1
|
Son YS, Kwon YH, Lee MS, Kwon O, Jeong YJ, Mun SJ, Jeon S, Park JH, Han MH, Bae JS, Hur K, Jang AR, Park JH, Cho HS, Jung CR, Ryu CM, Son MJ, Park DS, Son MY. Helicobacter pylori VacA-induced mitochondrial damage in the gastric pit cells of the antrum and therapeutic rescue. Biomaterials 2025; 314:122842. [PMID: 39383778 DOI: 10.1016/j.biomaterials.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/06/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
Exploring host cell specificity, pathogenicity, and molecular mechanisms of the vacuolating cytotoxin A (VacA), secreted by Helicobacter pylori (Hp) is crucial for developing novel treatment strategies. VacA affects subcellular events, particularly mitochondria, at a cell-type-specific level. However, the lack of reliable models that mimic VacA-induced subcellular damages and enable novel drug screening linked to the human stomach clinically limits our understanding of the mitochondrial networks in vivo. Here, human antrum gastric organoids (hAGOs) and tissue samples from Hp-infected patients were used to show the toxic effects of VacA-induced mitochondrial damage mainly in mucus-producing gastric pit cells by employing transcriptional, translational, and functional analyses. In VacA-intoxicated or Hp-infected hAGOs, robust mitochondrial fragmentation in gastric pit cells reduced ATP production during respiration, and loss of mucosal barrier integrity was first demonstrated experimentally. Using hAGOs, clinically relevant small molecules were screened for efficacy, and MLN8054, an Aurora kinase A inhibitor, reversed VacA-induced mitochondrial damage and loss of gastric epithelium integrity. MLN8054 was effective in VacA-treated and Hp-infected hAGOs and mice, highlighting hAGOs as a promising drug-screening model. These findings suggest that mitochondrial quality control may serve as a promising therapeutic target for Hp VacA-mediated toxicity and disease progression.
Collapse
Affiliation(s)
- Ye Seul Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yong Hwan Kwon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Ohman Kwon
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yu-Jin Jeong
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seon Ju Mun
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sojeong Jeon
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Ji Hye Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jae-Sung Bae
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Choong-Min Ryu
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Myung Jin Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Doo-Sang Park
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea; Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Teli G, Maji L, Pal R, Maheshwari N, Purawarga Matada GS, Chawla PA, Chawla V. Recent advancements in mechanistic research, therapeutic potential, and structure-activity relationships of aurora kinase inhibitors in cancer therapies. Bioorg Chem 2024; 154:107976. [PMID: 39603069 DOI: 10.1016/j.bioorg.2024.107976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Aurora kinases (AURKs)-a family of serine/threonine protein kinases consisting of AURK-A, AURK-B, and AURK-C, are critical regulators of chromosomal segregation, centrosome maturation, and cytokinesis during the cell cycle. Each kinase is activated via phosphorylation at unique threonine residues: Thr288 (AURK-A), Thr232 (AURK-B), and Thr195 (AURK-C). Activation of AURK-A and AURK-B through phosphorylation triggers a series of downstream signaling pathways, including RalA, NF-κB, p53, PLK1, BRCA1/BRCA2, H2AX, and Kif2C, as well as multiple transmembrane kinase receptors. Dysregulation of these pathways has been implicated in cancer development and progression, positioning AURKs as pivotal targets for anticancer drug research. Inhibition of AURKs has demonstrated significant efficacy in tumor growth suppression and induction of cancer cell death, thereby focusing recent research on the development of potent AURK inhibitors. This review provides an in-depth exploration of AURK inhibitors, discussing their biological activities, structure-activity relationships, selectivity profiles, and mechanisms of action. Notably, compounds 6, 27, and 16 exhibit potent AURK-A inhibition with IC50 values of 1.7 nM, 11.83 nM, and 15 nM, respectively. Similarly, compounds 28, 16, and 7 demonstrate strong AURK-B inhibitory activity, with IC50 values of 10.5 nM, 12 nM, and 14.09 nM, respectively. This comprehensive overview aims to support medicinal chemists in developing more potent, selective, and safe AURK inhibitors as potential anticancer therapeutics.
