1
|
Roseti L, Borciani G, Grassi F, Desando G, Gambari L, Grigolo B. Nutraceuticals in osteoporosis prevention. Front Nutr 2024; 11:1445955. [PMID: 39416651 PMCID: PMC11479890 DOI: 10.3389/fnut.2024.1445955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Nutraceuticals are gaining popularity as they can contribute to bone health by delaying the onset or slowing down the progression of pathological bone loss. Osteoporosis's bone loss is a concern for older adults and a crucial aspect of aging. Maintaining healthy bones is the key to living a full and active life. Our review explores the current knowledge on the role of nutraceuticals in preventing osteoporosis by focusing on three main aspects. First, we provide an overview of osteoporosis. Second, we discuss the latest findings on natural nutraceuticals and their efficacy in reducing bone loss, emphasizing clinical trials. Third, we conduct a structured analysis to evaluate nutraceuticals' pros and cons and identify translational gaps. In conclusion, we must address several challenges to consolidate our knowledge, better support clinicians in their prescriptions, and provide people with more reliable nutritional recommendations to help them lead healthier lives.
Collapse
Affiliation(s)
| | - Giorgia Borciani
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | | | | |
Collapse
|
2
|
Singh W, Kushwaha P. Potassium: A Frontier in Osteoporosis. Horm Metab Res 2024; 56:329-340. [PMID: 38346690 DOI: 10.1055/a-2254-8533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Osteoporosis is a significant public health concern, particularly in aging populations, leading to fractures, decreased mobility, and reduced quality of life. While calcium and vitamin D have long been recognized as essential for bone health, emerging research suggests that potassium may play a crucial role in maintaining bone density and preventing osteoporosis. This manuscript explores the relationship between potassium and osteoporosis, delving into the mechanisms, epidemiological evidence, and potential therapeutic implications of potassium in bone health. Furthermore, the manuscript discusses the sources of dietary potassium, its impact on bone metabolism, and the future directions in research and clinical practice regarding potassium's role in osteoporosis management.
Collapse
|
3
|
Wilson-Barnes SL, Lanham-New SA, Lambert H. Modifiable risk factors for bone health & fragility fractures. Best Pract Res Clin Rheumatol 2022; 36:101758. [PMID: 35750569 DOI: 10.1016/j.berh.2022.101758] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoporosis is an ageing disorder characterised by poor microstructural architecture of the bone and an increase in the risk of fragility fractures, which often leads to hospitalisation and eventually a loss of mobility and independence. By 2050, it is estimated that more than 30 million people in Europe will be affected by bone diseases, and European hospitalisation alone can approximately cost up to 3.5 billion euros each year [1]. Although inherited variation in bone mineral density (BMD) is pre-determined by up to 85% [2], there is a window of opportunity to optimise BMD and reduce fracture risk through key modifiable lifestyle factors during the life course. An optimal diet rich in micronutrients, such as calcium, vitamin D, and potassium, has long been considered an important modifiable component of bone health, which is attributed to their direct roles within bone metabolism. Recently, there has been emerging evidence to suggest that protein and even an adequate intake of fruit and vegetables may also play an important role in improving BMD [3,4]. Maintaining a physically active lifestyle is not only protective from non-communicable diseases such as cardiovascular disease but it also has been shown to lessen the risk of fractures later in life, thereby making it an imperative modifiable factor for bone health, particularly as it also supports peak bone mass attainment during childhood/adolescence and can facilitate the maintenance of bone mass throughout adulthood [5]. Other key lifestyle factors that could be potentially modified to reduce the risk of osteoporosis or osteoporotic fractures later in life include smoking status, alcohol intake, and body composition [6]. Therefore, the principle aim of this review is to highlight the recent evidence pertaining to modifiable lifestyle factors that contribute to optimal bone health and the prevention of fragility fractures in later life.
