1
|
Fan M, Zheng J, Huang Y, Lu M, Shang Z, Du M. Nanoparticle-mediated universal CAR-T therapy. Int J Pharm 2024; 666:124779. [PMID: 39349228 DOI: 10.1016/j.ijpharm.2024.124779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
In recent years, chimeric antigen receptor (CAR)-T cell therapy has been highly successful in treating hematological malignancies, leading to significant advancements in the cancer immunotherapy field. However, the typical CAR-T therapy necessitates the enrichment of patients' own leukocytes for ex vivo production of CAR-T cells, this customized pattern requires a complicated and time-consuming manufacturing procedure, making it costly and less accessible. The off-the-shelf universal CAR-T strategy could reduce manufacturing costs and realize timely drug administration, presenting as an ideal substitute for typical CAR-T therapy. Utilizing nanocarriers for targeted gene delivery is one of the approaches for the realization of universal CAR-T therapy, as biocompatible and versatile nanoparticles could deliver CAR genes to generate CAR-T cells in vivo. Nanoparticle-mediated in situ generation of CAR-T cells possesses multiple advantages, including lowered cost, simplified manufacturing procedure, and shortened administration time, this strategy is anticipated to provide a potentially cost-effective alternative to current autologous CAR-T cell manufacturing, thus facilitating the prevalence and improvement of CAR-T therapy.
Collapse
Affiliation(s)
- Mingliang Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiayu Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mingxia Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
| | - Zhi Shang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
2
|
Yeoh YQ, Amin A, Cuic B, Tomas D, Turner BJ, Shabanpoor F. Efficient systemic CNS delivery of a therapeutic antisense oligonucleotide with a blood-brain barrier-penetrating ApoE-derived peptide. Biomed Pharmacother 2024; 175:116737. [PMID: 38749176 DOI: 10.1016/j.biopha.2024.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024] Open
Abstract
Antisense oligonucleotide (ASO) has emerged as a promising therapeutic approach for treating central nervous system (CNS) disorders by modulating gene expression with high selectivity and specificity. However, the poor permeability of ASO across the blood-brain barrier (BBB) diminishes its therapeutic success. Here, we designed and synthesized a series of BBB-penetrating peptides (BPP) derived from either the receptor-binding domain of apolipoprotein E (ApoE) or a transferrin receptor-binding peptide (THR). The BPPs were conjugated to phosphorodiamidate morpholino oligomers (PMO) that are chemically analogous to the 2'-O-(2-methoxyethyl) (MOE)-modified ASO approved by the FDA for treating spinal muscular atrophy (SMA). The BPP-PMO conjugates significantly increased the level of full-length SMN2 in the patient-derived SMA fibroblasts in a concentration-dependent manner with minimal to no toxicity. Furthermore, the systemic administration of the most potent BPP-PMO conjugates significantly increased the expression of full-length SMN2 in the brain and spinal cord of SMN2 transgenic adult mice. Notably, BPP8-PMO conjugate showed a 1.25-fold increase in the expression of full-length functional SMN2 in the brain. Fluorescence imaging studies confirmed that 78% of the fluorescently (Cy7)-labelled BPP8-PMO reached brain parenchyma, with 11% uptake in neuronal cells. Additionally, the BPP-PMO conjugates containing retro-inverso (RI) D-BPPs were found to possess extended half-lives compared to their L-counterparts, indicating increased stability against protease degradation while preserving the bioactivity. This delivery platform based on BPP enhances the CNS bioavailability of PMO targeting the SMN2 gene, paving the way for the development of systemically administered neurotherapeutics for CNS disorders.
