1
|
Rampedi PN, Ogunrombi MO, Adeleke OA. Leading Paediatric Infectious Diseases-Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions. Pharmaceutics 2024; 16:712. [PMID: 38931836 PMCID: PMC11206886 DOI: 10.3390/pharmaceutics16060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Paediatric infectious diseases contribute significantly to global health challenges. Conventional therapeutic interventions are not always suitable for children, as they are regularly accompanied with long-standing disadvantages that negatively impact efficacy, thus necessitating the need for effective and child-friendly pharmacotherapeutic interventions. Recent advancements in drug delivery technologies, particularly oral formulations, have shown tremendous progress in enhancing the effectiveness of paediatric medicines. Generally, these delivery methods target, and address challenges associated with palatability, dosing accuracy, stability, bioavailability, patient compliance, and caregiver convenience, which are important factors that can influence successful treatment outcomes in children. Some of the emerging trends include moving away from creating liquid delivery systems to developing oral solid formulations, with the most explored being orodispersible tablets, multiparticulate dosage forms using film-coating technologies, and chewable drug products. Other ongoing innovations include gastro-retentive, 3D-printed, nipple-shield, milk-based, and nanoparticulate (e.g., lipid-, polymeric-based templates) drug delivery systems, possessing the potential to improve therapeutic effectiveness, age appropriateness, pharmacokinetics, and safety profiles as they relate to the paediatric population. This manuscript therefore highlights the evolving landscape of oral pharmacotherapeutic interventions for leading paediatric infectious diseases, crediting the role of innovative drug delivery technologies. By focusing on the current trends, pointing out gaps, and identifying future possibilities, this review aims to contribute towards ongoing efforts directed at improving paediatric health outcomes associated with the management of these infectious ailments through accessible and efficacious drug treatments.
Collapse
Affiliation(s)
- Penelope N. Rampedi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Modupe O. Ogunrombi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Oluwatoyin A. Adeleke
- Preclinical Laboratory for Drug Delivery Innovations, College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
- School of Biomedical Engineering, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 3J5, Canada
- School of Pharmacy, Sefako Makgatho Health Science University, Pretoria 0208, South Africa
| |
Collapse
|
2
|
Butnariu M, Quispe C, Koirala N, Khadka S, Salgado-Castillo CM, Akram M, Anum R, Yeskaliyeva B, Cruz-Martins N, Martorell M, Kumar M, Vasile Bagiu R, Abdull Razis AF, Sunusi U, Muhammad Kamal R, Sharifi-Rad J. Bioactive Effects of Curcumin in Human Immunodeficiency Virus Infection Along with the Most Effective Isolation Techniques and Type of Nanoformulations. Int J Nanomedicine 2022; 17:3619-3632. [PMID: 35996526 PMCID: PMC9391931 DOI: 10.2147/ijn.s364501] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus (HIV) is one of the leading causes of death worldwide, with African countries being the worst affected by this deadly virus. Curcumin (CUR) is a Curcuma longa-derived polyphenol that has attracted the attention of researchers due to its antimicrobial, anti-inflammatory, antioxidant, immunomodulatory and antiviral effects. CUR also demonstrates anti-HIV effects by acting as a possible inhibitor of gp120 binding, integrase, protease, and topoisomerase II activities, besides also exerting a protective action against HIV-associated diseases. However, its effectiveness is limited due to its poor water solubility, rapid metabolism, and systemic elimination. Nanoformulations have been shown to be useful to enhance curcumin’s bioavailability and its effectiveness as an anti-HIV agent. In this sense, bioactive effects of CUR in HIV infection are carefully reviewed, along with the most effective isolation techniques and type of nanoformulations available.
