1
|
Vasconcelos NF, Chevallier P, Mantovani D, Rosa MDF, Barros FJS, Andrade FK, Vieira RS. Oxidized Bacterial Cellulose Membranes Immobilized with Papain for Dressing Applications: Physicochemical and In Vitro Biological Properties. Pharmaceutics 2024; 16:1085. [PMID: 39204430 PMCID: PMC11359937 DOI: 10.3390/pharmaceutics16081085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
This research consolidates our group's advances in developing a therapeutic dressing with innovative enzymatic debridement, focusing on the physicochemical and in vitro biological properties of papain immobilized in wet oxidized bacterial cellulose (OxBC-Papain) dressing. OxBC membranes were produced with Komagataeibacter hansenii oxidized with NaIO4, and papain was immobilized on them. They were characterized in terms of enzyme stability (over 100 days), absorption capacity, water vapor transmission (WVT), hemocompatibility, cytotoxicity, and cell adhesion. The OxBC-Papain membrane showed 68.5% proteolytic activity after 100 days, demonstrating the benefit of using the OxBC wet membrane for papain stability. It had a WVT rate of 678 g/m2·24 h and cell viability of 99% and 86% for L929 and HaCat cells, respectively. The membranes exhibited non-hemolytic behavior and maintained 26% clotting capacity after 1 h. The wet OxBC-Papain membrane shows significant potential as a natural biomolecule-based therapeutic dressing for wound care, offering efficient debridement, moisture maintenance, exudate absorption, gas exchange, and hemostasis without cytotoxic effects or cell adhesion to the dressing. Further research, especially using in vivo models, is needed to assess its efficacy in inducing epithelialization. This study advances stomatherapy knowledge, providing a cost-effective solution for enzymatic debridement in healthcare.
Collapse
Affiliation(s)
- Niédja Fittipaldi Vasconcelos
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Laboratório de Materiais Nanoestruturados (LMNano), Cidade Universitária, Avenida Professor Luiz Freire 01, Recife 50740-540, PE, Brazil
| | - Pascale Chevallier
- Laboratory for Biomaterials & Bioengineering (LBB), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V 0A6, Canada; (P.C.); (D.M.)
| | - Diego Mantovani
- Laboratory for Biomaterials & Bioengineering (LBB), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V 0A6, Canada; (P.C.); (D.M.)
| | - Morsyleide de Freitas Rosa
- Embrapa Agroindústria Tropical–CNPAT, Rua Dra Sara Mesquita 2270, Planalto do Pici, Fortaleza 60511-110, CE, Brazil;
| | - Fernando José Soares Barros
- Departamento de Engenharia Química, Universidade Federal do Ceará (UFC), Bloco 709, Fortaleza 60455-760, CE, Brazil; (F.J.S.B.); (F.K.A.); (R.S.V.)
| | - Fábia Karine Andrade
- Departamento de Engenharia Química, Universidade Federal do Ceará (UFC), Bloco 709, Fortaleza 60455-760, CE, Brazil; (F.J.S.B.); (F.K.A.); (R.S.V.)
| | - Rodrigo Silveira Vieira
- Departamento de Engenharia Química, Universidade Federal do Ceará (UFC), Bloco 709, Fortaleza 60455-760, CE, Brazil; (F.J.S.B.); (F.K.A.); (R.S.V.)
| |
Collapse
|
2
|
Zumbardo-Bacelis GA, Peponi L, Vargas-Coronado RF, Rodríguez-Velázquez E, Alatorre-Meda M, Chevallier P, Copes F, Mantovani D, Abraham GA, Cauich-Rodríguez JV. A Comparison of Three-Layer and Single-Layer Small Vascular Grafts Manufactured via the Roto-Evaporation Method. Polymers (Basel) 2024; 16:1314. [PMID: 38794507 PMCID: PMC11125268 DOI: 10.3390/polym16101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
This study used the roto-evaporation technique to engineer a 6 mm three-layer polyurethane vascular graft (TVG) that mimics the architecture of human coronary artery native vessels. Two segmented polyurethanes were synthesized using lysine (SPUUK) and ascorbic acid (SPUAA), and the resulting materials were used to create the intima and adventitia layers, respectively. In contrast, the media layer of the TVG was composed of a commercially available polyurethane, Pearlbond 703 EXP. For comparison purposes, single-layer vascular grafts (SVGs) from individual polyurethanes and a polyurethane blend (MVG) were made and tested similarly and evaluated according to the ISO 7198 standard. The TVG exhibited the highest circumferential tensile strength and longitudinal forces compared to single-layer vascular grafts of lower thicknesses made from the same polyurethanes. The TVG also showed higher suture and burst strength values than native vessels. The TVG withstood up to 2087 ± 139 mmHg and exhibited a compliance of 0.15 ± 0.1%/100 mmHg, while SPUUK SVGs showed a compliance of 5.21 ± 1.29%/100 mmHg, akin to coronary arteries but superior to the saphenous vein. An indirect cytocompatibility test using the MDA-MB-231 cell line showed 90 to 100% viability for all polyurethanes, surpassing the minimum 70% threshold needed for biomaterials deemed cytocompatibility. Despite the non-cytotoxic nature of the polyurethane extracts when grown directly on the surface, they displayed poor fibroblast adhesion, except for SPUUK. All vascular grafts showed hemolysis values under the permissible limit of 5% and longer coagulation times.