Collapse
Affiliation(s)
- Yuan Qi Yeoh
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Azin Amin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Brittany Cuic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Doris Tomas
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; School of Chemistry, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
3
|
Gupta R, Salave S, Rana D, Karunakaran B, Butreddy A, Benival D, Kommineni N. Versatility of Liposomes for Antisense Oligonucleotide Delivery: A Special Focus on Various Therapeutic Areas. Pharmaceutics 2023; 15:1435. [PMID: 37242677 PMCID: PMC10222274 DOI: 10.3390/pharmaceutics15051435] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Nucleic acid therapeutics, specifically antisense oligonucleotides (ASOs), can effectively modulate gene expression and protein function, leading to long-lasting curative effects. The hydrophilic nature and large size of oligonucleotides present translational challenges, which have led to the exploration of various chemical modifications and delivery systems. The present review provides insights into the potential role of liposomes as a drug delivery system for ASOs. The potential benefits of liposomes as an ASO carrier, along with their method of preparation, characterization, routes of administration, and stability aspects, have been thoroughly discussed. A novel perspective in terms of therapeutic applications of liposomal ASO delivery in several diseases such as cancer, respiratory disease, ophthalmic delivery, infectious diseases, gastrointestinal disease, neuronal disorders, hematological malignancies, myotonic dystrophy, and neuronal disorders remains the major highlights of this review.
Collapse
Affiliation(s)
- Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
4
|
Pinto IS, Cordeiro RA, Faneca H. Polymer- and lipid-based gene delivery technology for CAR T cell therapy. J Control Release 2023; 353:196-215. [PMID: 36423871 DOI: 10.1016/j.jconrel.2022.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy is a revolutionary approach approved by the FDA and EMA to treat B cell malignancies and multiple myeloma. The production of these T cells has been done through viral vectors, which come with safety concerns, high cost and production challenges, and more recently also through electroporation, which can be extremely cytotoxic. In this context, nanosystems can constitute an alternative to overcome the challenges associated with current methods, resulting in a safe and cost-effective platform. However, the barriers associated with T cells transfection show that the design and engineering of novel approaches in this field are highly imperative. Here, we present an overview from CAR constitution to transfection technologies used in T cells, highlighting the lipid- and polymer-based nanoparticles as a potential delivery platform. Specifically, we provide examples, strengths and weaknesses of nanosystem formulations, and advances in nanoparticle design to improve transfection of T cells. This review will guide the researchers in the design and development of novel nanosystems for next-generation CAR T therapeutics.
Collapse
Affiliation(s)
- Inês S Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Agra do Castro, 3810-193 Aveiro, Portugal
| | - Rosemeyre A Cordeiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal
| | - Henrique Faneca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal.
| |
Collapse
|
5
|
Hama S, Nishi T, Isono E, Itakura S, Yoshikawa Y, Nishimoto A, Suzuki S, Kirimura N, Todo H, Kogure K. Intraperitoneal administration of nanoparticles containing tocopheryl succinate prevents peritoneal dissemination. Cancer Sci 2022; 113:1779-1788. [PMID: 35253340 PMCID: PMC9128176 DOI: 10.1111/cas.15321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Intraperitoneal administration of anticancer nanoparticles is a rational strategy for preventing peritoneal dissemination of colon cancer owing to the prolonged retention of nanoparticles in the abdominal cavity. However, instability of nanoparticles in body fluids causes inefficient retention, reducing its anticancer effects. We have previously developed anticancer nanoparticles containing tocopheryl succinate, which showed high in vivo stability and multifunctional anticancer effects. In the present study, we have demonstrated that peritoneal dissemination derived from colon cancer was prevented by intraperitoneal administration of tocopheryl succinate nanoparticles. The biodistribution of tocopheryl succinate nanoparticles was evaluated by inductively coupled plasma mass spectroscopy and imaging analysis in mice administered quantum dot encapsulated tocopheryl succinate nanoparticles. Intraperitoneal administration of tocopheryl succinate nanoparticles showed longer retention in the abdominal cavity than by its intravenous administration. Moreover, due to effective biodistribution, tumor growth was prevented by intraperitoneal administration of tocopheryl succinate nanoparticles. Furthermore, the anticancer effect was attributed to the inhibition of cancer cell proliferation and improvement of the intraperitoneal microenvironment, such as decrease in the levels of vascular endothelial growth factor A, interleukin 10, and M2-like phenotype of tumor-associated macrophages. Collectively, intraperitoneal administration of tocopheryl succinate nanoparticles is expected to have multifaceted antitumor effects against colon cancer with peritoneal dissemination.