Collapse
Affiliation(s)
- Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences "King Mihai I" from Timisoara, 300645, Calea Aradului 119, Timis, Romania
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, 1110939, Chile
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, 44600, Nepal.,Laboratory of Biotechnology, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, People's Republic of China
| | - Sujan Khadka
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,State Key Laboratory of Environmental Aquatic Chemistry" with "State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | | | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rabia Anum
- SINA Health, Education and Welfare Trust, Karachi, Pakistan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra PRD, 4585-116, Portugal.,TOXRUN-Oxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, 4585-116, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, 4070386, Chile.,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, 4070386, Chile
| | - Manoj Kumar
- Chemical and BioChemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Department of Microbiology, Timisoara, Romania.,Preventive Medicine Study Center, Timisoara, Romania
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Pharmacology, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | | |
Collapse
|
3
|
Rudrapal M, Celik I, Chinnam S, Azam Ansari M, Khan J, Alghamdi S, Almehmadi M, Zothantluanga JH, Khairnar SJ. Phytocompounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro through computational studies. Saudi J Biol Sci 2022; 29:3456-3465. [PMID: 35233172 PMCID: PMC8873046 DOI: 10.1016/j.sjbs.2022.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
The inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) and papain-like protease (PLpro) prevents viral multiplications; these viral enzymes have been recognized as one of the most favorable targets for drug discovery against SARS-CoV-2. In the present study, we screened 225 phytocompounds present in 28 different Indian spices to identify compounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro. Molecular docking, molecular dynamics simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations, and absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were done. Based on binding affinity, dynamics behavior, and binding free energies, the present study identifies pentaoxahexacyclo-dotriacontanonaen-trihydroxybenzoate derivative (PDT), rutin, and dihyroxy-oxan-phenyl-chromen-4-one derivative (DOC), luteolin-7-glucoside-4'-neohesperidoside as promising inhibitors of SARS-CoV-2 Mpro and PLpro, respectively.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune 411019, Maharashtra, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru 560054, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Um Al-Qura University, Makkah 24382, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shubham J. Khairnar
- MET Institute of Pharmacy, Bhujbal Knowledge City, Nasik 422003, Maharashtra, India
| |
Collapse
|
4
|
|
5
|
Nguyen TT, Nguyen BP, Nguyen DTD, Nguyen NH, Nguyen DH, Nguyen CK. Retrovirus Drugs-Loaded PEGylated PAMAM for Prolonging Drug Release and Enhancing Efficiency in HIV Treatment. Polymers (Basel) 2021; 14:114. [PMID: 35012136 PMCID: PMC8747428 DOI: 10.3390/polym14010114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Polyamidoamine dendrimer (PAMAM) with its unique characteristics emerges as a potential drug delivery system which can prolong releasing time, reduce the side effects but still retaining treatment efficiency. In this study, methoxy polyethylene glycol modified PAMAM generation 3.0 (G3.0@mPEG) is prepared and characterized via 1H-NMR, FT-IR, and TEM. Subsequently, two antiretroviral agents (ARV) including lamivudine (3TC) and zidovudine (AZT) are individually encapsulated into G3.0@mPEG. The drug-loading efficiency, drug release profile, cytotoxicity and anti-HIV activity are then evaluated. The results illustrate that G3.0@mPEG particles are spherical with a size of 34.5 ± 0.2 nm and a drug loading content of about 9%. Both G3.0@mPEG and ARV@G3.0@mPEG show no cytotoxicity on BJ cells, and G3.0@mPEG loading 3TC and AZT performs sustained drug release behavior which is best fitted with the Korsmeyer-Peppas model. Finally, the anti-HIV activity of ARV via Enzymatic Assay of Pepsin is retained after being loaded into the G3.0@mPEG, in which about 36% of pepsin activity was inhibited by AZT at the concentration of 0.226 mM. Overall, PAMAM G3.0@mPEG is a promising nanocarrier system for loading ARV in HIV treatment and prevention.
Collapse
Affiliation(s)
- Thi Thinh Nguyen
- Institute of Drug Quality Control, Ho Chi Minh City 70000, Vietnam;
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam; (N.H.N.); (D.H.N.)
| | - Bao Phu Nguyen
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, Ho Chi Minh City 70000, Vietnam;
| | - Dinh Tien Dung Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Vietnam;
- Faculty of Natural Science, Duy Tan University, Danang City 550000, Vietnam
| | - Ngoc Hoi Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam; (N.H.N.); (D.H.N.)
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | - Dai Hai Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam; (N.H.N.); (D.H.N.)
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | - Cuu Khoa Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam; (N.H.N.); (D.H.N.)
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
6
|
Lipid Nanocarriers for Anti-HIV Therapeutics: A Focus on Physicochemical Properties and Biotechnological Advances. Pharmaceutics 2021; 13:pharmaceutics13081294. [PMID: 34452255 PMCID: PMC8398060 DOI: 10.3390/pharmaceutics13081294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Since HIV was first identified, and in a relatively short period of time, AIDS has become one of the most devastating infectious diseases of the 21st century. Classical antiretroviral therapies were a major step forward in disease treatment options, significantly improving the survival rates of HIV-infected individuals. Even though these therapies have greatly improved HIV clinical outcomes, antiretrovirals (ARV) feature biopharmaceutic and pharmacokinetic problems such as poor aqueous solubility, short half-life, and poor penetration into HIV reservoir sites, which contribute to the suboptimal efficacy of these regimens. To overcome some of these issues, novel nanotechnology-based strategies for ARV delivery towards HIV viral reservoirs have been proposed. The current review is focused on the benefits of using lipid-based nanocarriers for tuning the physicochemical properties of ARV to overcome biological barriers upon administration. Furthermore, a correlation between these properties and the potential therapeutic outcomes has been established. Biotechnological advancements using lipid nanocarriers for RNA interference (RNAi) delivery for the treatment of HIV infections were also discussed.