Collapse
Affiliation(s)
- Gualberto Antonio Zumbardo-Bacelis
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 #130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico; (G.A.Z.-B.); (R.F.V.-C.)
- Department of Chemical Engineering, Laval University, Quebec, QC G1V 0A6, Canada
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Rossana Faride Vargas-Coronado
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 #130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico; (G.A.Z.-B.); (R.F.V.-C.)
| | - Eustolia Rodríguez-Velázquez
- Facultad de Odontología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico;
- Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Mexico
| | - Manuel Alatorre-Meda
- Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, CONAHCYT-Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Mexico;
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V0A6, Canada; (P.C.)
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V0A6, Canada; (P.C.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V0A6, Canada; (P.C.)
| | - Gustavo A. Abraham
- Research Institute for Materials Science and Technology, INTEMA (UNMdP-CONICET). Av. Colón 10850, Mar del Plata B7606BWV, Argentina
| | - Juan Valerio Cauich-Rodríguez
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 #130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico; (G.A.Z.-B.); (R.F.V.-C.)
| |
Collapse
|
3
|
Hemocompatibility challenge of membrane oxygenator for artificial lung technology. Acta Biomater 2022; 152:19-46. [PMID: 36089235 DOI: 10.1016/j.actbio.2022.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
Abstract
The artificial lung (AL) technology is one of the membrane-based artificial organs that partly augments lung functions, i.e. blood oxygenation and CO2 removal. It is generally employed as an extracorporeal membrane oxygenation (ECMO) device to treat acute and chronic lung-failure patients, and the recent outbreak of the COVID-19 pandemic has re-emphasized the importance of this technology. The principal component in AL is the polymeric membrane oxygenator that facilitates the O2/CO2 exchange with the blood. Despite the considerable improvement in anti-thrombogenic biomaterials in other applications (e.g., stents), AL research has not advanced at the same rate. This is partly because AL research requires interdisciplinary knowledge in biomaterials and membrane technology. Some of the promising biomaterials with reasonable hemocompatibility - such as emerging fluoropolymers of extremely low surface energy - must first be fabricated into membranes to exhibit effective gas exchange performance. As AL membranes must also demonstrate high hemocompatibility in tandem, it is essential to test the membranes using in-vitro hemocompatibility experiments before in-vivo test. Hence, it is vital to have a reliable in-vitro experimental protocol that can be reasonably correlated with the in-vivo results. However, current in-vitro AL studies are unsystematic to allow a consistent comparison with in-vivo results. More specifically, current literature on AL biomaterial in-vitro hemocompatibility data are not quantitatively comparable due to the use of unstandardized and unreliable protocols. Such a wide gap has been the main bottleneck in the improvement of AL research, preventing promising biomaterials from reaching clinical trials. This review summarizes the current state-of-the-art and status of AL technology from membrane researcher perspectives. Particularly, most of the reported in-vitro experiments to assess AL membrane hemocompatibility are compiled and critically compared to suggest the most reliable method suitable for AL biomaterial research. Also, a brief review of current approaches to improve AL hemocompatibility is summarized. STATEMENT OF SIGNIFICANCE: The importance of Artificial Lung (AL) technology has been re-emphasized in the time of the COVID-19 pandemic. The utmost bottleneck in the current AL technology is the poor hemocompatibility of the polymer membrane used for O2/CO2 gas exchange, limiting its use in the long-term. Unfortunately, most of the in-vitro AL experiments are unsystematic, irreproducible, and unreliable. There are no standardized in-vitro hemocompatibility characterization protocols for quantitative comparison between AL biomaterials. In this review, we tackled this bottleneck by compiling the scattered in-vitro data and suggesting the most suitable experimental protocol to obtain reliable and comparable hemocompatibility results. To the best of our knowledge, this is the first review paper focusing on the hemocompatibility challenge of AL technology.
