1
|
Systematic Analysis of Genetic and Pathway Determinants of Eribulin Sensitivity across 100 Human Cancer Cell Lines from the Cancer Cell Line Encyclopedia (CCLE). Cancers (Basel) 2022; 14:cancers14184532. [PMID: 36139690 PMCID: PMC9496846 DOI: 10.3390/cancers14184532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Eribulin, a natural product-based microtubule targeting agent with cytotoxic and noncytotoxic mechanisms, is FDA approved for certain patients with advanced breast cancer and liposarcoma. To investigate the feasibility of developing drug-specific predictive biomarkers, we quantified antiproliferative activities of eribulin versus paclitaxel and vinorelbine against 100 human cancer cell lines from the Cancer Cell Line Encyclopedia, and correlated results with publicly available databases to identify genes and pathways associated with eribulin response, either uniquely or shared with paclitaxel or vinorelbine. Mean expression ratios of 11,985 genes between the most and least sensitive cell line quartiles were sorted by p-values and drug overlaps, yielding 52, 29 and 80 genes uniquely associated with eribulin, paclitaxel and vinorelbine, respectively. Further restriction to minimum 2-fold ratios followed by reintroducing data from the middle two quartiles identified 9 and 13 drug-specific unique fingerprint genes for eribulin and vinorelbine, respectively; surprisingly, no gene met all criteria for paclitaxel. Interactome and Reactome pathway analyses showed that unique fingerprint genes of both drugs were primarily associated with cellular signaling, not microtubule-related pathways, although considerable differences existed in individual pathways identified. Finally, four-gene (C5ORF38, DAAM1, IRX2, CD70) and five-gene (EPHA2, NGEF, SEPTIN10, TRIP10, VSIG10) multivariate regression models for eribulin and vinorelbine showed high statistical correlation with drug-specific responses across the 100 cell lines and accurately calculated predicted mean IC50s for the most and least sensitive cell line quartiles as surrogates for responders and nonresponders, respectively. Collectively, these results provide a foundation for developing drug-specific predictive biomarkers for eribulin and vinorelbine.
Collapse
|
2
|
Rai K, Kumbhar BV, Panda D, Kunwar A. Computational study of interactions of anti-cancer drug eribulin with human tubulin isotypes. Phys Chem Chem Phys 2022; 24:16694-16700. [PMID: 35766982 DOI: 10.1039/d1cp04454k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microtubules (MTs) are widely targeted for the treatment of various types of cancer due to their essential role in cell division. MTs are polymers made of αβ-tubulin heterodimers. These α- and β-tubulins have 8 and 10 different isotypes, respectively. It is known that a few tubulin isotypes have anti-cancer drug resistance properties, especially βIII, which shows poor sensitivity to many potent anti-cancer drugs such as eribulin. However, the molecular-level understanding of drug-resistance due to tubulin isotype variation is poorly understood. This paper presents the study of differential binding affinities of different tubulin isotypes with the potent anti-cancer drug eribulin. Eribulin (MT destabilizer) binds at the inter-dimer interface of MTs near the vinca site and induces a lattice deformation, which results in catastrophic events in MT dynamics. In this study, sequence analysis has been done throughway and the binding sites and based on that 2α-tubulin isotypes (αI and αVIII) and 7β tubulin isotypes (βI, βIIa, βIII, βIVa, βVI, βVII and βVIII) were selected. In total, 14 combinations were prepared after building homology models of these selected isotypes. Molecular docking and molecular dynamics simulations were performed to deeply understand the binding mode of eribulin at different MT compositions. RMSD, RMSF, radius of gyration, SASA, ligand-protein interactions, and calculations of binding free energy were performed to investigate the eribulin binding variations to tubulin isotypes and it was found that αIβII showed the maximum binding affinity among all 14 systems to eribulin. The βIII-tubulin isotype, which shows low sensitivity to eribulin in experimental results, had the least binding affinity in the system αVIIIβIII complex and the average binding affinity in the system αIβIII among all 14 systems. Additionally, we performed steered MD simulations and DynDom analysis of the systems with the lowest binding energy (αIβII) and the highest binding energy (αVIIIβIII) and extracted force, displacement, and H-bonding profiles during the pulling simulations to get a better insight.
Collapse
Affiliation(s)
- Khushnandan Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India.
| | - Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India.
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India.