Collapse
|
7
|
El-Far AH, Godugu K, Salaheldin TA, Darwish NHE, Saddiq AA, Mousa SA. Nanonutraceuticals: Anti-Cancer Activity and Improved Safety of Chemotherapy by Costunolide and Its Nanoformulation against Colon and Breast Cancer. Biomedicines 2021; 9:990. [PMID: 34440193 PMCID: PMC8391151 DOI: 10.3390/biomedicines9080990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Costunolide (COS) is a sesquiterpene lactone with anticancer properties. The present study investigated the anticancer effects of COS against the human colon (HCT116) and breast (MDA-MB-231-Luc) cancer cell lines. Inhibition of cell lines viability and IC50 of COS were assessed via an MTT assay. Furthermore, the apoptotic rate was detected by assessment of Bcl2-associated X (Bax) and B-cell lymphoma 2 (Bcl2) protein levels by flow cytometry. Xenograft mice model of HCT116 and MDA-MB-231-Luc were carried out to determine the effect of COS and its nanoparticles (COS-NPs). The results demonstrated that COS inhibited the viability of HCT116 and MDA-MB-231-Luc cells, with a half maximal inhibitory concentration value (IC50) of 39.92 µM and 100.57 µM, respectively. COS significantly increased Bax and decreased Bcl2 levels in treated cells. COS and COS-NPs, in combination with doxorubicin (DOX), significantly decreased the tumor growth of HCT116 and MDA-MB-231-Luc implants in mice. Furthermore, oral administration of COS and COS-NPs significantly decreased the viable cells and increased necrotic/apoptotic cells of HCT116 and MDA-MB-231-Luc implants. Interestingly, both COS and COS-NPs protected the cardiac muscles against DOX's cardiotoxicity. The current results indicated the promising anticancer and cardiac muscles protection of COS and COS-NPs when administered with chemotherapy.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| | - Taher A. Salaheldin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| | - Noureldien H. E. Darwish
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| | - Amna A. Saddiq
- Department of Biology, College of Sciences, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| |
Collapse
|
8
|
Sonti S, Sharma AL, Tyagi M. HIV-1 persistence in the CNS: Mechanisms of latency, pathogenesis and an update on eradication strategies. Virus Res 2021; 303:198523. [PMID: 34314771 DOI: 10.1016/j.virusres.2021.198523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022]
Abstract
Despite four decades of research into the human immunodeficiency virus (HIV-1), a successful strategy to eradicate the virus post-infection is lacking. The major reason for this is the persistence of the virus in certain anatomical reservoirs where it can become latent and remain quiescent for as long as the cellular reservoir is alive. The Central Nervous System (CNS), in particular, is an intriguing anatomical compartment that is tightly regulated by the blood-brain barrier. Targeting the CNS viral reservoir is a major challenge owing to the decreased permeability of drugs into the CNS and the cellular microenvironment that facilitates the compartmentalization and evolution of the virus. Therefore, despite effective antiretroviral (ARV) treatment, virus persists in the CNS, and leads to neurological and neurocognitive deficits. To date, viral eradication strategies fail to eliminate the virus from the CNS. To facilitate the improvement of the existing elimination strategies, as well as the development of potential therapeutic targets, the aim of this review is to provide an in-depth understanding of HIV latency in CNS and the onset of HIV-1 associated neurological disorders.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
9
|
Rudzińska M, Daglioglu C, Savvateeva LV, Kaci FN, Antoine R, Zamyatnin AA. Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:9-20. [PMID: 33442233 PMCID: PMC7797289 DOI: 10.2147/dddt.s285852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
In cancer treatments, many natural and synthetic products have been examined; among them, protease inhibitors are promising candidates for anti-cancer agents. Since dysregulated proteolytic activities can contribute to tumor development and metastasis, antagonization of proteases with tailored inhibitors is an encouraging approach. Although adverse effects of early designs of these inhibitors disappeared after the introduction of next-generation agents, most of the proposed inhibitors did not pass the early stages of clinical trials due to their nonspecific toxicity and lack of pharmacological effects. Therefore, new applications that modulate proteases more specifically and serve their programmed way of administration are highly appreciated. In this context, nanosized drug delivery systems have attracted much attention because preliminary studies have demonstrated that the therapeutic capacity of inhibitors has been improved significantly with encapsulated formulation as compared to their free forms. Here, we address this issue and discuss the current application and future clinical prospects of this potential combination towards targeted protease-based cancer therapy.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Cenk Daglioglu