Collapse
|
4
|
Polysaccharide-based layer-by-layer nanoarchitectonics with sulfated chitosan for tuning anti-thrombogenic properties. Colloids Surf B Biointerfaces 2022; 213:112359. [PMID: 35144082 DOI: 10.1016/j.colsurfb.2022.112359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
The development of blood-interacting surfaces is critical to fabricate biomaterials for medical use, such as prostheses, implants, biosensors, and membranes. For instance, thrombosis is one of the leading clinical problems when polymer-based materials interact with blood. To overcome this limitation is necessary to develop strategies that limit platelets adhesion and activation. In this work, hyaluronan (HA)/chitosan (Chi) based-films, recently reported in the literature as platforms for tumor cell capture, were developed and, subsequently, functionalized with sulfated chitosan (ChiS) using a layer-by-layer technique. ChiS, when compared to native Chi, presents the unique abilities to confer anti-thrombogenic properties, to reduce protein adsorption, and also to limit calcification. Film physicochemical characterization was carried out using FTIR and XPS for chemical composition assessment, AFM for the surface morphology, and contact angle for hydrophilicity evaluation. The deposition of ChiS monolayer promoted a decrease in both roughness and hydrophilicity of the HA/Chi films. In addition, the appearance of sulfur in the chemical composition of ChiS-functionalized films confirmed the film modification. Biological assay indicated that the incorporation of sulfated groups limited platelet adhesion, mainly because a significant reduction of platelets adhesion to ChiS-functionalized films was observed compared to HA/Chi films. On balance, this work provides a new insight for the development of novel antithrombogenic biomaterials, opening up new possibilities for devising blood-interaction surfaces.
Collapse
|
5
|
Investigating Cancerous Exosomes’ Effects on CD8+ T-Cell IL-2 Production in a 3D Unidirectional Flow Bioreactor Using 3D Printed, RGD-Functionalized PLLA Scaffolds. J Funct Biomater 2022; 13:jfb13010030. [PMID: 35323230 PMCID: PMC8950614 DOI: 10.3390/jfb13010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Exosomes from cancer cells are implicated in cancer progression and metastasis, carrying immunosuppressive factors that limit the antitumor abilities of immune cells. The development of a real-time, 3D cell/scaffold construct flow perfusion system has been explored as a novel tool in the study of T-cells and exosomes from cancer cells. Exosomes from human lung cancer (H1299 and A549) cells were co-cultured in a unidirectional flow bioreactor with CD8+ T-cells immobilized onto 3D-printed RGD-functionalized poly(L-lactic) acid (PLLA) scaffolds and assessed for IL-2 production. The IL-2 production was investigated for a wide range of T-cell to exosome ratios. With the successful incorporation of the RGD binding motif onto the PLLA surface at controllable densities, CD8+ T-cells were successfully attached onto 2D disks and 3D printed porous PLLA scaffolds. T-cell attachment increased with increasing RGD surface density. The diameter of the attached T-cells was 7.2 ± 0.2 µm for RGD densities below 0.5 nmoles/mm2 but dropped to 5.1 ± 0.3 µm when the RGD density was 2 nmoles/mm2 due to overcrowding. The higher the number of cancer exosomes, the less the IL-2 production by the surface-attached T-cells. In 2D disks, the IL-2 production was silenced for T-cell to exosome ratios higher than 1:10 in static conditions. IL-2 production silencing in static 3D porous scaffolds required ratios higher than 1:20. The incorporation of flow resulted in moderate to significant T-cell detachment. The portions of T-cells retained on the 3D scaffolds after exposure for 4 h to 0.15 or 1.5 mL/min of perfusion flow were 89 ± 11% and 30 ± 8%, respectively. On 3D scaffolds and in the presence of flow at 0.15 ml/min, both H1299 and A549 cancerous exosomes significantly suppressed IL-2 production for T-cell to exosome ratios of 1:1000. The much higher level of exosomes needed to silence the IL-2 production from T-cells cultured under unidirectional flow, compared to static conditions, denotes the importance of the culturing conditions and the hydrodynamic environment, on the interactions between CD8+ T-cells and cancer exosomes.