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India.
| |
Collapse
|
3
|
A Bayesian machine learning approach for drug target identification using diverse data types. Nat Commun 2019; 10:5221. [PMID: 31745082 PMCID: PMC6863850 DOI: 10.1038/s41467-019-12928-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/10/2019] [Indexed: 11/18/2022] Open
Abstract
Drug target identification is a crucial step in development, yet is also among the most complex. To address this, we develop BANDIT, a Bayesian machine-learning approach that integrates multiple data types to predict drug binding targets. Integrating public data, BANDIT benchmarked a ~90% accuracy on 2000+ small molecules. Applied to 14,000+ compounds without known targets, BANDIT generated ~4,000 previously unknown molecule-target predictions. From this set we validate 14 novel microtubule inhibitors, including 3 with activity on resistant cancer cells. We applied BANDIT to ONC201—an anti-cancer compound in clinical development whose target had remained elusive. We identified and validated DRD2 as ONC201’s target, and this information is now being used for precise clinical trial design. Finally, BANDIT identifies connections between different drug classes, elucidating previously unexplained clinical observations and suggesting new drug repositioning opportunities. Overall, BANDIT represents an efficient and accurate platform to accelerate drug discovery and direct clinical application. Drug target identification is a crucial step in drug development. Here, the authors introduce a Bayesian machine learning framework that integrates multiple data types to predict the targets of small molecules, enabling identification of a new set of microtubule inhibitors and the target of the anti-cancer molecule ONC201.
Collapse
|
4
|
Malacrida A, Meregalli C, Rodriguez-Menendez V, Nicolini G. Chemotherapy-Induced Peripheral Neuropathy and Changes in Cytoskeleton. Int J Mol Sci 2019; 20:E2287. [PMID: 31075828 PMCID: PMC6540147 DOI: 10.3390/ijms20092287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022] Open
Abstract
Despite the different antineoplastic mechanisms of action, peripheral neurotoxicity induced by all chemotherapy drugs (anti-tubulin agents, platinum compounds, proteasome inhibitors, thalidomide) is associated with neuron morphological changes ascribable to cytoskeleton modifications. The "dying back" degeneration of distal terminals (sensory nerves) of dorsal root ganglia sensory neurons, observed in animal models, in in vitro cultures and biopsies of patients is the most evident hallmark of the perturbation of the cytoskeleton. On the other hand, in highly polarized cells like neurons, the cytoskeleton carries out its role not only in axons but also has a fundamental role in dendrite plasticity and in the organization of soma. In the literature, there are many studies focused on the antineoplastic-induced alteration of microtubule organization (and consequently, fast axonal transport defects) while very few studies have investigated the effect of the different classes of drugs on microfilaments, intermediate filaments and associated proteins. Therefore, in this review, we will focus on: (1) Highlighting the fundamental role of the crosstalk among the three filamentous subsystems and (2) investigating pivotal cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Virginia Rodriguez-Menendez
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Gabriella Nicolini
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| |
Collapse
|
5
|
Dybdal-Hargreaves NF, Risinger AL, Mooberry SL. Regulation of E-cadherin localization by microtubule targeting agents: rapid promotion of cortical E-cadherin through p130Cas/Src inhibition by eribulin. Oncotarget 2017; 9:5545-5561. [PMID: 29464017 PMCID: PMC5814157 DOI: 10.18632/oncotarget.23798] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Microtubule targeting agents (MTAs) are some of the most effective anticancer drugs used to treat a wide variety of adult and pediatric cancers. Building evidence suggests that these drugs inhibit interphase signaling events and that this contributes to their anticancer actions. The effects of diverse MTAs were evaluated following a 2 hour incubation with clinically relevant concentrations to test the hypothesis that these drugs rapidly and differentially disrupt epithelial-to-mesenchymal transition (EMT)-related signaling. The MTAs rapidly promoted the cortical localization of internal pools of E-cadherin in HCC1937 breast cancer cells, with the most robust effects observed with the microtubule destabilizers eribulin and vinorelbine. Cortical E-cadherin localization was also promoted by the Src kinase inhibitor dasatinib or by siRNA-mediated depletion of the p130Cas scaffold. Mechanistic studies demonstrate that eribulin disrupts the interaction between p130Cas and Src, leading to decreased cortical Src phosphorylation that precedes the accumulation of cortical E-cadherin. These results suggest that microtubules can be actively co-opted by cancer cells to inhibit cortical E-cadherin localization, a hallmark of EMT, and provide a direct link between the initial disruption of the microtubule network and reversal of EMT phenotypes demonstrated by eribulin in long-term studies.