- Biotechnology and Bioengineering Application and Research Center, Integrated Research Centers, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Fatma Necmiye Kaci
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Yakutiye, Erzurum 25050, Turkey
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, Lyon F-69622, France
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Department of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
10
|
The Paradox of HIV Blood-Brain Barrier Penetrance and Antiretroviral Drug Delivery Deficiencies. Trends Neurosci 2020; 43:695-708. [PMID: 32682564 PMCID: PMC7483662 DOI: 10.1016/j.tins.2020.06.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/04/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
HIV attacks the body's immune cells, frequently compromises the integrity of the blood-brain barrier (BBB), and infects the CNS in the early stages of infection. Dysfunction of the BBB further potentiates viral replication within the CNS, which can lead to HIV-associated neuropathology. Antiretroviral therapy (ART) significantly improves HIV patient outcomes and reduces mortality rates. However, there has been limited progress in targeting latent viral reservoirs within the CNS, which may eventually lead to rebound viremia. While ART drugs are shown to be effective in attenuating HIV replication in the periphery, the protection of the brain by the BBB offers an isolated sanctuary to harbor HIV and maintains chronic and persistent replication within the CNS. In this review, we elucidate the pathology of the BBB, its ability to potentiate viral replication, as well as current therapies and insufficiencies in treating HIV-infected individuals.
Collapse
|
11
|
Elkateb H, Tatham LM, Cauldbeck H, Niezabitowska E, Owen A, Rannard S, McDonald T. Optimization of the synthetic parameters of lipid polymer hybrid nanoparticles dual loaded with darunavir and ritonavir for the treatment of HIV. Int J Pharm 2020; 588:119794. [PMID: 32828978 DOI: 10.1016/j.ijpharm.2020.119794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Human Immunodeficiency Virus (HIV) is a global health concern to which nanomedicine approaches provide opportunities to improve the bioavailability of existing drugs used to treat HIV.In this article, lipid polymer hybrid nanoparticles (LPHNs) were developed as a system to provide a combination drug delivery of two leading antiretroviral drugs; darunavir (DRV) and its pharmacokinetic enhancer ritonavir (RTV).The LPHNs were designed with a poly(D, l-lactide-co-glycolide) (PLGA) core, and soybean lecithin (SBL) and Brij 78 as the stabilizers. The LPHNs were prepared by modified nanoprecipitation and the effect of synthetic conditions on the particle properties was studied, which included the Z-average diameter and polydispersity index of LPHNs in water and phosphate buffered saline, and the morphology of the particles. This investigation aimed to prepare a formulation that could be stored in its dry and redispersible form, therefore avoiding the challenges associated with storage of dispersions. The optimum ratio of stabilizer to polymer core was established at 20% w/w, and Brij 78 was found to be crucial in providing colloidal stability in physiological solutions; the minimum amount of Brij 78 required to provide stability in phosphate buffered saline was 70% w/w of the total stabilizer mass. Viable formulations of LPHNs containing DRV and RTV in the clinically used 8:1 ratio were prepared containing 20% w/w DRV with respect to the PLGA mass. The use of cryoprotectant, polyethylene glycol, combined with freeze-drying yielded LPHNs with a Z-average diameter of 150 nm when the particles were re-dispersed in water. The oral absorption behavior was assessed using an in vitro triple culture model. Whilst the use of cryoprotectant and freeze-drying led to no improvement of the transcellular permeability compared to the unformulated drugs, the non-freeze-dried samples with the highest soybean lecithin led to increased transcellular permeability, revealing the potential of LPHNs for enhancing HIV treatment.