Collapse
|
6
|
Fibronectin-Enriched Biomaterials, Biofunctionalization, and Proactivity: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Modern innovation in reconstructive medicine implies the proposition of material-based strategies suitable for tissue repair and regeneration. The development of such systems necessitates the design of advanced materials and the control of their interactions with their surrounding cellular and molecular microenvironments. Biomaterials must actively engage cellular matter to direct and modulate biological responses at implant sites and beyond. Indeed, it is essential that a true dialogue exists between the implanted device and the cells. Biomaterial engineering implies the knowledge and control of cell fate considering the globality of the adhesion process, from initial cell attachment to differentiation. The extracellular matrix (ECM) represents a complex microenvironment able to meet these essential needs to establish a relationship between the material and the contacting cells. The ECM exhibits specific physical, chemical, and biochemical characteristics. Considering the complexity, heterogeneity, and versatility of ECM actors, fibronectin (Fn) has emerged among the ECM protagonists as the most pertinent representative key actor. The following review focuses on and synthesizes the research supporting the potential to use Fn in biomaterial functionalization to mimic the ECM and enhance cell–material interactions.
Collapse
|
7
|
Wolfe JT, Shradhanjali A, Tefft BJ. Strategies for improving endothelial cell adhesion to blood-contacting medical devices. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1067-1092. [PMID: 34693761 DOI: 10.1089/ten.teb.2021.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endothelium is a critical mediator of homeostasis on blood-contacting surfaces in the body, serving as a selective barrier to regulate processes such as clotting, immune cell adhesion, and cellular response to fluid shear stress. Implantable cardiovascular devices including stents, vascular grafts, heart valves, and left ventricular assist devices are in direct contact with circulating blood and carry a high risk for platelet activation and thrombosis without a stable endothelial cell (EC) monolayer. Development of a healthy endothelium on the blood-contacting surface of these devices would help ameliorate risks associated with thrombus formation and eliminate the need for long-term anti-platelet or anti-coagulation therapy. Although ECs have been seeded onto or recruited to these blood-contacting surfaces, most ECs are lost upon exposure to shear stress due to circulating blood. Many investigators have attempted to generate a stable EC monolayer by improving EC adhesion using surface modifications, material coatings, nanofiber topology, and modifications to the cells. Despite some success with enhanced EC retention in vitro and in animal models, no studies to date have proven efficacious for routinely creating a stable endothelium in the clinical setting. This review summarizes past and present techniques directed at improving the adhesion of ECs to blood-contacting devices.
Collapse
Affiliation(s)
- Jayne Taylor Wolfe
- Medical College of Wisconsin, 5506, Biomedical Engineering, 8701 Watertown Plank Rd, Milwaukee, Wisconsin, United States, 53226-0509;
| | - Akankshya Shradhanjali
- Medical College of Wisconsin, 5506, Biomedical Engineering, Milwaukee, Wisconsin, United States;
| | - Brandon J Tefft
- Medical College of Wisconsin, 5506, Biomedical Engineering, Milwaukee, Wisconsin, United States;
| |
Collapse
|
8
|
Amine-Rich Coatings to Potentially Promote Cell Adhesion, Proliferation and Differentiation, and Reduce Microbial Colonization: Strategies for Generation and Characterization. COATINGS 2021. [DOI: 10.3390/coatings11080983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biomaterial surface modification represents an important approach to obtain a better integration of the material in surrounding tissues. Different techniques are focused on improving cell support as well as avoiding efficiently the development of infections, such as by modifying the biomaterial surface with amine groups (–NH2). Previous studies showed that –NH2 groups could promote cell adhesion and proliferation. Moreover, these chemical functionalities may be used to facilitate the attachment of molecules such as proteins or to endow antimicrobial properties. This mini-review gives an overview of different techniques which have been used to obtain amine-rich coatings such as plasma methods and adsorption of biomolecules. In fact, different plasma treatment methods are commonly used with ammonia gas or by polymerization of precursors such as allylamine, as well as coatings of proteins (for example, collagen) or polymers containing –NH2 groups (for example, polyethyleneimine). Moreover, this mini-review will present the methods used to characterize such coatings and, in particular, quantify the –NH2 groups present on the surface by using dyes or chemical derivatization methods.