Collapse
Affiliation(s)
- Susumu Hama
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan
| | - Takayuki Nishi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Eitaro Isono
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan
| | - Shoko Itakura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, 350-0295, Japan
| | - Yutaka Yoshikawa
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, Kobe, 650-0046, Japan
| | - Akinori Nishimoto
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Satoko Suzuki
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Naoko Kirimura
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, 350-0295, Japan
| | - Kentaro Kogure
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| |
Collapse
|
6
|
Juszkiewicz K, Sikorski AF, Czogalla A. Building Blocks to Design Liposomal Delivery Systems. Int J Mol Sci 2020; 21:E9559. [PMID: 33334048 PMCID: PMC7765547 DOI: 10.3390/ijms21249559] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The flexibility of liposomal carriers does not just simply rely on their capability to encapsulate various types of therapeutic substances, but also on the large array of components used for designing liposome-based nanoformulations. Each of their components plays a very specific role in the formulation and can be easily replaced whenever a different therapeutic effect is desired. It is tempting to describe this by an analogy to Lego blocks, since a whole set of structures, differing in their features, can be designed using a certain pool of blocks. In this review, we focus on different design strategies, where a broad variety of liposomal components facilitates the attainment of straightforward control over targeting and drug release, which leads to the design of the most promising systems for drug delivery. The key aspects of this block-based architecture became evident after its implementation in our recent works on liposomal carriers of antisense oligonucleotides and statins, which are described in the last chapter of this review.
Collapse
Affiliation(s)
- Katarzyna Juszkiewicz
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | - Aleksander F. Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamieńskiego 73a, 51-124 Wroclaw, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| |
Collapse
|
7
|
Gebert M, Jaśkiewicz M, Moszyńska A, Collawn JF, Bartoszewski R. The Effects of Single Nucleotide Polymorphisms in Cancer RNAi Therapies. Cancers (Basel) 2020; 12:E3119. [PMID: 33113880 PMCID: PMC7694039 DOI: 10.3390/cancers12113119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Tremendous progress in RNAi delivery methods and design has allowed for the effective development of siRNA-based therapeutics that are currently under clinical investigation for various cancer treatments. This approach has the potential to revolutionize cancer therapy by providing the ability to specifically downregulate or upregulate the mRNA of any protein of interest. This exquisite specificity, unfortunately, also has a downside. Genetic variations in the human population are common because of the presence of single nucleotide polymorphisms (SNPs). SNPs lead to synonymous and non-synonymous changes and they occur once in every 300 base pairs in both coding and non-coding regions in the human genome. Much less common are the somatic mosaicism variations associated with genetically distinct populations of cells within an individual that is derived from postzygotic mutations. These heterogeneities in the population can affect the RNAi's efficacy or more problematically, which can lead to unpredictable and sometimes adverse side effects. From a more positive viewpoint, both SNPs and somatic mosaicisms have also been implicated in human diseases, including cancer, and these specific changes could offer the ability to effectively and, more importantly, selectively target the cancer cells. In this review, we discuss how SNPs in the human population can influence the development and success of novel anticancer RNAi therapies and the importance of why SNPs should be carefully considered.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Maciej Jaśkiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Adrianna Moszyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| |
Collapse
|
8
|
Li J, Tan T, Zhao L, Liu M, You Y, Zeng Y, Chen D, Xie T, Zhang L, Fu C, Zeng Z. Recent Advancements in Liposome-Targeting Strategies for the Treatment of Gliomas: A Systematic Review. ACS APPLIED BIO MATERIALS 2020; 3:5500-5528. [PMID: 35021787 DOI: 10.1021/acsabm.0c00705] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malignant tumors represent some of the most intractable diseases that endanger human health. A glioma is a tumor of the central nervous system that is characterized by severe invasiveness, blurred boundaries between the tumor and surrounding normal tissue, difficult surgical removal, and high recurrence. Moreover, the blood-brain barrier (BBB) and multidrug resistance (MDR) are important factors that contribute to the lack of efficacy of chemotherapy in treating gliomas. A liposome is a biofilm-like drug delivery system with a unique phospholipid bilayer that exhibits high affinities with human tissues/organs (e.g., BBB). After more than five decades of development, classical and engineered liposomes consist of four distinct generations, each with different characteristics: (i) traditional liposomes, (ii) stealth liposomes, (iii) targeting liposomes, and (iv) biomimetic liposomes, which offer a promising approach to promote drugs across the BBB and to reverse MDR. Here, we review the history, preparatory methods, and physicochemical properties of liposomes. Furthermore, we discuss the mechanisms by which liposomes have assisted in the diagnosis and treatment of gliomas, including drug transport across the BBB, inhibition of efflux transporters, reversal of MDR, and induction of immune responses. Finally, we highlight ongoing and future clinical trials and applications toward further developing and testing the efficacies of liposomes in treating gliomas.