Collapse
Affiliation(s)
- Heba Elkateb
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El Gomhouria Street, 35516, Egypt
| | - Lee M Tatham
- Department of Molecular and Clinical Pharmacology, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK; Tandem Nano Ltd., Liverpool, UK
| | - Helen Cauldbeck
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Edyta Niezabitowska
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK; Tandem Nano Ltd., Liverpool, UK
| | - Steve Rannard
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK; Tandem Nano Ltd., Liverpool, UK
| | - Tom McDonald
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK.
| |
Collapse
|
12
|
Recent advances in long-acting nanoformulations for delivery of antiretroviral drugs. J Control Release 2020; 324:379-404. [PMID: 32461114 DOI: 10.1016/j.jconrel.2020.05.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
In spite of introduction of combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV) infection; inaccessibility and poor adherence to oral cART costs 10 in 100,000 death worldwide. Failure in adherence leads to viral rebound, emergence of drug resistance and anticipated HIV infection in high risk individuals. Various Long-acting antiretroviral (LA ARV) nanoformulations including nano-prodrug, solid drug nanoparticles (SDN), nanocrystals, aspherical nanoparticles, polymeric and lipidic nanoparticles have shown plasma/tissue drug concentration in the therapeutic range for several weeks during pre-clinical evaluation. LA ARV nanoformulations therefore have replaced cART as better alternative for the treatment of HIV infection. Cabenuva™ is recently approved by Health Canada containing LA cabotegravir+LA rilpivirine nanocrystals (ViiV healthcare) for once monthly administration by intramuscular route. The LA nanoformulation due to its nanosize insist on better stability, delivery to lymphatic, slow release into systemic circulation via lymphatic-circulatory system conjoint and secondary drug depot within infiltered immune cells at site of administration and systemic circulation in contrast to conventional drugs. However, the pharmacokinetic, biodistribution and efficacy of LA nanoformulations hinge onto physicochemical properties of the drugs and route of administration. Therefore, current review emphasizes on these contradistinctive factors that affects the reproducibility, safety, efficacy and toxicity of LA anti-HIV nanoformulations. Moreover, it expatiates on application of profuse nanoformulations for long-acting effect with promising preclinical discoveries and two clinical leads. To add on, utilization of physiology-based and mechanism-based pharmacokinetic modelling and in vivo animal models which could lead to enhanced safety and efficacy of LA ARV nanoformulations in humans have been included.
Collapse
|
13
|
Repurposing Butenafine as An Oral Nanomedicine for Visceral Leishmaniasis. Pharmaceutics 2019; 11:pharmaceutics11070353. [PMID: 31330776 PMCID: PMC6680852 DOI: 10.3390/pharmaceutics11070353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease affecting more than 12 million people worldwide, which in its visceral clinical form (VL) is characterised by the accumulation of parasites in the liver and spleen, and can lead to death if not treated. Available treatments are not well tolerated due to severe adverse effects, need for parenteral administration and patient hospitalisation, and long duration of expensive treatments. These treatment realities justify the search for new effective drugs, repurposing existing licensed drugs towards safer and non-invasive cost-effective medicines for VL. In this work, we provide proof of concept studies of butenafine and butenafine self-nanoemulsifying drug delivery systems (B-SNEDDS) against Leishmania infantum. Liquid B-SNEDDS were optimised using design of experiments, and then were spray-dried onto porous colloidal silica carriers to produce solid-B-SNEDDS with enhanced flow properties and drug stability. Optimal liquid B-SNEDDS consisted of Butenafine:Capryol 90:Peceol:Labrasol (3:49.5:24.2:23.3 w/w), which were then sprayed-dried with Aerosil 200 with a final 1:2 (Aerosil:liquid B-SNEDDS w/w) ratio. Spray-dried particles exhibited near-maximal drug loading, while maintaining excellent powder flow properties (angle of repose <10°) and sustained release in acidic gastrointestinal media. Solid-B-SNEDDS demonstrated greater selectivity index against promastigotes and L. infantum-infected amastigotes than butenafine alone. Developed oral solid nanomedicines enable the non-invasive and safe administration of butenafine as a cost-effective and readily scalable repurposed medicine for VL.
Collapse
|
14
|
Savage AC, Tatham LM, Siccardi M, Scott T, Vourvahis M, Clark A, Rannard SP, Owen A. Improving maraviroc oral bioavailability by formation of solid drug nanoparticles. Eur J Pharm Biopharm 2019; 138:30-36. [DOI: 10.1016/j.ejpb.2018.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/09/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
|
15
|
Gendelman HE, McMillan J, Bade AN, Edagwa B, Kevadiya BD. The Promise of Long-Acting Antiretroviral Therapies: From Need to Manufacture. Trends Microbiol 2019; 27:593-606. [PMID: 30981593 DOI: 10.1016/j.tim.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
Antiretroviral therapy has transformed human immunodeficiency virus infections from certain death to a manageable chronic disease. Achieving strict adherence to drug regimens that limit toxicities and viral resistance is an achievable goal. Success is defined by halting viral transmission and by continuous viral restriction. A step towards improving treatment outcomes is in long-acting antiretrovirals. While early results remain encouraging there remain opportunities for improvement. These rest, in part, on the required large drug dosing volumes, local injection-site reactions, and frequency of injections. Thus, implantable devices and long-acting parenteral prodrugs have emerged which may provide more effective clinical outcomes. The recent successes in transforming native antiretrovirals into lipophilic and hydrophobic prodrugs stabilized into biocompatible surfactants can positively affect both. Formulating antiretroviral prodrugs demonstrates improvements in cell and tissue targeting, in drug-dosing intervals, and in the administered volumes of nanosuspensions. As such, the newer formulations also hold the potential to suppress viral loads beyond more conventional therapies with the ultimate goal of HIV-1 elimination when combined with other modalities.
