1
|
Mok BR, Kim AR, Baek SH, Ahn JH, Seok SH, Shin JU, Kim DH. Profilin-1 prevents psoriasis pathogenesis through IκBζ regulation. J Invest Dermatol 2022; 142:2455-2463.e9. [PMID: 35148999 DOI: 10.1016/j.jid.2022.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/14/2022]
Abstract
Profilin-1 (PFN-1) is an actin-binding protein that regulates actin polymerization, cell proliferation, apoptosis, angiogenesis, and carcinogenesis. Its dysregulation has been reported in diverse pathologic diseases; however, the role of PFN-1 in psoriasis has not yet been elucidated. In this study, we demonstrate that PFN-1 expression is increased in both skin and serum of patients with psoriasis. PFN-1 was markedly expressed in the epidermis of psoriatic lesions and its expression positively correlated with psoriasis severity. IL-17A treatment of keratinocytes increased the PFN-1 expression, whereas TNF-α induced the PFN-1 expression and secretion. In addition, knockdown of PFN-1 with shRNA resulted in an altered expression of psoriasis-associated inflammatory markers, HBD-2, S100A7, S100A9, and Ki67, and recombinant PFN-1 suppressed the IL-17A-induced inflammatory response in keratinocytes. Interestingly, recombinant PFN-1 also suppressed IL-17A-induced IκBζ, an important player in immune response in psoriasis. Collectively, our results show that PFN-1 acts as a negative regulator of psoriatic inflammation through suppression of IκBζ, and the balanced level of PFN-1 is important for the IκBζ regulation. Thus, the expression of PFN-1 can be used as a biomarker for psoriasis severity, and it can be considered as a possible target for the treatment of psoriasis.
Collapse
Affiliation(s)
- Bo Ram Mok
- Department of Biomedical Science, School of Medicine, CHA University, Seongnam, Korea
| | - A-Ram Kim
- Department of Biomedical Science, School of Medicine, CHA University, Seongnam, Korea
| | - Seung Hwa Baek
- Department of Biomedical Science, School of Medicine, CHA University, Seongnam, Korea
| | - Ji Hae Ahn
- Department of Dermatology, Bundang Medical Center, School of Medicine, CHA University, Seongnam, Korea
| | - Seung Hui Seok
- Department of Dermatology, Bundang Medical Center, School of Medicine, CHA University, Seongnam, Korea
| | - Jung U Shin
- Department of Dermatology, Bundang Medical Center, School of Medicine, CHA University, Seongnam, Korea
| | - Dong Hyun Kim
- Department of Dermatology, Bundang Medical Center, School of Medicine, CHA University, Seongnam, Korea.
| |
Collapse
|
2
|
Murk K, Ornaghi M, Schiweck J. Profilin Isoforms in Health and Disease - All the Same but Different. Front Cell Dev Biol 2021; 9:681122. [PMID: 34458253 PMCID: PMC8387879 DOI: 10.3389/fcell.2021.681122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Profilins are small actin binding proteins, which are structurally conserved throughout evolution. They are probably best known to promote and direct actin polymerization. However, they also participate in numerous cell biological processes beyond the roles typically ascribed to the actin cytoskeleton. Moreover, most complex organisms express several profilin isoforms. Their cellular functions are far from being understood, whereas a growing number of publications indicate that profilin isoforms are involved in the pathogenesis of various diseases. In this review, we will provide an overview of the profilin family and "typical" profilin properties including the control of actin dynamics. We will then discuss the profilin isoforms of higher animals in detail. In terms of cellular functions, we will focus on the role of Profilin 1 (PFN1) and Profilin 2a (PFN2a), which are co-expressed in the central nervous system. Finally, we will discuss recent findings that link PFN1 and PFN2a to neurological diseases, such as amyotrophic lateral sclerosis (ALS), Fragile X syndrome (FXS), Huntington's disease and spinal muscular atrophy (SMA).