Collapse
Affiliation(s)
- Saskia L Wilson-Barnes
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK.
| | - Susan A Lanham-New
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Helen Lambert
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
4
|
Moe OW, Maalouf NM, Sakhaee K, Lederer E. Preclinical and Clinical Evidence of Effect of Acid on Bone Health. Adv Chronic Kidney Dis 2022; 29:381-394. [PMID: 36175076 PMCID: PMC11375989 DOI: 10.1053/j.ackd.2022.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acid can have ill effect on bone health in the absence of frank clinical acidosis but affecting the bone mioneral matrix and bone cells via complex pathways botyh ascute;y and chronically. While the reaction of bone to an acid load is conserved in evolution and is adaptive, the capacity can be overwhelmed resulting in dire consequences. The preclinical an clincl evidence of the acdi effect on bone is very convincing and the clinical evidence in both association and interventiopn studies are also quite credible, The adverse effects of acid on bone is underappreoicated, under-investigated, and the potential benefits of alkali therapy is not generrally known.
Collapse
Affiliation(s)
- Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX.
| | - Naim M Maalouf
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Khashayar Sakhaee
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eleanor Lederer
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX; Medical Service, VA North Texas Health Care System, Dallas, TX
| |
Collapse
|
5
|
Short-Term Supplemental Dietary Potassium from Potato and Potassium Gluconate: Effect on Calcium Retention and Urinary pH in Pre-Hypertensive-to-Hypertensive Adults. Nutrients 2021; 13:nu13124399. [PMID: 34959951 PMCID: PMC8707887 DOI: 10.3390/nu13124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Potassium supplementation has been associated with reduced urinary calcium (Ca) excretion and increased Ca balance. Dietary interventions assessing the impact of potassium on bone are lacking. In this secondary analysis of a study designed primarily to determine blood pressure effects, we assessed the effects of potassium intake from potato sources and a potassium supplement on urinary Ca, urine pH, and Ca balance. Thirty men (n = 15) and women (n = 15) with a mean ± SD age and BMI of 48.2 ± 15 years and 31.4 ± 6.1 kg/m2, respectively, were enrolled in a cross-over, randomized control feeding trial. Participants were assigned to a random order of four 16-day dietary potassium interventions including a basal diet (control) of 2300 mg/day (~60 mmol/day) of potassium, and three phases of an additional 1000 mg/day (3300 mg/day(~85 mmol/day) total) of potassium in the form of potatoes (baked, boiled, or pan-heated), French fries (FF), or a potassium (K)-gluconate supplement. Calcium intake for all diets was approximately 700–800 mg/day. Using a mixed model ANOVA there was a significantly lower urinary Ca excretion in the K-gluconate phase (96 ± 10 mg/day) compared to the control (115 ± 10 mg/day; p = 0.027) and potato (114 ± 10 mg/day; p = 0.033). In addition, there was a significant difference in urinary pH between the supplement and control phases (6.54 ± 0.16 vs. 6.08 ± 0.18; p = 0.0036). There were no significant differences in Ca retention. An increased potassium intake via K-gluconate supplementation may favorably influence urinary Ca excretion and urine pH. This trial was registered at ClinicalTrials.gov as NCT02697708.