Collapse
Affiliation(s)
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,UT Health Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Susan L Mooberry
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,UT Health Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
6
|
Harrison LE, Bleiler M, Giardina C. A look into centrosome abnormalities in colon cancer cells, how they arise and how they might be targeted therapeutically. Biochem Pharmacol 2017; 147:1-8. [PMID: 29128368 DOI: 10.1016/j.bcp.2017.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
Cancer cells have long been noted for alterations in centrosome structure, number, and function. Colorectal cancers are interesting in this regard since two frequently mutated genes, APC and CTNNB1 (β-catenin), encode proteins that directly interact with the centrosome and affect its ability to direct microtubule growth and establish cell polarity. Colorectal cancers also frequently display centrosome over-duplication and clustering. Efforts have been directed toward understanding how supernumerary centrosomes cluster and whether disrupting this clustering may be a way to induce aberrant/lethal mitoses of cancer cells. Given the important role of the centrosome in establishing spindle polarity and regulating some apoptotic signaling pathways, other approaches to centrosome targeting may be fruitful as well. Basic information on the nature and extent of centrosome defects in colorectal cancer, including why they over-duplicate and whether this over-duplication compensates for their functional defects, could provide a framework for the development of novel approaches for the therapeutic targeting of colorectal cancer.
Collapse
Affiliation(s)
- Lauren E Harrison
- Department of Molecular and Cell Biology, 91 North Eagleville Road, U3125, University of Connecticut, Storrs, CT 06269, United States
| | - Marina Bleiler
- Department of Molecular and Cell Biology, 91 North Eagleville Road, U3125, University of Connecticut, Storrs, CT 06269, United States
| | - Charles Giardina
- Department of Molecular and Cell Biology, 91 North Eagleville Road, U3125, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
7
|
Nehlig A, Molina A, Rodrigues-Ferreira S, Honoré S, Nahmias C. Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cell Mol Life Sci 2017; 74:2381-2393. [PMID: 28204846 PMCID: PMC11107513 DOI: 10.1007/s00018-017-2476-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
The regulation of microtubule dynamics is critical to ensure essential cell functions, such as proper segregation of chromosomes during mitosis or cell polarity and migration. End-binding protein 1 (EB1) is a plus-end-tracking protein (+TIP) that accumulates at growing microtubule ends and plays a pivotal role in the regulation of microtubule dynamics. EB1 autonomously binds an extended tubulin-GTP/GDP-Pi structure at growing microtubule ends and acts as a molecular scaffold that recruits a large number of regulatory +TIPs through interaction with CAP-Gly or SxIP motifs. While extensive studies have focused on the structure of EB1-interacting site at microtubule ends and its role as a molecular platform, the mechanisms involved in the negative regulation of EB1 have only started to emerge and remain poorly understood. In this review, we summarize recent studies showing that EB1 association with MT ends is regulated by post-translational modifications and affected by microtubule-targeting agents. We also present recent findings that structural MAPs, that have no tip-tracking activity, physically interact with EB1 to prevent its accumulation at microtubule plus ends. These observations point out a novel concept of "endogenous EB1 antagonists" and emphasize the importance of finely regulating EB1 function at growing microtubule ends.
Collapse
Affiliation(s)
- Anne Nehlig
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
| | - Angie Molina
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
- CBD, University of Toulouse-3, Toulouse, France
| | - Sylvie Rodrigues-Ferreira
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
| | - Stéphane Honoré
- Aix Marseille University, Inserm U-911, CRO2, Marseille, France
- Service Pharmacie, CHU Hôpital de La Timone, APHM, Marseille, France
| | - Clara Nahmias
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France.
- University Paris Saclay, 94800, Villejuif, France.