Collapse
Affiliation(s)
- Kai Murk
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marta Ornaghi
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Juliane Schiweck
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Pang J, Maienschein-Cline M, Koh TJ. Enhanced Proliferation of Ly6C + Monocytes/Macrophages Contributes to Chronic Inflammation in Skin Wounds of Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 2020; 206:621-630. [PMID: 33443065 DOI: 10.4049/jimmunol.2000935] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Diabetic wounds are characterized by persistent accumulation of proinflammatory monocytes (Mo)/macrophages (MΦ) and impaired healing. However, the mechanisms underlying the persistent accumulation of Mo/MΦ remain poorly understood. In this study, we report that Ly6C+F4/80lo/- Mo/MΦ proliferate at higher rates in wounds of diabetic mice compared with nondiabetic mice, leading to greater accumulation of these cells. Unbiased single cell RNA sequencing analysis of combined nondiabetic and diabetic wound Mo/MΦ revealed a cluster, populated primarily by cells from diabetic wounds, for which genes associated with the cell cycle were enriched. In a screen of potential regulators, CCL2 levels were increased in wounds of diabetic mice, and subsequent experiments showed that local CCL2 treatment increased Ly6C+F4/80lo/- Mo/MΦ proliferation. Importantly, adoptive transfer of mixtures of CCR2-/- and CCR2+/+ Ly6Chi Mo indicated that CCL2/CCR2 signaling is required for their proliferation in the wound environment. Together, these data demonstrate a novel role for the CCL2/CCR2 signaling pathway in promoting skin Mo/MΦ proliferation, contributing to persistent accumulation of Mo/MΦ and impaired healing in diabetic mice.
Collapse
Affiliation(s)
- Jingbo Pang
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612; and
| | | | - Timothy J Koh
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612; and
| |
Collapse
|
4
|
Abstract
Profilin is a ubiquitously expressed protein well known as a key regulator of actin polymerisation. The actin cytoskeleton is involved in almost all cellular processes including motility, endocytosis, metabolism, signal transduction and gene transcription. Hence, profilin's role in the cell goes beyond its direct and essential function in regulating actin dynamics. This review will focus on the interactions of Profilin 1 and its ligands at the plasma membrane, in the cytoplasm and the nucleus of the cells and the regulation of profilin activity within those cell compartments. We will discuss the interactions of profilin in cell signalling pathways and highlight the importance of the cell context in the multiple functions that this small essential protein has in conjunction with its role in cytoskeletal organisation and dynamics. We will review some of the mechanisms that control profilin expression and the implications of changed expression of profilin in the light of cancer biology and other pathologies.
Collapse
|
5
|
Gau D, Vignaud L, Allen A, Guo Z, Sahel J, Boone D, Koes D, Guillonneau X, Roy P. Disruption of profilin1 function suppresses developmental and pathological retinal neovascularization. J Biol Chem 2020; 295:9618-9629. [PMID: 32444495 PMCID: PMC7363146 DOI: 10.1074/jbc.ra120.012613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis-mediated neovascularization in the eye is usually associated with visual complications. Pathological angiogenesis is particularly prominent in the retina in the settings of proliferative diabetic retinopathy, in which it can lead to permanent loss of vision. In this study, by bioinformatics analyses, we provide evidence for elevated expression of actin-binding protein PFN1 (profilin1) in the retinal vascular endothelial cells (VECs) of individuals with proliferative diabetic retinopathy, findings further supported by gene expression analyses for PFN1 in experimentally induced abnormal retinal neovascularization in an oxygen-induced retinopathy murine model. We observed that in a conditional knockout mouse model, postnatal deletion of the Pfn1 gene in VECs leads to defects in tip cell activity (marked by impaired filopodial protrusions) and reduced vascular sprouting, resulting in hypovascularization during developmental angiogenesis in the retina. Consistent with these findings, an investigative small molecule compound targeting the PFN1-actin interaction reduced random motility, proliferation, and cord morphogenesis of retinal VECs in vitro and experimentally induced abnormal retinal neovascularization in vivo In summary, these findings provide the first direct in vivo evidence that PFN1 is required for formation of actin-based protrusive structures and developmental angiogenesis in the retina. The proof of concept of susceptibility of abnormal angiogenesis to small molecule intervention of PFN1-actin interaction reported here lays a conceptual foundation for targeting PFN1 as a possible strategy in angiogenesis-dependent retinal diseases.