Collapse
Affiliation(s)
- Jie Li
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Tiantian Tan
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Liping Zhao
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Mengmeng Liu
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Yu You
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yiying Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Dajing Chen
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Lele Zhang
- School of Medicine, Chengdu University, Chengdu 610106, Sichuan, China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhaowu Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
9
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
10
|
Clarke D, Idris A, McMillan NAJ. Development of novel lipidic particles for siRNA delivery that are highly effective after 12 months storage. PLoS One 2019; 14:e0211954. [PMID: 30735545 PMCID: PMC6368384 DOI: 10.1371/journal.pone.0211954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/24/2019] [Indexed: 01/30/2023] Open
Abstract
Liposomes are versatile and well-proven as a means to deliver nucleic acids into cells. Most of the formulation procedures used are labour intensive and result in unstable end products. We have previously reported on the development of a simple, yet efficient, hydration-of-freeze-dried-matrix (HFDM) method to entrap siRNA within lipid particles. Here we show that the particles are stable up to 12 months after storage at room temperature (RT), 4°C or -20°C. While RT storage results in changes in particle size and polydispersity, gene silencing of all particles was similar to freshly prepared particles following storage for 3, 6, 9 or 12 months at all temperatures. This is the first report of such long-term stability in siRNA-loaded liposomes.
Collapse
Affiliation(s)
- Daniel Clarke
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Australia
- * E-mail:
| | - Nigel A. J. McMillan
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Australia
| |
Collapse
|
11
|
Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond) 2019; 14:93-126. [PMID: 30451076 PMCID: PMC6391637 DOI: 10.2217/nnm-2018-0120] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
There has been a revolution in nanotechnology and nanomedicine. Since 1980, there has been a remarkable increase in approved nano-based pharmaceutical products. These novel nano-based systems can either be therapeutic agents themselves, or else act as vehicles to carry different active pharmaceutical agents into specific parts of the body. Currently marketed nanostructures include nanocrystals, liposomes and lipid nanoparticles, PEGylated polymeric nanodrugs, other polymers, protein-based nanoparticles and metal-based nanoparticles. A range of issues must be addressed in the development of these nanostructures. Ethics, market size, possibility of market failure, costs and commercial development, are some topics which are on the table to be discussed. After passing all the ethical and biological assessments, and satisfying the investors as to future profitability, only a handful of these nanoformulations, successfully obtained marketing approval. We survey the range of nanomedicines that have received regulatory approval and are marketed. We discuss ethics, costs, commercial development and possible market failure. We estimate the global nanomedicine market size and future growth. Our goal is to summarize the different approved nanoformulations on the market, and briefly cover the challenges and future outlook.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Amir Ghasemi
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran
- Advances Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14496-4535, Iran
| | - Omid Gohari
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran
| | - Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Science, Shiraz 71348-14336, Iran
| | - Mahdi Karimi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard – MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Evaluation of siRNA and cationic liposomes complexes as a model for in vitro siRNA delivery to cancer cells. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Guo J, Luan X, Cong Z, Sun Y, Wang L, McKenna SL, Cahill MR, O'Driscoll CM. The potential for clinical translation of antibody-targeted nanoparticles in the treatment of acute myeloid leukaemia. J Control Release 2018; 286:154-166. [DOI: 10.1016/j.jconrel.2018.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
|
14
|