Collapse
|
6
|
Batool Z, Hu G, Xinyue H, Wu Y, Fu X, Cai Z, Huang X, Ma M. A comprehensive review on functional properties of preserved eggs as an excellent food ingredient with anti-inflammatory and anti-cancer aspects. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Han Y, An M, Yang L, Li L, Rao S, Cheng Y. Effect of Acid or Base Interventions on Bone Health: A Systematic Review, Meta-Analysis, and Meta-Regression. Adv Nutr 2021; 12:1540-1557. [PMID: 33684217 PMCID: PMC8321841 DOI: 10.1093/advances/nmab002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
Osteoporosis is a global health issue among the aging population. The effect of the acid or base interventions on bone health remains controversial. This study performed a systematic review and meta-analysis to investigate effects of acidic diets and alkaline supplements on bone health simultaneously. We conducted a comprehensive literature search in 5 available databases and 1 registered clinical trial system to identify randomized controlled trials (RCTs) that assessed effects of the acid-base intervention on bone health. Depending on heterogeneity across studies, the pooled effects were calculated by fixed-effects or random-effects models. The present study included 13 acidic diet intervention studies and 13 alkaline supplement studies for final quantitative assessments. The meta-analysis showed that acidic diets significantly increased net acid excretion [NAE; standardized mean difference (SMD) = 2.99; P = 0.003] and urinary calcium excretion (SMD = 0.47, P < 0.00001) but had no significant effect on bone turnover markers and bone mineral density (BMD). On the other hand, alkaline supplement intervention significantly reduced NAE (SMD = -1.29, P < 0.00001), urinary calcium excretion (SMD = -0.44, P = 0.007), bone resorption marker aminoterminal cross-linking telopeptide (NTX; SMD = -0.29, P = 0.003), and bone formation marker osteocalcin (OC; SMD = -0.23, P = 0.02), but did not affect the other bone turnover markers. Furthermore, alkaline supplements significantly increased BMD in femoral neck [mean difference (MD) = 1.62, P < 0.00001, I2 = 0%], lumbar spine (MD = 1.66, P < 0.00001, I2 = 87%), and total hip (MD = 0.98, P = 0.02, I2 = 99%). Subsequently, meta-regression analyses identified 1 study that substantially contributed to the high heterogeneity of BMD in the latter 2 sites, but sensitivity analysis suggested that this study did not affect the significant pooled effects. Despite that, the results should be interpreted with caution and need to be further validated by a larger RCT. In summary, through integrating evidence from RCTs, the present meta-analysis initially suggests that alkaline supplements may be beneficial to bone metabolism and acidic diets may not be harmful to bone health. This work may be clinically useful for both clinicians and patients with osteoporosis.
Collapse
Affiliation(s)
- Yibing Han
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Min An
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Li Yang
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Liuran Li
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | | | | |
Collapse
|
8
|
Perut F, Graziani G, Columbaro M, Caudarella R, Baldini N, Granchi D. Citrate Supplementation Restores the Impaired Mineralisation Resulting from the Acidic Microenvironment: An In Vitro Study. Nutrients 2020; 12:E3779. [PMID: 33317151 PMCID: PMC7763163 DOI: 10.3390/nu12123779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic metabolic acidosis leads to bone-remodelling disorders based on excessive mineral matrix resorption and inhibition of bone formation, but also affects the homeostasis of citrate, which is an essential player in maintaining the acid-base balance and in driving the mineralisation process. This study aimed to investigate the impact of acidosis on the osteogenic properties of bone-forming cells and the effects of citrate supplementation in restoring the osteogenic features impaired by the acidic milieu. For this purpose, human mesenchymal stromal cells were cultured in an osteogenic medium and the extracellular matrix mineralisation was analysed at the micro- and nano-level, both in neutral and acidic conditions and after treatment with calcium citrate and potassium citrate. The acidic milieu significantly decreased the citrate release and hindered the organisation of the extracellular matrix, but the citrate supplementation increased collagen production and, particularly calcium citrate, promoted the mineralisation process. Moreover, the positive effect of citrate supplementation was observed also in the physiological microenvironment. This in vitro study proves that the mineral matrix organisation is influenced by citrate availability in the microenvironment surrounding bone-forming cells, thus providing a biological basis for using citrate-based supplements in the management of bone-remodelling disorders related to chronic low-grade acidosis.
Collapse
Affiliation(s)
- Francesca Perut
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (F.P.); (N.B.)
| | - Gabriela Graziani
- Laboratory of Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Marta Columbaro
- Electron Microscopy Platform, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Renata Caudarella
- Maria Cecilia Hospital, GVM Care and Research, Via Corriera 1, 48033 Cotignola (RA), Italy;
| | - Nicola Baldini
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (F.P.); (N.B.)