Collapse
Affiliation(s)
- David Gau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lucile Vignaud
- Institut de la Vision, Sorbonne Université, INSERM, Paris, France
| | - Abigail Allen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhijian Guo
- Department of Nephrology, Southern Medical University, Guangzhou, China
| | - Jose Sahel
- Institut de la Vision, Sorbonne Université, INSERM, Paris, France
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - David Boone
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Koes
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Zhang S, Xu W, Gao P, Chen W, Zhou Q. Construction of dual nanomedicines for the imaging and alleviation of atherosclerosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:169-179. [PMID: 31852323 DOI: 10.1080/21691401.2019.1699823] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging (MRI) is an essential tool for the diagnosis of atherosclerosis, a chronic cardiovascular disease. MRI primarily uses superparamagnetic iron oxide (SPIO) as a contrast agent. However, SPIO integrated with therapeutic drugs has rarely been studied. In this study, we explored biocompatible paramagnetic iron-oxide nanoparticles (NPs) in a complex with low pH-sensitive cyclodextrin for the diagnostic imaging and treatment of atherosclerosis. The NPs were conjugated with profilin-1 antibody (PFN1) to specifically target vascular smooth muscle cells (VSMCs) in the atherosclerotic plaque and integrated with the anti-inflammatory drug, rapamycin. The PFN1-CD-MNPs were easily binded to the VSMCs, indicating their good biocompatibility and low renal toxicity over the long term. Ex vivo near-infrared fluorescence (NIRF) imaging and in vivo MRI indicated the accumulation of PFN1-CD-MNPs in the atherosclerotic plaque. The RAP@PFN1-CD-MNPs alleviated the progression of arteriosclerosis. Thus, PFN1-CD-MNPs served not only as multifunctional imaging probes but also as nanovehicles for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuihua Zhang
- Department of Radiology, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China.,Guangzhou Universal Medical Imaging Diagnostic Center, Universal Medical Imaging, Guangzhou, China.,Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wan Xu
- Ministry of Education Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Peng Gao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China.,Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wenli Chen
- Ministry of Education Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Quan Zhou
- Department of Radiology, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| |
Collapse
|
7
|
Coumans JVF, Davey RJ, Moens PDJ. Cofilin and profilin: partners in cancer aggressiveness. Biophys Rev 2018; 10:1323-1335. [PMID: 30027463 DOI: 10.1007/s12551-018-0445-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/08/2018] [Indexed: 02/07/2023] Open
Abstract
This review covers aspects of cofilin and profilin regulations and their influence on actin polymerisation responsible for cell motility and metastasis. The regulation of their activity by phosphorylation and nitration, miRs, PI(4,5)P2 binding, pH, oxidative stress and post-translational modification is described. In this review, we have highlighted selected similarities, complementarities and differences between the two proteins and how their interplay affects actin filament dynamics.
Collapse
Affiliation(s)
- Joelle V F Coumans
- School of Rural Medicine, University of New England, Armidale, Australia
| | - Rhonda J Davey
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia
| | - Pierre D J Moens
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia.
| |
Collapse
|
8
|
Differential expression of genes identified by suppression subtractive hybridization in liver and adipose tissue of gerbils with diabetes. PLoS One 2018; 13:e0191212. [PMID: 29394254 PMCID: PMC5796689 DOI: 10.1371/journal.pone.0191212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022] Open
Abstract
Objectives We aimed at identifying genes related to hereditary type 2 diabetes expressed in the liver and the adipose tissue of spontaneous diabetic gerbils using suppression subtractive hybridization (SSH) screening. Methods Two gerbil littermates, one with high and the other with normal blood glucose level, from our previously bred spontaneous diabetic gerbil strain were used in this study. To identify differentially expressed genes in the liver and the adipose tissue, mRNA from these tissues was extracted and SSH libraries were constructed for screening. After sequencing and BLAST analyzing, up or down-regulated genes possibly involved in metabolism and diabetes were selected, and their expression levels in diabetic gerbils and normal controls were analyzed using quantitative RT-PCR and Western blotting. Results A total of 4 SSH libraries were prepared from the liver and the adipose tissue of gerbils. There are 95 up or down-regulated genes were identified to be involved in metabolism, oxidoreduction, RNA binding, cell proliferation, and differentiation or other function. Expression of 17 genes most possibly associated with diabetes was analyzed and seven genes (Sardh, Slc39a7, Pfn1, Arg1, Cth, Sod1 and P4hb) in the liver and one gene (Fabp4) in the adipose tissue were identified that were significantly differentially expressed between diabetic gerbils and control animals. Conclusions We identified eight genes associated with type 2 diabetes from the liver and the adipose tissue of gerbils via SSH screening. These findings provide further insights into the molecular mechanisms of diabetes and imply the value of our spontaneous diabetic gerbil strain as a diabetes model.