Tat-Tagged and Folate-Modified N-Succinyl-chitosan (Tat-Suc-FA) Self-assembly Nanoparticle for Therapeutic Delivery OGX-011 to A549 Cells. Mol Pharm 2017; 14:1898-1905. [PMID: 28464609 DOI: 10.1021/acs.molpharmaceut.6b01167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The objective of this study was to develop a novel type of an antisense oligonucleotide (OGX-011) loaded Tat-tagged and folate-modified N-succinyl-chitosan (Tat-Suc-FA) nanoparticles (NPs) for improving tumor targetability. In this study, Tat-Suc-FA/OGX-011NPs were prepared and its physicochemical characterizations were also evaluated. The nanoparticles showed an average diameter of 73 ± 16.6 nm, the zeta potential of +23.6 ± 0.3 mV, and a high entrapment efficiency of 89.6 ± 6.6%. Transmission electron microscopy analysis showed the nanoparticles were mostly spherical and well dispersed. The delivery efficiency of this system was investigated both in vitro and in vivo. In comparison with nontargeted Lipofectamin2000/OGX-011 and free OGX-011, Tat-Suc-FA/GOX-011 showed the highest apoptosis rate of 14.2% ± 1.8% and significant uptake in A549 cells. Tat-Suc-FA NPs loaded with GOX-011 induced significant down-regulation of s-CLU mRNA and protein levels in A549 cells. In A549 tumor-bearing mice model, Tat-Suc-FA/GOX-011 produced a more efficient down-regulation of s-CLU compared to Lipofectamin2000/OGX-011. Furthermore, the combined use of Tat-Suc-FA/OGX-011 with DDP chemotherapy showed a most significant inhibition of tumor growth and greatly enhanced the survival rate of A549 tumor-bearing mice. These findings suggested successful application of Tat-Suc-FA NPs for the high efficiency and specificity in therapeutic delivery of OGX-011 to A549 cells.
Collapse
|
15
|
Oberli MA, Reichmuth AM, Dorkin JR, Mitchell MJ, Fenton OS, Jaklenec A, Anderson DG, Langer R, Blankschtein D. Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy. NANO LETTERS 2017; 17:1326-1335. [PMID: 28273716 PMCID: PMC5523404 DOI: 10.1021/acs.nanolett.6b03329] [Citation(s) in RCA: 467] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The induction of a strong cytotoxic T cell response is an important prerequisite for successful immunotherapy against many viral diseases and tumors. Nucleotide vaccines, including mRNA vaccines with their intracellular antigen synthesis, have been shown to be potent activators of a cytotoxic immune response. The intracellular delivery of mRNA vaccines to the cytosol of antigen presenting immune cells is still not sufficiently well understood. Here, we report on the development of a lipid nanoparticle formulation for the delivery of mRNA vaccines to induce a cytotoxic CD 8 T cell response. We show transfection of dendritic cells, macrophages, and neutrophils. The efficacy of the vaccine was tested in an aggressive B16F10 melanoma model. We found a strong CD 8 T cell activation after a single immunization. Treatment of B16F10 melanoma tumors with lipid nanoparticles containing mRNA coding for the tumor-associated antigens gp100 and TRP2 resulted in tumor shrinkage and extended the overall survival of the treated mice. The immune response can be further increased by the incorporation of the adjuvant LPS. In conclusion, the lipid nanoparticle formulation presented here is a promising vector for mRNA vaccine delivery, one that is capable of inducing a strong cytotoxic T cell response. Further optimization, including the incorporation of different adjuvants, will likely enhance the potency of the vaccine.
Collapse
Affiliation(s)
- Matthias A. Oberli
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andreas M. Reichmuth
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Robert Dorkin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael J. Mitchell
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Owen S. Fenton
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel G. Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Guo J, Russell EG, Darcy R, Cotter TG, McKenna SL, Cahill MR, O’Driscoll CM. Antibody-Targeted Cyclodextrin-Based Nanoparticles for siRNA Delivery in the Treatment of Acute Myeloid Leukemia: Physicochemical Characteristics, in Vitro Mechanistic Studies, and ex Vivo Patient Derived Therapeutic Efficacy. Mol Pharm 2017; 14:940-952. [DOI: 10.1021/acs.molpharmaceut.6b01150] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jianfeng Guo
- School
of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Pharmacodelivery
Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Eileen G. Russell
- Tumour
Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery
Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Thomas G. Cotter
- Tumour
Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - Mary R. Cahill
- Department
of Haematology, Cork University Hospital, Cork, Ireland
| | | |
Collapse
|
17
|
Ansari AS, Santerre PJ, Uludağ H. Biomaterials for polynucleotide delivery to anchorage-independent cells. J Mater Chem B 2017; 5:7238-7261. [DOI: 10.1039/c7tb01833a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comparison of various chemical vectors used for polynucleotide delivery to mammalian anchorage-independent cells.