Collapse
|
9
|
Influence of Culture Substrates on Morphology and Function of Pulmonary Alveolar Cells In Vitro. Biomolecules 2021; 11:biom11050675. [PMID: 33946440 PMCID: PMC8147120 DOI: 10.3390/biom11050675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Cell's microenvironment has been shown to exert influence on cell behavior. In particular, matrix-cell interactions strongly impact cell morphology and function. The purpose of this study was to analyze the influence of different culture substrate materials on phenotype and functional properties of lung epithelial adenocarcinoma (A549) cells. A549 cells were seeded onto two different biocompatible, commercially available substrates: a polyester coverslip (Thermanox™ Coverslips), that was used as cell culture plate control, and a polydimethylsiloxane membrane (PDMS, Elastosil® Film) investigated in this study as alternative material for A549 cells culture. The two substrates influenced cell morphology and the actin cytoskeleton organization. Further, the Yes-associated protein (YAP) and its transcriptional coactivator PDZ-binding motif (TAZ) were translocated to the nucleus in A549 cells cultured on polyester substrate, yet it remained mostly cytosolic in cells on PDMS substrate. By SEM analysis, we observed that cells grown on Elastosil® Film maintained an alveolar Type II cell morphology. Immunofluorescence staining for surfactant-C revealing a high expression of surfactant-C in cells cultured on Elastosil® Film, but not in cells cultured on Thermanox™ Coverslips. A549 cells grown onto Elastosil® Film exhibited morphology and functionality that suggest retainment of alveolar epithelial Type II phenotype, while A549 cells grown onto conventional plastic substrates acquired an alveolar Type I phenotype.
Collapse
|
10
|
Zheng W, Liu M, Qi H, Wen C, Zhang C, Mi J, Zhou X, Zhang L, Fan D. Mussel-inspired triblock functional protein coating with endothelial cell selectivity for endothelialization. J Colloid Interface Sci 2020; 576:68-78. [DOI: 10.1016/j.jcis.2020.04.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
|
11
|
Bombaldi de Souza RF, Bombaldi de Souza FC, Thorpe A, Mantovani D, Popat KC, Moraes ÂM. Phosphorylation of chitosan to improve osteoinduction of chitosan/xanthan-based scaffolds for periosteal tissue engineering. Int J Biol Macromol 2020; 143:619-632. [DOI: 10.1016/j.ijbiomac.2019.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/19/2022]
|
12
|
Bombaldi de Souza FC, Bombaldi de Souza RF, Drouin B, Popat KC, Mantovani D, Moraes ÂM. Polysaccharide-based tissue-engineered vascular patches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109973. [PMID: 31499972 DOI: 10.1016/j.msec.2019.109973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Coronary artery and peripheral vascular diseases are the leading cause of morbidity and mortality worldwide and often require surgical intervention to replace damaged blood vessels, including the use of vascular patches in endarterectomy procedures. Tissue engineering approaches can be used to obtain biocompatible and biodegradable materials directed to this application. In this work, dense or porous scaffolds constituted of chitosan (Ch) complexed with alginate (A) or pectin (P) were fabricated and characterized considering their application as tissue-engineered vascular patches. Scaffolds fabricated with alginate presented higher culture medium uptake capacity (up to 17 g/g) than materials produced with pectin. A degradation study of the patches in the presence of lysozyme showed longer-term stability for Ch-P-based scaffolds. Pectin-containing matrices presented higher elastic modulus (around 280 kPa) and ability to withstand larger deformations. Moreover, these materials demonstrated better performance when tested for hemocompatibility, with lower levels of platelet adhesion and activation. Human smooth muscle cells (HSMC) adhered, spread and proliferated better on matrices produced with pectin, probably as a consequence of cell response to higher stiffness of this material. Thus, the outcomes of this study demonstrate that Ch-P-based scaffolds present superior characteristics for the application as vascular patches. Despite polysaccharides are yet underrated in this field, this work shows that biocompatible tridimensional structures based on these polymers present high potential to be applied for the reconstruction and regeneration of vascular tissues.