Collapse
Affiliation(s)
- Ghanshyam Teli
- School of Pharmacy, Sangam University, NH-79, Atoon, Bhilwara, 311001, Rajasthan, India; University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab 151203 India
| | - Lalmohan Maji
- Department of Pharmaceutical Chemistry, Tarifa Memorial Institute of Pharmacy, Murshidabad, 742166, West Bengal, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Neelesh Maheshwari
- School of Pharmacy, Sangam University, NH-79, Atoon, Bhilwara, 311001, Rajasthan, India
| | | | - Pooja A Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab 151203 India.
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab 151203 India.
| |
Collapse
|
3
|
Qin RS, Li CT, Chen F, Luo S, Wang C, Li J, Xu S, Kang M, Hu HW. AURKA inhibition shows promise as a therapeutic strategy for ARID1A-mutant colorectal cancer. Discov Oncol 2024; 15:556. [PMID: 39402330 PMCID: PMC11473479 DOI: 10.1007/s12672-024-01433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Mutations in ARID1A frequently occur in colorectal cancer (CRC) cells. However, there are currently no clinical treatment options specifically addressing this aberration. The preliminary in vitro experiments revealed a synthetic lethal interaction between ARID1A and Aurora kinase A (AURKA) in colorectal cancer (CRC) cells. METHODS We collected samples from 80 CRC patients and evaluated the efficacy of AURKA inhibitor (AURKAi) using the ATP-tumor chemosensitivity assay (ATP-TCA) on untreated ARID1A-proficient (ARID1A +) and ARID1A-deficient (ARID1A-) CRC patient samples. In addition, we validated this result by a clonogenic assay. Additionally, we examined the effects of AURKA inhibitors on cell cycle progression and apoptosis in ARID1A + and ARID1A- CRC patient samples using flow cytometry. RESULTS The results showed that AURKAi selectively inhibited the growth of ARID1A- CRC cells. Furthermore, AURKA inhibitors significantly increased G2/M arrest and induced apoptosis in ARID1A- cells. CONCLUSION We believe that AURKAi hold promise as potential therapeutics for ARID1A mutation colorectal cancer patients.
Collapse
Affiliation(s)
- Rong-Sheng Qin
- Department of Oncology, Suining First People's Hospital, No. 2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China
| | - Chun-Tao Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affilitaed Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Fei Chen
- Department of Oncology, Suining First People's Hospital, No. 2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China
| | - Shu Luo
- Department of Oncology, Suining First People's Hospital, No. 2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China
| | - Chao Wang
- Department of Oncology, Suining First People's Hospital, No. 2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China
| | - Jie Li
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, No.12 Changjiaxiang Road, Mianyang, 621000, Sichuan, China
| | - Shan Xu
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, No.12 Changjiaxiang Road, Mianyang, 621000, Sichuan, China.
- Department of Oncology, Mianyang Fulin Hospital, No. 100, East Section, Puming South Road, High-Tech Zone, Mianyang, 621000, Sichuan, China.
| | - MingWei Kang
- Department of Oncology, Mianyang Fulin Hospital, No. 100, East Section, Puming South Road, High-Tech Zone, Mianyang, 621000, Sichuan, China
| | - Hao-Wen Hu
- Department of Gastrointestinal Surgical, Suining first people's hospital, No.2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China.