Collapse
Affiliation(s)
- Aysha S. Ansari
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Paul J. Santerre
- Institute of Biomaterials & Biomedical Engineering
- University of Toronto
- Toronto
- Canada
| | - Hasan Uludağ
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
18
|
Misra SK, Moitra P, Kondaiah P, Bhattacharya S. Co-liposomes having anisamide tagged lipid and cholesteryl tryptophan trigger enhanced gene transfection in sigma receptor positive cells. Colloids Surf B Biointerfaces 2016; 142:130-140. [DOI: 10.1016/j.colsurfb.2016.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/24/2016] [Accepted: 02/22/2016] [Indexed: 01/19/2023]
|
19
|
Anti-inflammatory activity of chitosan nanoparticles carrying NF-κB/p65 antisense oligonucleotide in RAW264.7 macropghage stimulated by lipopolysaccharide. Colloids Surf B Biointerfaces 2016; 142:297-306. [PMID: 26970817 DOI: 10.1016/j.colsurfb.2016.02.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/25/2016] [Accepted: 02/14/2016] [Indexed: 01/20/2023]
Abstract
The purpose of this present study is to prepare NF-κB/p65 antisense oligonucleotide loaded chitosan nanoparticles (NPs) and evaluate their physicochemical characterization and antisense effects in RAW264.7 macrophages. Condensed nanoparticles with mean particle size of 128±16nm, average Zeta potential of 19.6±6.3mV and high entrapment efficiency (EE) of 98.6±0.11% were formed between NF-κB/p65 antisense gene (NAG) and chitosan by complex coacervation method. Trypan blue staining and MTT tests showed that NAG chitosan NPs had no toxic effect on RAW264.7 macrophages when the dose was no more than 20μg/mL. Confocal microscopy images showed that NAG chitosan NPs were capable to deliver NAG into cytoplasm of RAW264.7 macrophages and finally into nucleus. Real-time PCR tests verified that NAG chitosan NPs could significantly decrease the mRNA expression level of NF-κB/p65 and inflammatory cytokines including TNF-ɑ, IL-1 and IL-6. Accordingly, western blot study showed that NAG NPs uptaken in the cells could efficiently reversed the expression of NF-κB/p65 protein induced by LPS. At last, downstream release level of inflammatory factors including TNF-ɑ, IL-1 and IL-6 in LPS stimulated RAW264.7 macrophages was significantly decreased after treated by NAG chitosan NPs. It could be concluded that chitosan NPs were excellent delivery vectors to ferry the NAG into the cytoplasm and nucleus of macrophages. The NAG chitosan NPs might be a novel therapeutic apparatus for the treatment of LPS induced sepsis by inhibiting NF-κB-related pro-inflammatory cytokines secretion.
Collapse
|
20
|
Liao W, Li W, Zhang T, Kirberger M, Liu J, Wang P, Chen W, Wang Y. Powering up the molecular therapy of RNA interference by novel nanoparticles. Biomater Sci 2016; 4:1051-61. [DOI: 10.1039/c6bm00204h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With more suitable for disease treatment due to reduced cellular toxicity, higher loading capacity, and better biocompatibility, nanoparticle-based siRNA delivery systems have proved to be more potent, higher specific and less toxic than the traditional drug therapy.