Collapse
Affiliation(s)
- Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
16
|
Nabi B, Rehman S, Baboota S, Ali J. Insights on Oral Drug Delivery of Lipid Nanocarriers: a Win-Win Solution for Augmenting Bioavailability of Antiretroviral Drugs. AAPS PharmSciTech 2019; 20:60. [PMID: 30623263 DOI: 10.1208/s12249-018-1284-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
The therapeutic functionality of innumerable antiretroviral drugs is supposedly obscured owing to their low metabolic stability in the gastrointestinal tract and poor solubilization property leading to poor oral bioavailability. Dictated by such needs, lipid-based formulations could be tailored using nanotechnology which would be instrumental in ameliorating the attributes of such drugs. The stupendous advantages which lipid nanocarriers offer including improved drug stability and peroral bioavailability coupled with sustained drug release profile and feasibility to incorporate wide array of drugs makes it a potential candidate for pharmaceutical formulations. Furthermore, they also impart targeted drug delivery thereby widening their arena for use. Therefore, the review will encompass the details pertaining to numerous lipid nanocarriers such as nanoemulsion, solid lipid nanoparticle, nanostructured lipid carriers, and so on. These nanocarriers bear the prospective of improving the mucosal adhesion property of the drugs which ultimately upgrades its pharmacokinetic profile. The biodegradable and physiological nature of the lipid excipients used in the formulation is the key parameter and advocates for their safe use. Nevertheless, these lipid-based nanocarriers are amenable to alterations which could be rightly achieved by changing the excipients used or by modifying the process parameters. Thus, the review will systematically envisage the impending benefits and future perspectives of different lipid nanocarriers used in oral delivery of antiretroviral drugs.
Collapse
|
17
|
Kigen G, Edwards G. Enhancement of saquinavir absorption and accumulation through the formation of solid drug nanoparticles. BMC Pharmacol Toxicol 2018; 19:79. [PMID: 30509316 PMCID: PMC6278041 DOI: 10.1186/s40360-018-0275-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/26/2018] [Indexed: 12/03/2022] Open
Abstract
Background Nanotechnology is now considered a promising drug delivery method for orally administered hydrophobic drugs to their sites of action. The effect of nanodispersion on cellular transport and accumulation of saquinavir (SQV) was investigated. Methods The transport of five solid drug nanoparticle (SDN) SQV formulations along Caco-2 cell monolayers (CCM) was compared to that of standard SQV. The SDNs were prepared using SQV mesylate (20%), Pluronic F127 (10%) plus five other excipients (HPMC, PVP, PVA, Lecithin S75 and Span 80) in different proportions. Cellular accumulation in CEM parental and CEMVBL (P-gp overexpressing) cells was conducted to ascertain the effect of nanodispersion on P-gp mediated efflux of SQV. All SDN formulations were dissolved in water, whereas SQV in DMSO to improve solubility. Quantification was via HPLC. Results From transport results, an SDN sample composed of SQV mesylate/Pluronic F127 plus HPMC (70%) and had a 24% increase in apparent absorption compared to standard SQV, largely driven by a 38% reduction in basolateral to apical permeation. Additionally, the formulation and two others (SQV mesylate/Pluronic F127 alone; and + HPMC (65%)/Lecithin [5%]) accumulated more significantly in CEM cells, suggesting enhanced delivery to these cells. Moreover, accumulation and transport of the three SDNs compared well to that of SQV despite being dissolved in water, suggestive of improved dissolution. The inclusion of PVA resulted in increased efflux. Conclusion The use of HPMC and Pluronic F127 produced SQV SDNs with improved permeation in Caco-2 cells and improved accumulation in CEM cells, but negative effects with PVA.