Collapse
|
9
|
Ogunyinka BI, Oyinloye BE, Osunsanmi FO, Opoku AR, Kappo AP. Proteomic Analysis of Differentially-Expressed Proteins in the Liver of Streptozotocin-Induced Diabetic Rats Treated with Parkia biglobosa Protein Isolate. Molecules 2018; 23:molecules23020156. [PMID: 29364169 PMCID: PMC6017719 DOI: 10.3390/molecules23020156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/26/2017] [Accepted: 01/19/2018] [Indexed: 02/07/2023] Open
Abstract
Protein isolate from Parkia biglobosa seeds is believed to possess excellent anti-diabetic properties. The purpose of this study was to identify differentially expressed proteins in liver of streptozotocin-induced diabetic rats treated with Parkia biglobosa seeds protein isolate (PBPi). In this study, total proteins extracted from rat liver were separated on one-dimensional SDS polyacrylamide gel (1D SDS-PAGE) and stained with Coomassie brilliant blue (CBB) to visualize protein bands. We observed that protein bands in the region of 10-15 kDa were altered by the different treatments; these bands were selected and excised for in-gel digestion and peptide extraction followed by nLC-MS, MALDI-TOF MS, and LIFT MS/MS. A database search with the Mascot algorithm positively identified four differentially expressed proteins. These proteins are known to be responsible for diverse biological functions within various organs and tissues. The present result gives insight and understanding into possible molecular mechanisms by which streptozotocin causes various alterations in proteins found in the liver of diabetic rats and the possible modulatory role of PBPi in the management of streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Bolajoko Idiat Ogunyinka
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
- Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria.
| | - Foluso Oluwagbemiga Osunsanmi
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Andrew Rowland Opoku
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
10
|
Lin W, Izu Y, Smriti A, Kawasaki M, Pawaputanon C, Böttcher RT, Costell M, Moriyama K, Noda M, Ezura Y. Profilin1 is expressed in osteocytes and regulates cell shape and migration. J Cell Physiol 2017; 233:259-268. [PMID: 28233307 DOI: 10.1002/jcp.25872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023]
Abstract
Osteocytes are the most abundant cells in bone and regulate bone metabolism in coordination with osteoblasts and osteoclasts. However, the molecules that control osteocytes are still incompletely understood. Profilin1 is an actin-binding protein that is involved in actin polymerization. Osteocytes possess characteristic dendritic process formed based on actin cytoskeleton. Here, we examined the expression of profilin1 and its function in osteocytes. Profilin1 mRNA was expressed in osteocytic MLO-Y4 cells and its levels were gradually increased along with the time in culture. With regard to functional aspect, knockdown of profilin1 by siRNA enhanced BMP-induced increase in alkaline phosphatase expression levels in MLO-Y4 cells. Profilin1 knockdown suppressed the levels of dendritic processes and migration of MLO-Y4 cells. Since aging causes an increase in ROS in the body, we further examined the effects of hydrogen peroxide on the expression of profilin1. Hydrogen peroxide treatment increased the levels of profilin1 mRNA in MLO-Y4 cells in contrast to the decline in alkaline phosphatase. Profilin1 was expressed not only in MLO-Y4cells but also in the primary cultures of osteocytes. Importantly, profilin1 mRNA levels in primary cultures of osteocytes were higher than those in primary cultures of osteoblasts. To examine in vivo role of profilin1 in osteocytes, profilin1 was conditionally knocked out by using DMP1-cre and profilin1 floxed mice. This conditional deletion of profilin1 specifically in osteocytes resulted in reduction in the levels of bone volume and bone mineral density. These data indicate that profilin1 is expressed in osteocytes and regulates cell shape, migration and bone mass.