| |
Collapse
|
4
|
Vorwerk VA, Wilms G, Babendreyer A, Becker W. Differential regulation of expression of the protein kinases DYRK1A and DYRK1B in cancer cells. Sci Rep 2024; 14:23926. [PMID: 39397076 PMCID: PMC11471791 DOI: 10.1038/s41598-024-74190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The protein kinases DYRK1A and DYRK1B are pivotal regulators of cell cycle progression by promoting cell cycle exit into quiescence. DYRK1B appears to play a more important role in cancer cell quiescence than DYRK1A, as evidenced by its overexpression or copy number variations in human tumour samples. Nonetheless, the stimuli driving DYRK1B upregulation and the potential divergence in expression patterns between DYRK1A and DYRK1B remain largely elusive. In the present study, we scrutinized the regulatory pathways modulating DYRK1B expression relative to DYRK1A in PANC-1 and A549 cancer cell lines across varying conditions. Serum deprivation, pharmacological mTOR inhibition and increased cell density resulted in the differential upregulation of DYRK1B compared to DYRK1A. We then aimed to assess the role of protein kinases MST1 and MST2, which are key transmitters of cell density dependent effects. Unexpectedly, exposure to the MST1/2 inhibitor XMU-MP-1 resulted in increased DYRK1B levels in A549 cells. Further investigation into the off-target effects of XMU-MP-1 unveiled the inhibition of Aurora kinases (AURKA and AURKB) as a potential causative factor. Consistently, AURK inhibitors VX-680 (tozasertib), MLN8237 (alisertib), AZD1152-HQPA (barasertib) resulted in the upregulation of DYRK1B expression in A549 cells. In summary, our findings indicate that the expression of DYRK1A and DYRK1B is differentially regulated in cancer cells and reveal that the kinase inhibitor XMU-MP-1 increases DYRK1B expression likely through off target inhibition of Aurora kinases.
Collapse
Affiliation(s)
- Vincent Andreas Vorwerk
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, 52074, Aachen, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Chu X, Sun J, Dai S, Liang Y, Qian X, Xu J, Zhang J. AURKA Activates FOXO3a to Form a Positive Feedback Loop in the Proliferation and Migration of Keloid Fibroblasts. Adv Wound Care (New Rochelle) 2024. [PMID: 39078320 DOI: 10.1089/wound.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Objective: Keloids are benign fibroproliferative disorders with invasive growth exceeding the wound boundary. Aurora kinase A (AURKA) is a serine/threonine kinase highly expressed in various tumors, facilitating tumor growth and invasion. Currently, the role of AURKA in keloid remains unclear. Approach: Fibroblasts were isolated from keloid and normal skin samples. AURKA was evaluated by qPCR, Western blot, and immunohistochemistry. Transcriptome sequencing and dual-luciferase reporter assays were applied to figure out targets of AURKA. Following expression alteration and MLN8237 (an AURKA kinase inhibitor, AKI) treatment, phenotypical experiments were conducted to clarify biological functions of AURKA along with its target, and to probe into the clinical potential of AURKA inhibition. Results: AURKA was upregulated in keloid tissues and fibroblasts. Forkhead box O 3a (FOXO3a) was verified as a downstream of AURKA. Further experiments demonstrated that AURKA transactivated FOXO3a by binding to FOXO3a, while FOXO3a directly transactivated AURKA. Functionally, AURKA and FOXO3a cooperated in enhancing the proliferation and migration of keloid fibroblasts via protein kinase B (AKT) phosphorylation. Although MLN8237 weakened the proliferation and migration in keloid fibroblasts, the transactivation of AURKA on FOXO3a was independent of kinase activity. Innovation: This study reveals that AURKA and FOXO3a compose a transactivation loop in enhancing the proliferative and migrative properties of keloid fibroblasts, and proposes AURKA as a promising target. Conclusion: AURKA/FOXO3a loop promotes the proliferation and migration of keloid fibroblasts via AKT signaling. Despite the anti-keloid effects of AKIs, AURKA acts as a transcription factor independently of kinase activity, deepening our understanding on AKI insensitivity.