- Department of Biomedical and Neuromotor Sciences, Via Pupilli 1, University of Bologna, 40136 Bologna, Italy
| | - Donatella Granchi
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (F.P.); (N.B.)
| |
Collapse
|
9
|
Ha J, Kim SA, Lim K, Shin S. The association of potassium intake with bone mineral density and the prevalence of osteoporosis among older Korean adults. Nutr Res Pract 2020; 14:55-61. [PMID: 32042374 PMCID: PMC6997142 DOI: 10.4162/nrp.2020.14.1.55] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 11/07/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/OBJECTIVES Osteoporosis is characterized by low bone mass and results in vulnerability to fracture. Calcium and vitamin D are known to play an important role in bone health. Recently, potassium has been identified as another important factor in skeletal health. We examined the link between potassium intake and bone health among the Korean older adult population. SUBJECTS/METHODS This retrospective, cross-sectional study included 8,732 men and postmenopausal women over 50 years old who completed the Korean National Health and Nutrition Survey (KNHANES) between 2008 and 2011. Potassium consumption was evaluated using a 24-hour recall method. Bone mineral density (BMD) was measured at three sites (total hip, femur neck, and lumbar spine) by dual-energy X-ray absorptiometry (DEXA). Multinomial logistic regression was used to examine the link between potassium intake and prevalence of osteoporosis and osteopenia, after controlling for potential confounding variables. RESULTS The BMD of the total femur and Ward's triangle were significantly different according to the potassium intake among men (P = 0.031 and P = 0.010, respectively). Women in the top tertile for potassium intake showed higher BMD than those in the bottom tertile at all measurement sites (all P < 0.05). Daily potassium intake was significantly related to a decreased risk of osteoporosis at the lumbar spine in postmenopausal women (odds ratios: 0.68, 95% confidence interval: 0.48-0.96, P trend = 0.031). However, the dietary potassium level was not related to the risk of osteoporosis in men. CONCLUSION Current findings indicate that higher dietary potassium levels have a favorable effect on bone health and preventing osteoporosis in older Korean women.
Collapse
Affiliation(s)
- Jinwoo Ha
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, Korea
| | - Seong-Ah Kim
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, Korea
| | - Kyungjoon Lim
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, 3086, Australia
| | - Sangah Shin
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, Korea
| |
Collapse
|
10
|
Granchi D, Baldini N, Ulivieri FM, Caudarella R. Role of Citrate in Pathophysiology and Medical Management of Bone Diseases. Nutrients 2019; 11:E2576. [PMID: 31731473 PMCID: PMC6893553 DOI: 10.3390/nu11112576] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Citrate is an intermediate in the "Tricarboxylic Acid Cycle" and is used by all aerobic organisms to produce usable chemical energy. It is a derivative of citric acid, a weak organic acid which can be introduced with diet since it naturally exists in a variety of fruits and vegetables, and can be consumed as a dietary supplement. The close association between this compound and bone was pointed out for the first time by Dickens in 1941, who showed that approximately 90% of the citrate bulk of the human body resides in mineralised tissues. Since then, the number of published articles has increased exponentially, and considerable progress in understanding how citrate is involved in bone metabolism has been made. This review summarises current knowledge regarding the role of citrate in the pathophysiology and medical management of bone disorders.