Collapse
Affiliation(s)
- Fernanda Carla Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Renata Francielle Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bernard Drouin
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Ketul C Popat
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO, USA
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
13
|
Copes F, Chevallier P, Loy C, Pezzoli D, Boccafoschi F, Mantovani D. Heparin-Modified Collagen Gels for Controlled Release of Pleiotrophin: Potential for Vascular Applications. Front Bioeng Biotechnol 2019; 7:74. [PMID: 31024906 PMCID: PMC6465514 DOI: 10.3389/fbioe.2019.00074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/18/2019] [Indexed: 01/14/2023] Open
Abstract
A fast re-endothelialization, along with the inhibition of neointima hyperplasia, are crucial to reduce the failure of vascular bypass grafts. Implants modifications with molecules capable of speeding up the re-endothelialization process have been proposed over the last years. However, clinical trials of angiogenic factor delivery have been mostly disappointing, underscoring the need to investigate a wider array of angiogenic factors. In this work, a drug release system based on a type I collagen hydrogel has been proposed for the controlled release of Pleiotrophin (PTN), a cytokine known for its pro-angiogenetic effects. Heparin, in virtue of its ability to sequester, protect and release growth factors, has been used to better control the release of PTN. Performances of the PTN drug delivery system on endothelial (ECs) and smooth muscle cells (SMCs) have been investigated. Structural characterization (mechanical tests and immunofluorescent analyses of the collagen fibers) was performed on the gels to assess if heparin caused changes in their mechanical behavior. The release of PTN from the different gel formulations has been analyzed using a PTN-specific ELISA assay. Cell viability was evaluated with the Alamar Blue Cell Viability Assay on cells directly seeded on the gels (direct test) and on cells incubated with supernatant, containing the released PTN, obtained from the gels (indirect test). The effects of the different gels on the migration of both ECs and SMCs have been evaluated using a Transwell migration assay. Hemocompatibility of the gel has been assessed with a clotting/hemolysis test. Structural analyses showed that heparin did not change the structural behavior of the collagen gels. ELISA quantification demonstrated that heparin induced a constant release of PTN over time compared to other conditions. Both direct and indirect viability assays showed an increase in ECs viability while no effects were noted on SMCs. Cell migration results evidenced that the heparin/PTN-modified gels significantly increased ECs migration and decreased the SMCs one. Finally, heparin significantly increased the hemocompatibility of the collagen gels. In conclusion, the PTN-heparin-modified collagen here proposed can represent an added value for vascular medicine, able to ameliorate the biological performance, and integration of vascular grafts.
Collapse
Affiliation(s)
- Francesco Copes
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Caroline Loy
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Daniele Pezzoli
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Francesca Boccafoschi
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| |
Collapse
|
14
|
Mechanically-enhanced polysaccharide-based scaffolds for tissue engineering of soft tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:364-375. [DOI: 10.1016/j.msec.2018.09.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/21/2018] [Accepted: 09/17/2018] [Indexed: 01/26/2023]
|
15
|
Sinibaldi A, Montaño-Machado V, Danz N, Munzert P, Chiavaioli F, Michelotti F, Mantovani D. Real-Time Study of the Adsorption and Grafting Process of Biomolecules by Means of Bloch Surface Wave Biosensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33611-33618. [PMID: 30152997 DOI: 10.1021/acsami.8b08335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A combined label-free and fluorescence surface optical technique was used to quantify the mass deposited in binary biomolecular coatings. These coatings were constituted by fibronectin (FN), to stimulate endothelialization, and phosphorylcholine (PRC), for its hemocompatibility, which are two properties of relevance for cardiovascular applications. One-dimensional photonic crystals sustaining a Bloch surface wave were used to characterize different FN/PRC coatings deposited by a combination of adsorption and grafting processes. In particular, the label-free results permitted to quantitatively assess the mass deposited in FN adsorbed (185 ng/cm2) and grafted (160 ng/cm2). PRC binding to grafted FN coatings was also quantified, showing a coverage as low as 10 and 12 ng/cm2 for adsorbed and grafted PRC, respectively. Moreover, desorption of FN deposited by adsorption was detected and quantified upon the addition of PRC. The data obtained by the surface optical technique were complemented by water contact angle and X-ray photoelectron spectroscopy (XPS) analyses. The results were in accordance with those obtained previously by qualitative and semiquantitative techniques (XPS, time-of-flight secondary ion mass spectrometry) on several substrates (PTFE and stainless steel), confirming that grafted FN coatings show higher stability than those obtained by FN adsorption.