Collapse
Affiliation(s)
- Xi Chu
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jiaqi Sun
- Department of Plastic Surgery, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siya Dai
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yehua Liang
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xifei Qian
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jufang Zhang
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
6
|
Tsai CH, Huang HC, Lin KJ, Liu JM, Chen GL, Yeh YH, Lu TL, Lin HW, Lu MT, Chu PC. Inhibition of Autophagy Aggravates Arachis hypogaea L. Skin Extracts-Induced Apoptosis in Cancer Cells. Int J Mol Sci 2024; 25:1345. [PMID: 38279345 PMCID: PMC10816816 DOI: 10.3390/ijms25021345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
The skin of Arachis hypogaea L. (peanut or groundnut) is a rich source of polyphenols, which have been shown to exhibit a wider spectrum of noteworthy biological activities, including anticancer effects. However, the anticancer activity of peanut skin extracts against melanoma and colorectal cancer (CRC) cells remains elusive. In this study, we systematically investigated the cytotoxic, antiproliferative, pro-apoptotic, and anti-migration effects of peanut skin ethanolic extract and its fractions on melanoma and CRC cells. Cell viability results showed that the ethyl acetate fraction (AHE) of peanut skin ethanolic crude extract and one of the methanolic fractions (AHE-2) from ethyl acetate extraction exhibited the highest cytotoxicity against melanoma and CRC cells but not in nonmalignant human skin fibroblasts. AHE and AHE-2 effectively modulated the cell cycle-related proteins, including the suppression of cyclin-dependent kinase 4 (CDK4), cyclin-dependent kinase 6 (CDK6), phosphorylation of Retinoblastoma (p-Rb), E2F1, Cyclin A, and activation of tumor suppressor p53, which was associated with cell cycle arrest and paralleled their antiproliferative efficacies. AHE and AHE-2 could also induce caspase-dependent apoptosis and inhibit migration activities in melanoma and CRC cells. Moreover, it is noteworthy that autophagy, manifested by microtubule-associated protein light chain 3B (LC3B) conversion and the aggregation of GFP-LC3, was detected after AHE and AHE-2 treatment and provided protective responses in cancer cells. Significantly, inhibition of autophagy enhanced AHE- and AHE-2-induced cytotoxicity and apoptosis. Together, these findings not only elucidate the anticancer potential of peanut skin extracts against melanoma and CRC cells but also provide a new insight into autophagy implicated in peanut skin extracts-induced cancer cell death.
Collapse
Affiliation(s)
- Chia-Hung Tsai
- Department of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan;
| | - Hui-Chi Huang
- School of Chinese Medicine & Graduate Institute of Chinese Medicine, China Medical University, Taichung 406040, Taiwan;
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 406040, Taiwan;
| | - Kuan-Jung Lin
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan;
- Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jui-Ming Liu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan;
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Guan-Lin Chen
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung 406040, Taiwan; (G.-L.C.); (M.-T.L.)
| | - Yi-Hsien Yeh
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 406040, Taiwan;
| | - Te-Ling Lu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan; (T.-L.L.); (H.-W.L.)
- Department of Pharmacy, China Medical University Hospital, Taichung 406040, Taiwan
| | - Hsiang-Wen Lin
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan; (T.-L.L.); (H.-W.L.)
- Department of Pharmacy, China Medical University Hospital, Taichung 406040, Taiwan
| | - Meng-Tien Lu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung 406040, Taiwan; (G.-L.C.); (M.-T.L.)
| | - Po-Chen Chu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung 406040, Taiwan; (G.-L.C.); (M.-T.L.)