Collapse
Affiliation(s)
- Gabriel Kigen
- Department of Pharmacology and Toxicology, Moi University School of Medicine, P.O. Box 4606, Eldoret, 30100, Kenya. .,Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK.
| | - Geoffrey Edwards
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK
| |
Collapse
|
18
|
Kermanizadeh A, Powell LG, Stone V, Møller P. Nanodelivery systems and stabilized solid-drug nanoparticles for orally administered medicine: current landscape. Int J Nanomedicine 2018; 13:7575-7605. [PMID: 30510419 PMCID: PMC6248225 DOI: 10.2147/ijn.s177418] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of nanoparticles as a means of targeted delivery of therapeutics and imaging agents could greatly enhance the transport of biologically active contents to specific target tissues, while avoiding or reducing potentially undesired side effects. Generally speaking, the oral route of administration is associated with good patient compliance, as it is convenient, economical, noninvasive, and does not require special training. Here, we review the progress of the utilization of nanodelivery-system carriers or stabilized solid-drug nanoparticles following oral administration, with particular attention on toxicological data. Mechanisms of cytotoxicity are discussed and the problem of extrapolating knowledge to human scenarios highlighted. Additionally, issues associated with administration of drugs via the oral route are underlined, while strategies utilized to overcome these are highlighted. This review aims to offer a balanced overview of strategies currently being used in the application of nanosize constructs for oral medical applications.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- NanoSafety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK, .,Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark,
| | - Leagh G Powell
- NanoSafety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK,
| | - Vicki Stone
- NanoSafety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK,
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark,
| |
Collapse
|
19
|
Hobson JJ, Owen A, Rannard SP. The potential value of nanomedicine and novel oral dosage forms in the treatment of HIV. Nanomedicine (Lond) 2018; 13:1963-1965. [DOI: 10.2217/nnm-2018-0182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- James J Hobson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Andrew Owen
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Pembroke Place, Liverpool, L69 3GF, UK
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| |
Collapse
|
20
|
Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 2018; 128:3-28. [PMID: 28919029 PMCID: PMC5854505 DOI: 10.1016/j.addr.2017.09.013] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery.
Collapse
Affiliation(s)
- Sharma T. Sanjay
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Wan Zhou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Maowei Dou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
| | - Hamed Tavakoli
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Lei Ma
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - XiuJun Li
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Biomedical Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| |
Collapse
|
21
|
Gong Y, Chowdhury P, Midde NM, Rahman MA, Yallapu MM, Kumar S. Novel elvitegravir nanoformulation approach to suppress the viral load in HIV-infected macrophages. Biochem Biophys Rep 2017; 12:214-219. [PMID: 29214223 PMCID: PMC5704044 DOI: 10.1016/j.bbrep.2017.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose Monocytes serve as sanctuary sites for HIV-1 from which virus is difficult to be eliminated. Therefore, an effective viral suppression in monocytes is critical for effective antiretroviral therapy (ART). This study focuses on a new strategy using nanoformulation to optimize the efficacy of ART drugs in HIV-infected monocytes. Methods Poly(lactic-co-glycolic acid) (PLGA)-based elvitegravir nanoparticles (PLGA-EVG) were prepared by nano-precipitation technique. The physicochemical properties of PLGA-EVG were characterized using transmission electron microscopy, dynamic light scattering, and Fourier-transform infrared spectroscopy. Cellular uptake study was performed by fluorescence microscopy and flow cytometry. All in vitro experiments were performed by using HIV-infected monocytic cell lines U1 and HIV-infected primary macrophages. Elvitegravir quantification was performed using LC-MS/MS. HIV viral replication was assessed by using p24 ELISA. Results We developed a PLGA-EVG nanoparticle formulation with particle size of ~ 47 nm from transmission electron microscopy and zeta potential of ~ 6.74 mV from dynamic light scattering. These nanoparticles demonstrated a time- and concentration-dependent uptakes in monocytes. PLGA-EVG formulation showed a ~ 2 times higher intracellular internalization of EVG than control group (EVG alone). PLGA-EVG nanoparticles also demonstrated superior viral suppression over control for a prolonged period of time. Conclusions PLGA-based EVG nanoformulation increased the intracellular uptake of EVG, as well as enhanced viral suppression in HIV-infected macrophages, suggesting its potential for improved HIV treatment in monocytic cells.