| |
Collapse
|
8
|
Kozyreva VK, Kiseleva AA, Ice RJ, Jones BC, Loskutov YV, Matalkah F, Smolkin MB, Marinak K, Livengood RH, Salkeni MA, Wen S, Hazard HW, Layne GP, Walsh CM, Cantrell PS, Kilby GW, Mahavadi S, Shah N, Pugacheva EN. Combination of Eribulin and Aurora A Inhibitor MLN8237 Prevents Metastatic Colonization and Induces Cytotoxic Autophagy in Breast Cancer. Mol Cancer Ther 2016; 15:1809-22. [PMID: 27235164 DOI: 10.1158/1535-7163.mct-15-0688] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/18/2016] [Indexed: 12/26/2022]
Abstract
Recent findings suggest that the inhibition of Aurora A (AURKA) kinase may offer a novel treatment strategy against metastatic cancers. In the current study, we determined the effects of AURKA inhibition by the small molecule inhibitor MLN8237 both as a monotherapy and in combination with the microtubule-targeting drug eribulin on different stages of metastasis in triple-negative breast cancer (TNBC) and defined the potential mechanism of its action. MLN8237 as a single agent and in combination with eribulin affected multiple steps in the metastatic process, including migration, attachment, and proliferation in distant organs, resulting in suppression of metastatic colonization and recurrence of cancer. Eribulin application induces accumulation of active AURKA in TNBC cells, providing foundation for the combination therapy. Mechanistically, AURKA inhibition induces cytotoxic autophagy via activation of the LC3B/p62 axis and inhibition of pAKT, leading to eradication of metastases, but has no effect on growth of mammary tumor. Combination of MLN8237 with eribulin leads to a synergistic increase in apoptosis in mammary tumors, as well as cytotoxic autophagy in metastases. These preclinical data provide a new understanding of the mechanisms by which MLN8237 mediates its antimetastatic effects and advocates for its combination with eribulin in future clinical trials for metastatic breast cancer and early-stage solid tumors. Mol Cancer Ther; 15(8); 1809-22. ©2016 AACR.
Collapse
Affiliation(s)
- Varvara K Kozyreva
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Anna A Kiseleva
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Tatarstan
| | - Ryan J Ice
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Brandon C Jones
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Yuriy V Loskutov
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Fatimah Matalkah
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Matthew B Smolkin
- Department of Pathology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Kristina Marinak
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Ryan H Livengood
- Department of Pathology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mohamad A Salkeni
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Sijin Wen
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Biostatistics, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Hannah W Hazard
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Surgery, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Ginger P Layne
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Radiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | | | | | - Greg W Kilby
- Protea Biosciences, Inc., Morgantown, West Virginia
| | - Sricharan Mahavadi
- INBRE Program, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Neal Shah
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Elena N Pugacheva
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia.
| |
Collapse
|
9
|
Wozniak KM, Vornov JJ, Wu Y, Nomoto K, Littlefield BA, DesJardins C, Yu Y, Lai G, Reyderman L, Wong N, Slusher BS. Sustained Accumulation of Microtubule-Binding Chemotherapy Drugs in the Peripheral Nervous System: Correlations with Time Course and Neurotoxic Severity. Cancer Res 2016; 76:3332-9. [PMID: 27197173 DOI: 10.1158/0008-5472.can-15-2525] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/03/2016] [Indexed: 12/13/2022]
Abstract
Chemotherapy-induced peripheral neuropathy is a dose-limiting side effect of many antineoplastic agents, but the mechanisms underlying the toxicities are unclear. At their MTDs, the microtubule-binding drugs paclitaxel and ixabepilone induce more severe neuropathy in mice relative to eribulin mesylate, paralleling their toxicity profiles in clinic. We hypothesized that the severity of their neurotoxic effects might be explained by the levels at which they accumulate in the peripheral nervous system. To test this hypothesis, we compared their pharmacokinetics and distribution in peripheral nerve tissue. After administration of a single intravenous dose, each drug was rapidly cleared from plasma but all persisted in the dorsal root ganglia (DRG) and sciatic nerve (SN) for up to 72 hours. Focusing on paclitaxel and eribulin, we performed a 2-week MTD-dosing regimen, followed by a determination of drug pharmacokinetics, tissue distribution, and multiple functional measures of peripheral nerve toxicity for 4 weeks. Consistent with the acute dosing study, both drugs persisted in peripheral nervous tissues for weeks, in contrast to their rapid clearance from plasma. Notably, although eribulin exhibited greater DRG and SN penetration than paclitaxel, the neurotoxicity observed functionally was consistently more severe with paclitaxel. Overall, our results argue that sustained exposure of microtubule-binding chemotherapeutic agents in peripheral nerve tissues cannot by itself account for their associated neurotoxicity. Cancer Res; 76(11); 3332-9. ©2016 AACR.
Collapse
Affiliation(s)
- Krystyna M Wozniak
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | - Yanke Yu
- Eisai Inc., Andover, Massachusetts
| | | | | | | | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Neurology, Medicine Psychiatry, and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
10
|
Story of Eribulin Mesylate: Development of the Longest Drug Synthesis. TOPICS IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1007/7081_2016_201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|