| |
Collapse
|
7
|
Tian Z, Li X, Yu X, Yan S, Sun J, Ma W, Zhu X, Tang Y. The role of primary cilia in thyroid diseases. Front Endocrinol (Lausanne) 2024; 14:1306550. [PMID: 38260150 PMCID: PMC10801159 DOI: 10.3389/fendo.2023.1306550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Primary cilia (PC) are non-motile and microtube-based organelles protruding from the surface of almost all thyroid follicle cells. They maintain homeostasis in thyrocytes and loss of PC can result in diverse thyroid diseases. The dysfunction of structure and function of PC are found in many patients with common thyroid diseases. The alterations are associated with the cause, development, and recovery of the diseases and are regulated by PC-mediated signals. Restoring normal PC structure and function in thyrocytes is a promising therapeutic strategy to treat thyroid diseases. This review explores the function of PC in normal thyroid glands. It summarizes the pathology caused by PC alterations in thyroid cancer (TC), autoimmune thyroid diseases (AITD), hypothyroidism, and thyroid nodules (TN) to provide comprehensive references for further study.
Collapse
Affiliation(s)
- Zijiao Tian
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xinlin Li
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Shuxin Yan
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Sun
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Wenxin Ma
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Tang
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Nong ZL, Zhao K, Wang Y, Yu Z, Wang CJ, Chen JQ. CLIC1-mediated autophagy confers resistance to DDP in gastric cancer. Anticancer Drugs 2024; 35:1-11. [PMID: 37104099 PMCID: PMC10720815 DOI: 10.1097/cad.0000000000001518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/07/2023] [Indexed: 04/28/2023]
Abstract
Gastric cancer has been a constant concern to researchers as one of the most common malignant tumors worldwide. The treatment options for gastric cancer include surgery, chemotherapy and traditional Chinese medicine. Chemotherapy is an effective treatment for patients with advanced gastric cancer. Cisplatin (DDP) has been approved as a critical chemotherapy drug to treat various kinds of solid tumors. Although DDP is an effective chemotherapeutic agent, many patients develop drug resistance during treatment, which has become a severe problem in clinical chemotherapy. This study aims to investigate the mechanism of DDP resistance in gastric cancer. The results show that intracellular chloride channel 1 (CLIC1) expression was increased in AGS/DDP and MKN28/DDP, and as compared to the parental cells, autophagy was activated. In addition, the sensitivity of gastric cancer cells to DDP was decreased compared to the control group, and autophagy increased after overexpression of CLIC1. On the contrary, gastric cancer cells were more sensitive to cisplatin after transfection of CLIC1siRNA or treatment with autophagy inhibitors. These experiments suggest that CLIC1 could alter the sensitivity of gastric cancer cells to DDP by activating autophagy. Overall, the results of this study recommend a novel mechanism of DDP resistance in gastric cancer.
Collapse
Affiliation(s)
- Zhen-Liang Nong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| | - Kun Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| | - Zhu Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| | - Cong-jun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| |
Collapse
|
9
|
Fan YW, Lu IC, Hsu MY, Kuo WT, Wu SY, Lan SH, Wang PY, Chen CY, Liu HS, Su CL. Synthetic lethality in human bladder cancer cells by curcumin via concurrent Aurora A inhibition and autophagy induction. J Nutr Biochem 2023; 121:109438. [PMID: 37666476 DOI: 10.1016/j.jnutbio.2023.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/24/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Combination therapies to induce mixed-type cell death and synthetic lethality have the potential to overcome drug resistance in cancer. In this study, we demonstrated that the curcumin-enhanced cytotoxicity of cisplatin/carboplatin in combination with gemcitabine was associated with Aurora A suppression-mediated G2/M arrest, and thus apoptosis, as well as MEK/ERK-mediated autophagy in human bladder cancer cells. Animal study data confirmed that curcumin combined with cisplatin/gemcitabine reduced tumorigenesis of xenograft in mice and this phenomenon was associated with elevated expressions of p-ERK and reduced p-Aurora A in tumors. Gene analyses using data repositories further revealed that reduced Aurora A expression alone did not significantly elevate the sensitivity of human bladder carcinoma cells to these anticancer drugs. Unlike other major cancer types, human bladder urothelial carcinoma tissue coexpressed higher AURKA and lower MAP1LC3B than normal tissue, and reduced Aurora A and induction of autophagy have been clinically associated with a better prognosis in patients with early but not advanced stage bladder cancer. Therefore, our results suggest that treatment strategies can utilize the synthetic lethal pair to concurrently suppress oncogenic Aurora A and induce autophagy by coadministrating curcumin with anticancer drugs for early-stage bladder cancer with high expression of Aurora A.