Collapse
Affiliation(s)
- Yuqing Gong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Narasimha M Midde
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad A Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
22
|
Advances in nanomedicine drug delivery applications for HIV therapy. Future Sci OA 2017; 4:FSO230. [PMID: 29255619 PMCID: PMC5729605 DOI: 10.4155/fsoa-2017-0069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/07/2017] [Indexed: 01/05/2023] Open
|
23
|
Owen A, Rannard S. Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: Insights for applications in HIV therapy. Adv Drug Deliv Rev 2016; 103:144-156. [PMID: 26916628 PMCID: PMC4935562 DOI: 10.1016/j.addr.2016.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022]
Abstract
Advances in solid drug nanoparticle technologies have resulted in a number of long-acting (LA) formulations with the potential for once monthly or longer administration. Such formulations offer great utility for chronic diseases, particularly when a lack of medication compliance may be detrimental to treatment response. Two such formulations are in clinical development for HIV but the concept of LA delivery has its origins in indications such as schizophrenia and contraception. Many terms have been utilised to describe the LA approach and standardisation would be beneficial. Ultimately, definitions will depend upon specific indications and routes of delivery, but for HIV we propose benchmarks that reflect perceived clinical benefits and available data on patient attitudes. Specifically, we propose dosing intervals of ≥1week, ≥1month or ≥6months, for oral, injectable or implantable strategies, respectively. This review focuses upon the critical importance of potency in achieving the LA outcome for injectable formulations and explores established and emerging technologies that have been employed across indications. Key technological challenges such as the need for consistency and ease of administration for drug combinations, are also discussed. Finally, the review explores the gaps in knowledge regarding the pharmacology of drug release from particulate-based LA injectable suspensions. A number of hypotheses are discussed based upon available data relating to local drug metabolism, active transport systems, the lymphatics, macrophages and patient-specific factors. Greater knowledge of the mechanisms that underpin drug release and protracted exposure will help facilitate further development of this strategy to achieve the promising clinical benefits.
Collapse
Affiliation(s)
- Andrew Owen
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, 70 Pembroke Place, University of Liverpool, Liverpool L693GF, UK
| | - Steve Rannard
- Department of Chemistry, Crown Street, University of Liverpool, L69 3BX, UK
| |
Collapse
|
24
|
Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Adv Drug Deliv Rev 2016; 103:105-120. [PMID: 26772138 DOI: 10.1016/j.addr.2015.12.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 01/30/2023]
Abstract
Development of novel drug delivery systems (DDS) represents a promising opportunity to overcome the various bottlenecks associated with the chronic antiretroviral (ARV) therapy of the human immunodeficiency virus (HIV) infection. Oral drug delivery is the most convenient and simplest route of drug administration that involves the swallowing of a pharmaceutical compound with the intention of releasing it into the gastrointestinal tract. In oral delivery, drugs can be formulated in such a way that they are protected from digestive enzymes, acids, etc. and released in different regions of the small intestine and/or the colon. Not surprisingly, with the exception of the subcutaneous enfuvirtide, all the marketed ARVs are administered orally. However, conventional (marketed) and innovative (under investigation) oral delivery systems must overcome numerous challenges, including the acidic gastric environment, and the poor aqueous solubility and physicochemical instability of many of the approved ARVs. In addition, the mucus barrier can prevent penetration and subsequent absorption of the released drug, a phenomenon that leads to lower oral bioavailability and therapeutic concentration in plasma. Moreover, the frequent administration of the cocktail (ARVs are administered at least once a day) favors treatment interruption. To improve the oral performance of ARVs, the design and development of more efficient oral drug delivery systems are called for. The present review highlights various innovative research strategies adopted to overcome the limitations of the present treatment regimens and to enhance the efficacy of the oral ARV therapy in HIV.
Collapse
|
25
|
Puoti M, Rossotti R, Baiguera C, Orso M. Treatment of hepatitis C virus genotype 1-infected patients: mission accomplished? Liver Int 2016; 36:181-4. [PMID: 26781595 DOI: 10.1111/liv.13040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 02/13/2023]
Affiliation(s)
- Massimo Puoti
- Department of Infectious Diseases, AO Niguarda Ca' Granda, Milano, Italy
| | - Roberto Rossotti
- Department of Infectious Diseases, AO Niguarda Ca' Granda, Milano, Italy
| | - Chiara Baiguera
- Department of Infectious Diseases, AO Niguarda Ca' Granda, Milano, Italy
| | - Maurizio Orso
- Department of Infectious Diseases, AO Niguarda Ca' Granda, Milano, Italy
| |
Collapse
|
26
|
Owen A, Rannard S. Considerations for clinically-relevant nanomedicine therapies for chronic diseases. Nanomedicine (Lond) 2015; 10:3103-7. [PMID: 26446297 DOI: 10.2217/nnm.15.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Andrew Owen
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke Place, Liverpool L69 3GF, UK
| | - Steve Rannard
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| |
Collapse
|