Collapse
Affiliation(s)
- Wanting Lin
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arayal Smriti
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makiri Kawasaki
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chantida Pawaputanon
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mercedes Costell
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Yokohama City Minato Red Cross Hospital, Yokohama, Kanagawa, Japan.,Department of Orthopedic Surgery, School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Campos JM, Neves LX, de Paiva NCN, de Oliveira E Castro RA, Casé AH, Carneiro CM, Andrade MHG, Castro-Borges W. Understanding global changes of the liver proteome during murine schistosomiasis using a label-free shotgun approach. J Proteomics 2017; 151:193-203. [PMID: 27427331 DOI: 10.1016/j.jprot.2016.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/03/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
Abstract
Schistosomiasis is an endemic disease affecting over 207 million people worldwide caused by helminth parasites of the genus Schistosoma. In Brazil the disease is responsible for the loss of up to 800 lives annually, resulting from the desabilitating effects of this chronic condition. In this study, we infected Balb/c mice with Schistosoma mansoni and analysed global changes in the proteomic profile of soluble liver proteins. Our shotgun analyses revealed predominance of up-regulation of proteins at 5weeks of infection, coinciding with the onset of egg laying, and a remarkable down-regulation of liver constituents at 7weeks, when severe tissue damage is installed. Representatives of glycolytic enzymes and stress response (in particular at the endoplasmic reticulum) were among the most differentially expressed molecules found in the infected liver. Collectively, our data contribute over 70 molecules not previously reported to be found at altered levels in murine schistosomiasis to further exploration of their potential as biomarkers of the disease. Moreover, understanding their intricate interaction using bioinformatics approach can potentially bring clarity to unknown mechanisms linked to the establishment of this condition in the vertebrate host. SIGNIFICANCE To our knowledge, this study refers to the first shotgun proteomic analysis to provide an inventory of the global changes in the liver soluble proteome caused by Schistosoma mansoni in the Balb/c model. It also innovates by yielding data on quantification of the identified molecules as a manner to clarify and give insights into the underlying mechanisms for establishment of Schistosomiasis, a neglected tropical disease with historical prevalence in Brazil.
Collapse
Affiliation(s)
- Jonatan Marques Campos
- Programa de Pós Graduação em Bioengenharia, Universidade Federal de São João del Rei, São João del Rei, MG, Brazil; Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Leandro Xavier Neves
- Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | | | - Ana Helena Casé
- Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Departamento de Análises Clínicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Milton Hércules Guerra Andrade
- Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - William Castro-Borges
- Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Profilin1 biology and its mutation, actin(g) in disease. Cell Mol Life Sci 2016; 74:967-981. [PMID: 27669692 DOI: 10.1007/s00018-016-2372-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
Abstract
Profilins were discovered in the 1970s and were extensively studied for their significant physiological roles. Profilin1 is the most prominent isoform and has drawn special attention due to its role in the cytoskeleton, cell signaling, and its link to conditions such as cancer and vascular hypertrophy. Recently, multiple mutations in the profilin1 gene were linked to amyotrophic lateral sclerosis (ALS). In this review, we will discuss the physiological and pathological roles of profilin1. We will further highlight the cytoskeletal function and dysfunction caused by profilin1 dysregulation. Finally, we will discuss the implications of mutant profilin1 in various diseases with an emphasis on its contribution to the pathogenesis of ALS.
Collapse
|
13
|
Moulder R, Bhosale SD, Erkkilä T, Laajala E, Salmi J, Nguyen EV, Kallionpää H, Mykkänen J, Vähä-Mäkilä M, Hyöty H, Veijola R, Ilonen J, Simell T, Toppari J, Knip M, Goodlett DR, Lähdesmäki H, Simell O, Lahesmaa R. Serum proteomes distinguish children developing type 1 diabetes in a cohort with HLA-conferred susceptibility. Diabetes 2015; 64:2265-78. [PMID: 25616278 DOI: 10.2337/db14-0983] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022]
Abstract