Collapse
Affiliation(s)
- A Sinibaldi
- Department of Basic and Applied Science for Engineering , SAPIENZA University of Rome , 00161 Rome , Italy
| | - V Montaño-Machado
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center , Laval University , Quebec City G1V0A6 , Canada
| | - N Danz
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF , 07745 Jena , Germany
| | - P Munzert
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF , 07745 Jena , Germany
| | - F Chiavaioli
- Institute of Applied Physics "Nello Carrara" (IFAC), National Research Council of Italy (CNR) , Sesto Fiorentino, 50019 Firenze , Italy
| | - F Michelotti
- Department of Basic and Applied Science for Engineering , SAPIENZA University of Rome , 00161 Rome , Italy
| | - D Mantovani
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center , Laval University , Quebec City G1V0A6 , Canada
| |
Collapse
|
16
|
Sengupta P, Prasad BLV. Surface Modification of Polymers for Tissue Engineering Applications: Arginine Acts as a Sticky Protein Equivalent for Viable Cell Accommodation. ACS OMEGA 2018; 3:4242-4251. [PMID: 30023888 PMCID: PMC6045385 DOI: 10.1021/acsomega.8b00215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/09/2018] [Indexed: 05/27/2023]
Abstract
Hydrophobic polymers, for their favorable mechanical properties, are a popular choice as permanent bioimplants. These materials remain absolutely bioinert for years, but throw up challenges when it comes to fast integration with healthy tissue. Addressing this, herein, we present a surface-modification technique of converting the hydrophobic surface of a polymeric film into a hydrophilic one using a layer-by-layer assembly process involving gold nanoparticles and small molecules like amino acids. These films showed much improved animal cell (murine fibroblast) adherence properties compared to commercially available tissue culture plates. Moreover, arginine-modified films exhibited a nearly equivalent cell viability compared to the films modified with the natural extracellular matrix component fibronectin. The surface hydrophilicity and roughness of our novel film were characterized by contact angle measurement and atomic force microscopy. Cell counting, fluorescence microscopy, cell viability, and collagen estimation assay were employed to demonstrate that our film favored a much improved cell adherence, and accommodation in comparison to the commercially available tissue culture plates.
Collapse
|
17
|
Chen YW, Hsieh SC, Yang YC, Hsu SH, Kung ML, Lin PY, Hsieh HH, Lin CH, Tang CM, Hung HS. Functional engineered mesenchymal stem cells with fibronectin-gold composite coated catheters for vascular tissue regeneration. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:699-711. [PMID: 29325741 DOI: 10.1016/j.nano.2017.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 11/20/2017] [Accepted: 12/29/2017] [Indexed: 11/30/2022]
Abstract
Vascularization of engineered tissues remains one of the key problems. Here, we described a novel approach to promote vascularization of engineered tissues using fibronectin (FN) incorporated gold nanoparticles (AuNP) coated onto catheters with mesenchymal stem cells (MSCs) for tissue engineering. We found that the FN-AuNP composite with 43.5 ppm of AuNP exhibited better biomechanical properties and thermal stability than pure FN. FN-AuNP composites promoted MSC proliferation and increased the biocompatibility. Mechanistically, vascular endothelial growth factor (VEGF) promoted MSC migration on FN-AuNP through the endothelial oxide synthase (eNOS)/metalloproteinase (MMP) signaling pathway. Vascular femoral artery tissues isolated from the implanted FN-AuNP-coated catheters with MSCs expressed substantial CD31 and alpha-smooth muscle actin (α-SMA), displayed higher antithrombotic activity, as well as better endothelialization ability than those coated with all other materials. These data suggested that the implantation of FN-AuNP-coated catheter with MSCs could be a novel strategy for vascular biomaterials applications.
Collapse
Affiliation(s)
- Yun-Wen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Shu-Chen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - Yi-Chin Yang
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Mei-Lang Kung
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C
| | - Pei-Ying Lin
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung, Taiwan, R. O. C
| | - Ching-Hao Lin
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan, R.O.C
| | - Cheng-Ming Tang
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan, R.O.C; Translational Medicine Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.