Collapse
Affiliation(s)
- Donatella Granchi
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Nicola Baldini
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, Via Pupilli 1, University of Bologna, 40136 Bologna, Italy
| | - Fabio Massimo Ulivieri
- Nuclear Medicine, Bone Metabolic Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via F.Sforza 35, 20122 Milano, Italy;
| | - Renata Caudarella
- Maria Cecilia Hospital, GVM Care and Research, Via Corriera 1, 48033 Cotignola (RA), Italy;
| |
Collapse
|
11
|
Frings-Meuthen P, Bernhardt G, Buehlmeier J, Baecker N, May F, Heer M. The negative effect of unloading exceeds the bone-sparing effect of alkaline supplementation: a bed rest study. Osteoporos Int 2019; 30:431-439. [PMID: 30255228 DOI: 10.1007/s00198-018-4703-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
UNLABELLED Potassium bicarbonate was administrated to an already alkaline diet in seven male subjects during a 21-day bed rest study and was able to decrease bed rest induced increased calcium excretion but failed to prevent bed rest-induced bone resorption. INTRODUCTION Supplementation with alkali salts appears to positively influence calcium and bone metabolism and, thus, could be a countermeasure for population groups with an increased risk for bone loss. However, the extent to which alkalization counteracts acid-induced bone resorption or whether it merely has a calcium and bone maintenance effect is still not completely understood. In the present study, we hypothesized that additional alkalization to an already alkaline diet can further counteract bed rest-induced bone loss. METHODS Seven healthy male subjects completed two parts of a crossover designed 21-day bed rest study: bed rest only (control) and bed rest supplemented with 90 mmol potassium bicarbonate (KHCO3) daily. RESULTS KHCO3supplementation during bed rest resulted in a more alkaline status compared to the control intervention, demonstrated by the increase in pH and buffer capacity level (pH p = 0.023, HCO3p = 0.02, ABE p = 0.03). Urinary calcium excretion was decreased during KHCO3 supplementation (control 6.05 ± 2.74 mmol/24 h; KHCO3 4.87 ± 2.21 mmol/24 h, p = 0.03); whereas, bone formation was not affected by additional alkalization (bAP p = 0.58; PINP p = 0.60). Bone resorption marker UCTX tended to be lower during alkaline supplementation (UCTX p = 0.16). CONCLUSIONS The more alkaline acid-base status, achieved by KHCO3 supplementation, reduced renal calcium excretion during bed rest, but was not able to prevent immobilization-induced bone resorption. However, advantages of alkaline salts on bone metabolism may occur under acidic metabolic conditions or with respect to the positive effect of reduced calcium excretion within a longer time frame. TRIAL REGISTRATION Trial number: NCT01509456.
Collapse
Affiliation(s)
- P Frings-Meuthen
- German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147, Cologne, Germany.
| | - G Bernhardt
- German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147, Cologne, Germany
- Novartis AG, Basel, Switzerland
| | - J Buehlmeier
- German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147, Cologne, Germany
- University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - N Baecker
- German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147, Cologne, Germany
- Department of Nutrition and Food Science, University of Bonn, Bonn, Germany
| | - F May
- German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147, Cologne, Germany
| | - M Heer
- German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147, Cologne, Germany
- Department of Nutrition and Food Science, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Potassium Citrate Supplementation Decreases the Biochemical Markers of Bone Loss in a Group of Osteopenic Women: The Results of a Randomized, Double-Blind, Placebo-Controlled Pilot Study. Nutrients 2018; 10:nu10091293. [PMID: 30213095 PMCID: PMC6164684 DOI: 10.3390/nu10091293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
The relationship involving acid-base imbalance, mineral metabolism and bone health status has previously been reported but the efficacy of the alkalizing supplementation in targeting acid overload and preventing bone loss has not yet been fully elucidated. In this randomized, double-blind, placebo-controlled study, the hypothesis that potassium citrate (K citrate) modifies bone turnover in women with postmenopausal osteopenia was tested. Three hundred and ten women were screened; 40 women met the inclusion criteria and were randomly assigned to the treatment or the placebo group. They were treated with K citrate (30 mEq day−1) or a placebo in addition to calcium carbonate (500 mg day−1) and vitamin D (400 IU day−1). At baseline and time points of 3 and 6 months, serum indicators of renal function, electrolytes, calciotropic hormones, serum bone turnover markers (BTMs) (tartrate-resistant acid phosphatase 5b (TRACP5b), carboxy-terminal telopeptide of type I collagen (CTX), bone alkaline phosphatase (BAP), procollagen type 1 N terminal propeptide (PINP)), and urine pH, electrolytes, and citrate were measured. The follow-up was completed by 17/20 patients in the “K citrate” group and 18/20 patients in the “placebo” group. At baseline, 90% of the patients exhibited low potassium excretion in 24 h urine samples, and 85% of cases had at least one urine parameter associated with low-grade acidosis (low pH, low citrate excretion). After treatment, CTX and BAP decreased significantly in both groups, but subjects with evidence of low-grade acidosis gained significant benefits from the treatment compared to the placebo. In patients with low 24h-citrate excretion at baseline, a 30% mean decrease in BAP and CTX was observed at 6 months. A significant reduction was also evident when low citrate (BAP: −25%; CTX: −35%) and a low pH (BAP: −25%; CTX: −30%) were found in fasting-morning urine. In conclusion, our results suggested that K citrate supplementation improved the beneficial effects of calcium and vitamin D in osteopenic women with a documented potassium and citrate deficit, and a metabolic profile consistent with low-grade acidosis.