Collapse
Affiliation(s)
- Wenzhen Liao
- Institute of Food Safety and Nutrition
- Jinan University
- Guangzhou
- China
- Department of Food Science and Technology
| | | | - Tiantian Zhang
- Institute of Food Safety and Nutrition
- Jinan University
- Guangzhou
- China
| | | | - Jun Liu
- Department of Food and Bioproduct Sciences
- University of Saskatchewan
- Saskatoon
- Canada
| | - Pei Wang
- Center for Excellence in Post-Harvest Technologies
- North Carolina Agricultural and Technical State University
- North Carolina 28081
- USA
| | - Wei Chen
- Sun Yat-Sen University
- Guangzhou
- China
| | - Yong Wang
- Department of Food Science and Engineering
- Jinan University
- Guangzhou
- China
| |
Collapse
|
21
|
Meissner JM, Toporkiewicz M, Czogalla A, Matusewicz L, Kuliczkowski K, Sikorski AF. Novel antisense therapeutics delivery systems: In vitro and in vivo studies of liposomes targeted with anti-CD20 antibody. J Control Release 2015; 220:515-528. [PMID: 26585505 DOI: 10.1016/j.jconrel.2015.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/07/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
Abstract
Antisense gene therapy using molecules such as antisense oligodeoxynucleotides, siRNA or miRNA is a very promising strategy for the treatment of neoplastic diseases. It can be combined with other treatment strategies to enhance therapeutic effect. In acute leukemias, overexpression of the antiapoptotic gene BCL2 is observed in more than 70% of cases. Therefore, reduction of the Bcl-2 protein level could, in itself, prevent the development of cancer or could possibly help sensitize cancer cells to apoptosis inducers. The main objective of our work is to develop therapeutic liposome formulations characterized by high transfection efficiency, stability in the presence of serum, as well as specificity and toxicity for target (leukemic) cells. Each of our liposomal formulations consists of a core composed of antisense oligonucleotides complexed by either cationic lipid, DOTAP, or a synthetic polycation, polyethyleneimine, encapsulated within liposomes modified with polyethylenoglycol. In addition, the liposomal shells are enriched with covalently-bound antibodies recognizing a well characterized bio-marker, CD20, exposed on the surface of leukemia cells. The resulting immunoliposomes selectively and effectively reduced the expression of BCL2 in target cells. Model animal experiments carried out on mice-engrafted tumors expressing the specific marker showed high efficiency of the liposome formulations against specific tumor development. In conclusion, we show that lipid formulations based on a polyplex or lipoplex backbone additionally equipped with antibodies are promising non-viral vectors for specific oligonucleotide transfer into human tumor cells.
Collapse
Affiliation(s)
- Justyna M Meissner
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; Electron Microscopy Laboratory, Faculty of Biology, University of Environmental and Life Sciences Wroclaw, Kożuchowska 5b, 50-631 Wroclaw, Poland
| | - Monika Toporkiewicz
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Aleksander Czogalla
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Lucyna Matusewicz
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Kazimierz Kuliczkowski
- Wrocław Medical University, Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation ul. L, Pasteura 4, 50-367 Wroclaw, Poland
| | - Aleksander F Sikorski
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| |
Collapse
|
22
|
Toporkiewicz M, Meissner J, Matusewicz L, Czogalla A, Sikorski AF. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges. Int J Nanomedicine 2015; 10:1399-414. [PMID: 25733832 PMCID: PMC4337502 DOI: 10.2147/ijn.s74514] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There are many problems directly correlated with the systemic administration of drugs and how they reach their target site. Targeting promises to be a hopeful strategy as an improved means of drug delivery, with reduced toxicity and minimal adverse side effects. Targeting exploits the high affinity of cell-surface-targeted ligands, either directly or as carriers for a drug, for specific retention and uptake by the targeted diseased cells. One of the most important parameters which should be taken into consideration in the selection of an appropriate ligand for targeting is the binding affinity (K D). In this review we focus on the importance of binding affinities of monoclonal antibodies, antibody derivatives, peptides, aptamers, DARPins, and small targeting molecules in the process of selection of the most suitable ligand for targeting of nanoparticles. In order to provide a critical comparison between these various options, we have also assessed each technology format across a range of parameters such as molecular size, immunogenicity, costs of production, clinical profiles, and examples of the level of selectivity and toxicity of each. Wherever possible, we have also assessed how incorporating such a targeted approach compares with, or is superior to, original treatments.
Collapse
Affiliation(s)
- Monika Toporkiewicz
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Justyna Meissner
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Lucyna Matusewicz
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksander Czogalla
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksander F Sikorski
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|