| |
Collapse
|
18
|
Ko JY, Oh HJ, Lee J, Im GI. Nanotopographic Influence on the In Vitro Behavior of Induced Pluripotent Stem Cells. Tissue Eng Part A 2017; 24:595-606. [PMID: 28726546 DOI: 10.1089/ten.tea.2017.0144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
While the influence of nanotopography on stem cell behavior has been extensively investigated on adult stem cells, far fewer studies have investigated the interaction of induced pluripotent stem cells (iPSCs) with various nanotopographical patterns. The purpose of this study was to identify nanopatterns that can influence the stemness and proliferation, as well as the adhesive properties in iPSCs, and thereby explore the feasibility of applying these nano-features for regenerative medicine. Three kinds of nanopatterns were fabricated from polydimethylsiloxane membranes, irregular patterned membrane (IPM), groove patterned membrane (GPM), and postpatterned membrane (PPM), in addition to flat patterned membrane (FPM) which did not have any nanotopographic features and was used as the control pattern. On the surfaces of GPM or PPM, iPSCs showed tendency for aggregation and did not spread out well at passage 1. However, with continued passaging (P6, P10), the tendency to form aggregates was greatly reduced. While iPSCs cultured on GPM and PPM had low population doubling time values compared with FPM and IPM at P1, the differences disappeared in later passages. The expression of the cell proliferation marker Ki67 in iPSCs gradually decreased with continued passaging in cells cultured on FPM and IPM, but not in those cultured on GPM and PPM. The expression of Oct3/4 and Nanog, marker of stemness, was significantly higher on GPM and PPM than on FPM at P6 and P10. At P5, numerous filopodia were demonstrated in the peripheral attachments of iPSC colonies on FPM and IPM, while GPM and PPM generally had globular appearance. The expression of the focal adhesion (FA) molecules α-actinin, vinculin, phalloidin, or FA kinase was significantly greater on GPM and PPM than on FPM and IPM at P6 or P10. In conclusion, continued passaging on regular nanopatterns, including groove- and post-forms, was effective in maintaining an undifferentiated state and proliferation of iPSCs and also in increasing the expression of FA molecules.
Collapse
Affiliation(s)
- Ji-Yun Ko
- 1 Department of Orthopaedics, Dongguk University Ilsan Hospital , Goyang, Republic of Korea
| | - Hyun-Jik Oh
- 2 Department of Biomedical Engineering, College of Health Science, Korea University , Seoul, Republic of Korea.,3 MicroFIT R&BD Institute , Gyeonggi-do, Republic of Korea
| | - Jimin Lee
- 1 Department of Orthopaedics, Dongguk University Ilsan Hospital , Goyang, Republic of Korea
| | - Gun-Il Im
- 1 Department of Orthopaedics, Dongguk University Ilsan Hospital , Goyang, Republic of Korea
| |
Collapse
|
19
|
Mahmoodi M, Zamanifard M, Safarzadeh M, Bonakdar S. In vitro evaluation of collagen immobilization on polytetrafluoroethylene through NH3 plasma treatment to enhance endothelial cell adhesion and growth. Biomed Mater Eng 2017; 28:489-501. [DOI: 10.3233/bme-171692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran. E-mail:
| | - Mohammad Zamanifard
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran. E-mail:
| | - Mina Safarzadeh
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran. E-mail:
| | | |
Collapse
|
20
|
Fibronectin adsorption on surface-modified polyetherurethanes and their differentiated effect on specific blood elements related to inflammatory and clotting processes. Biointerphases 2016; 11:029809. [PMID: 27246517 DOI: 10.1116/1.4950887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
After the introduction of a medical device into the body, adhesive proteins such as fibronectin (Fn) will adsorb to the surface of the biomaterial. Monocytes (MCs) will interact with these adsorbed proteins, and adopt either a proinflammatory and/or prowound healing phenotype, thereby influencing many blood interaction events including thrombogenesis. In this work, Fn adsorption as well as subsequent MC response and thrombus formation were investigated on two surfaces-modified polyetherurethanes (PEUs) using different surface modifiers: an anionic/dihydroxyl oligomeric (ADO) additive, known to enable cell adhesion, and a fluorinated polypropylene oxide oligomer (PPO), known to reduce platelet adhesion. Results indicated that at 24 h of MC culture, PEU-ADO and PEU-PPO promoted an anti-inflammatory character relative to the base PEU. Longer clotting times, based on a free hemoglobin assay, were also found on the two surface-modified PEUs relative to the native one, suggesting their potential for the reduction of thrombus formation. In presence of a Fn monolayer, the surface-modified PEUs conserved a lower thrombogenic character than the base PEU, and was however significantly decreased when compared to prior protein adsorption. Furthermore, Fn coatings increased the MC production levels of tumor necrosis factor-α and interleukin-10 at 24 h, while not affecting the anti-inflammatory effect of the modifications relative to the base PEU. This finding was most prominent on PEU-PPO, suggesting that the interaction of the adsorbed Fn with blood cells was different for the two additives. Hence, the results highlighted differentiating effects of Fn adsorption on specific blood activating processes related to inflammatory and thrombotic responses.
Collapse
|