Collapse
|
13
|
Graef JL, Ouyang P, Wang Y, Rendina-Ruedy E, Lerner MR, Marlow D, Lucas EA, Smith BJ. Dried Plum Polyphenolic Extract Combined with Vitamin K and Potassium Restores Trabecular and Cortical Bone in Osteopenic Model of Postmenopausal Bone Loss. J Funct Foods 2018; 42:262-270. [PMID: 30319713 DOI: 10.1016/j.jff.2017.12.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dried plum has unique anabolic effects on bone, but the responsible bioactive components have remained unclear. This study investigated components of dried plum with potential osteoprotective activity utilizing aged, osteopenic Sprague Dawley rats fed diets supplemented with a crude polyphenol extract, potassium, vitamin K or their combination. Whole body and femoral bone mineral density were restored with the polyphenol and combination treatments to a similar extent as the dried fruit. The combination treatment reversed trabecular bone loss in the spine and cortical bone in the femur mid-diaphysis in a similar manner. Biomarkers of bone resorption were reduced by the polyphenol and combination treatments. The polyphenol extract accounted for most of the anabolic effect of dried plum on bone. This study is the first to show the bioactive components in dried plum responsible for restoring bone in vivo.
Collapse
Affiliation(s)
- Jennifer L Graef
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK 74078
| | - Ping Ouyang
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK 74078
| | - Yan Wang
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK 74078
| | - Elizabeth Rendina-Ruedy
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK 74078
| | - Megan R Lerner
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Denver Marlow
- Comparative Medicine Group, Kansas State University, Manhattan, KS 66506
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK 74078
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK 74078
| |
Collapse
|
14
|
Koutsofta I, Mamais I, Chrysostomou S. The effect of protein diets in postmenopausal women with osteoporosis: Systematic review of randomized controlled trials. J Women Aging 2018; 31:117-139. [DOI: 10.1080/08952841.2018.1418822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ioanna Koutsofta
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis Mamais
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavri Chrysostomou
- Department of Life Sciences, School of Science, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
15
|
Sromicki JJ, Hess B. Abnormal distal renal tubular acidification in patients with low bone mass: prevalence and impact of alkali treatment. Urolithiasis 2016; 45:263-269. [PMID: 27412028 DOI: 10.1007/s00240-016-0906-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/02/2016] [Indexed: 11/25/2022]
Abstract
Chronic acid retention is known to promote bone dissolution. In this study, 23 % of patients with osteopenia/osteoporosis were diagnosed with abnormal distal renal tubular acidification (dRTA), a kidney dysfunction leading to chronic acid retention. Treating those patients with alkali-therapy shows improvement in bone density. To evaluate the prevalence of abnormal distal renal tubular acidification in patients with low bone mass (LBM) and the impact of additional alkali treatment on bone density in patients with concomitant LBM and dRTA,183 patients referred for metabolic evaluation of densitometrically proven low bone mass were screened for abnormal distal renal tubular acidification between 2006 and 2013. In all LBM urine pH (U-pH) was measured in the 2nd morning urines after 12 h of fasting. If U-pH was ≥5.80, LBM underwent a 1-day ammonium chloride loading, and U-pH was remeasured the next morning. If U-pH after acid loading did not drop below 5.45, patients were diagnosed with abnormal distal renal tubular acidification. Normal values were obtained from 21 healthy controls. All LBM with dRTA were recommended alkali citrate in addition to conventional therapy of LBM, and follow-up DXAs were obtained until 2014. 85 LBM underwent NH4Cl loading. 42 LBM patients were diagnosed with incomplete dRTA (idRTA; prevalence 23.0 %). During follow-up (1.6-8 years) of idRTA-LBM patients, subjects adhering to alkali treatment tended to improve BMD at all sites measured, whereas BMD of non-adherent idRTA patients worsened/remained unchanged. (1) About one out of four patients with osteopenia/osteoporosis has idRTA. (2) Upon NH4Cl loading, idRTA patients do not lower urine pH normally, but show signs of increased acid-buffering by bone dissolution. (3) In idRTA patients with low bone mass on conventional therapy, additional long-term alkali treatment improves bone mass at lumbar spine and potentially at other bone sites. (4) All patients with low bone mass undergoing metabolic evaluation should be screened for idRTA.