We determined longitudinal serum proteomics profiles from children with HLA-conferred diabetes susceptibility to identify changes that could be detected before seroconversion and positivity for disease-associated autoantibodies. Comparisons were made between children who seroconverted and progressed to type 1 diabetes (progressors) and those who remained autoantibody negative, matched by age, sex, sample periodicity, and risk group. The samples represented the prediabetic period and ranged from the age of 3 months to 12 years. After immunoaffinity depletion of the most abundant serum proteins, isobaric tags for relative and absolute quantification were used for sample labeling. Quantitative proteomic profiles were then measured for 13 case-control pairs by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, a label-free LC-MS/MS approach was used to analyze depleted sera from six case-control pairs. Importantly, differences in abundance of a set of proteins were consistently detected before the appearance of autoantibodies in the progressors. Based on top-scoring pairs analysis, classification of such progressors was observed with a high success rate. Overall, the data provide a reference of temporal changes in the serum proteome in healthy children and children progressing to type 1 diabetes, including new protein candidates, the levels of which change before clinical diagnosis.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | | | - Timo Erkkilä
- Department of Information and Computer Science, Aalto University School of Science, Espoo, Finland
| | - Essi Laajala
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Jussi Salmi
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | | | - Henna Kallionpää
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Juha Mykkänen
- Department of Pediatrics, University of Turku, Turku, Finland Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Mari Vähä-Mäkilä
- Department of Pediatrics, University of Turku, Turku, Finland Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Heikki Hyöty
- School of Medicine, University of Tampere, Tampere, Finland Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Riitta Veijola
- University of Oulu and Oulu University Hospital, Department of Pediatrics, Oulu, Finland
| | - Jorma Ilonen
- Department of Clinical Microbiology, University of Eastern Finland, Kuopio, Finland Immunogenetics Laboratory, University of Turku, Turku, Finland
| | - Tuula Simell
- Department of Pediatrics, University of Turku, Turku, Finland Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku, Turku, Finland Department of Pediatrics, Turku University Hospital, Turku, Finland Departments of Physiology and Pediatrics, University of Turku, Turku, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland Folkhälsan Research Institute, Helsinki, Finland
| | - David R Goodlett
- Turku Centre for Biotechnology, University of Turku, Turku, Finland Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD
| | - Harri Lähdesmäki
- Turku Centre for Biotechnology, University of Turku, Turku, Finland Department of Information and Computer Science, Aalto University School of Science, Espoo, Finland
| | - Olli Simell
- Department of Pediatrics, University of Turku, Turku, Finland Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Chaldakov GN, Fiore M, Ghenev PI, Beltowski J, Ranćić G, Tunçel N, Aloe L. Triactome: neuro-immune-adipose interactions. Implication in vascular biology. Front Immunol 2014; 5:130. [PMID: 24782857 PMCID: PMC3986561 DOI: 10.3389/fimmu.2014.00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/14/2014] [Indexed: 12/21/2022] Open
Abstract
Understanding how the precise interactions of nerves, immune cells, and adipose tissue account for cardiovascular and metabolic biology is a central aim of biomedical research at present. A long standing paradigm holds that the vascular wall is composed of three concentric tissue coats (tunicae): intima, media, and adventitia. However, large- and medium-sized arteries, where usually atherosclerotic lesions develop, are consistently surrounded by periadventitial adipose tissue (PAAT), we recently designated tunica adiposa (in brief, adiposa like intima, media, and adventitia). Today, atherosclerosis is considered an immune-mediated inflammatory disease featured by endothelial dysfunction/intimal thickening, medial atrophy, and adventitial lesions associated with adipose dysfunction, whereas hypertension is characterized by hyperinnervation-associated medial thickening due to smooth muscle cell hypertrophy/hyperplasia. PAAT expansion is associated with increased infiltration of immune cells, both adipocytes and immunocytes secreting pro-inflammatory and anti-inflammatory (metabotrophic) signaling proteins collectively dubbed adipokines. However, the role of vascular nerves and their interactions with immune cells and paracrine adipose tissue is not yet evaluated in such an integrated way. The present review attempts to briefly highlight the findings in basic and translational sciences in this area focusing on neuro-immune-adipose interactions, herein referred to as triactome. Triactome-targeted pharmacology may provide a novel therapeutic approach in cardiovascular disease.
Collapse
Affiliation(s)
- George Nikov Chaldakov
- Laboratory of Cell Biology, Department of Anatomy and Histology, Medical University, Varna, Bulgaria
| | - Marco Fiore
- Institute of Cellular Biology and Neurobiology, National Research Council, Rome, Italy
| | - Peter I. Ghenev
- Department of General and Clinical Pathology, Medical University, Varna, Bulgaria
| | - Jerzy Beltowski
- Department of Pathophysiology, Medical University, Lublin, Poland
| | - Gorana Ranćić
- Department of Histology and Embryology, University Medical Faculty, Niš, Serbia
| | - Neşe Tunçel
- Department of Physiology, Medical Faculty, Eskişehir University, Eskişehir, Turkey
| | - Luigi Aloe
- Institute of Cellular Biology and Neurobiology, National Research Council, Rome, Italy
| |
Collapse
|