and biopesticides causing dietary risk have made the situation more critical than ever before. Thus, it has become a matter of concern for the scientists and researchers to develop novel therapies. Bacteriophage therapy to treat pathogenic bacterial infections, virophage therapy for conservation of global system and avian egg yolk antibody therapy for designing prophylactic strategies against Gastrointestinal (GI) diseases are interesting approaches. Others include the use of cytokines as adjunctive immunomodulators, gene therapy focusing on diseases caused by single gene defects, RNAi technology to suppress specific gene of interest and apoptins for cancer treatment. Stem cell therapy against several diseases and ailments has also been discussed. The use of nanoparticles for better drug delivery, even though costly, has been given equal importance. Nevertheless, immunomodulation, be it through physiological, chemical or microbial products, or through essential micronutrients, probiotics, herbs or cow therapy prove to be cost-effective, causing minimum adverse reactions when compared to allopathy. Development in the field of molecular biology has created an enormous impact on vaccine development. The present review deals with all these novel and emerging therapies essential to safeguard the health of humans and companion animals.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Iztnagar, Bareilly,. U.P., 243122, India
| | | | | | | | | | | | | |
Collapse
|