Collapse
Affiliation(s)
- Jerzy Jan Sromicki
- Internal Medicine and Nephrology, Osteoporosis Center Zimmerberg, University of Zurich, Bellariastrasse 38, Klinik Im Park, 8038, Zurich, Switzerland
- Division of General Surgery, University Hospital, 8091, Zurich, Switzerland
| | - Bernhard Hess
- Internal Medicine and Nephrology, Osteoporosis Center Zimmerberg, University of Zurich, Bellariastrasse 38, Klinik Im Park, 8038, Zurich, Switzerland.
| |
Collapse
|
16
|
Chai TC, Moalli PA, Richter HE, Lake AG, Kim HY, Nager CW, Sirls LT, Brubaker L, Kusek JW. Preoperative Urodynamic Parameters (Valsalva Leak Point Pressure and Maximum Urethral Closure Pressure), Urinary Collagen and Plasma Vitamin D Levels as Predictors of Mid Urethral Sling Surgery Outcome. J Urol 2016; 196:819-23. [PMID: 27113967 DOI: 10.1016/j.juro.2016.03.177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE To determine the best predictor of the mid urethral sling outcome we calculated the AUC of ROC curves of preoperative parameters, including Valsalva leak point pressure, maximum urethral closure pressure, urinary NTx (N-telopeptide of crosslinked type I collagen) and plasma vitamin D values (D2, D3 and D2 plus D3). MATERIALS AND METHODS This was an ancillary study of TOMUS (Trial of Mid-urethral Slings) and the ValUE (Value of Urodynamics Evaluation) trial in which subjects underwent mid urethral sling surgery for stress urinary incontinence. Valsalva leak point pressure and maximum urethral closure pressure were measured in 427 subjects, whereas NTx, vitamin D2, vitamin D3 and vitamin D2 plus D3 levels were obtained from 150, 116, 115 and 116 subjects respectively. Outcome success was defined using identical outcome (subjective and objective) variables for all subjects. ROC curves with corresponding AUC values were compared. RESULTS TOMUS and ValUE subjects were significantly different in age, body mass index, UDI (Urogenital Distress Inventory) scores. TOMUS subjects had a lower surgical success rate compared to ValUE subjects (66.3% vs 76.0%, p = 0.03). The AUC values of Valsalva leak point pressure, maximum urethral closure pressure, NTx, and vitamins D2, D3 and D2 plus D3 were 0.542, 0.561, 0.702, 0.627, 0.645 and 0.640, respectively. The AUC of NTx was significantly higher than the AUCs of Valsalva leak point pressure and maximum urethral closure pressure (p = 0.02 and 0.03, respectively). CONCLUSIONS Urinary NTx was the best predictor of the mid urethral sling outcome. This test is not only noninvasive, it is also modifiable. Finding ideal modifiable risk factors prior to mid urethral sling surgery should be subject to future investigations.
Collapse
Affiliation(s)
- Toby C Chai
- Departments of Urology and Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut.
| | - Pamela A Moalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Holly E Richter
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, Alabama
| | - AeuMuro G Lake
- Departments of Urology and Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Hae-Young Kim
- New England Research Institutes, Watertown, Massachusetts
| | - Charles W Nager
- Department of Reproductive Medicine, University of California-San Diego, San Diego, California
| | - Larry T Sirls
- Department of Urology, Beaumont Hospital, Royal Oak, Michigan
| | - Linda Brubaker
- Department of Urology, Loyola University, Chicago, Illinois
| | - John W Kusek
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| |
Collapse
|