Collapse
Affiliation(s)
- Ya-Wen Fan
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan
| | - I-Ching Lu
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Man-Yuan Hsu
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wan-Ting Kuo
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shan-Ying Wu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Hui Lan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pao-Yuan Wang
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Ying Chen
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Li Su
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan; Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
10
|
Li S, Qi Y, Yu J, Hao Y, Xu L, Ding X, Zhang M, Geng J. Aurora kinase A regulates cancer-associated RNA aberrant splicing in breast cancer. Heliyon 2023; 9:e17386. [PMID: 37415951 PMCID: PMC10320321 DOI: 10.1016/j.heliyon.2023.e17386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/03/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
The contribution of oncogenes to tumor-associated RNA splicing and the relevant molecular mechanisms therein require further elaboration. Here, we show that oncogenic Aurora kinase A (AURKA) promotes breast cancer-related RNA aberrant splicing in a context-dependent manner. AURKA regulated pan-breast cancer-associated RNA splicing events including GOLGA4, RBM4 and UBQLN1. Aberrant splicing of GOLGA4 and RBM4 was closely related to breast cancer development. Mechanistically, AURKA interacted with the splicing factor YBX1 and promoted AURKA-YBX1 complex-mediated GOLGA4 exon inclusion. AURKA binding to the splicing factor hnRNPK promoted AURKA-hnRNPK complex-mediated RBM4 exon skipping. Analysis of clinical data identified an association between the AURKA-YBX1/hnRNPK complex and poor prognosis in breast cancer. Blocking AURKA nuclear translocation with small molecule drugs partially reversed the oncogenic splicing of RBM4 and GOLGA4 in breast cancer cells. In summary, oncogenic AURKA executes its function on modulating breast cancer-related RNA splicing, and nuclear AURKA is distinguished as a hopeful target in the case of treating breast cancer.
Collapse
Affiliation(s)
- Sisi Li
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Jiachuan Yu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuchao Hao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Lingzhi Xu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xudong Ding
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Jingshu Geng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
11
|
Tonkin-Reeves A, Giuliani CM, Price JT. Inhibition of autophagy; an opportunity for the treatment of cancer resistance. Front Cell Dev Biol 2023; 11:1177440. [PMID: 37363731 PMCID: PMC10290173 DOI: 10.3389/fcell.2023.1177440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
The process of macroautophagy plays a pivotal role in the degradation of long-lived, superfluous, and damaged proteins and organelles, which are later recycled for cellular use. Normal cells rely on autophagy to combat various stressors and insults to ensure survival. However, autophagy is often upregulated in cancer cells, promoting a more aggressive phenotype that allows mutated cells to evade death after exposure to therapeutic treatments. As a result, autophagy has emerged as a significant factor in therapeutic resistance across many cancer types, with underlying mechanisms such as DNA damage, cell cycle arrest, and immune evasion. This review provides a comprehensive summary of the role of autophagy in therapeutic resistance and the limitations of available autophagic inhibitors in cancer treatment. It also highlights the urgent need to explore new inhibitors that can synergize with existing therapies to achieve better patient treatment outcomes. Advancing research in this field is crucial for developing more effective treatments that can help improve the lives of cancer patients.
Collapse
Affiliation(s)
- Asha Tonkin-Reeves
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Charlett M. Giuliani
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, Melbourne, VIC, Australia
| | - John T. Price
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Chen Y, Tang M, Li H, Huang J. Effects of C10orf10 on growth and prognosis of glioma under hypoxia. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:499-507. [PMID: 37385612 PMCID: PMC10930248 DOI: 10.11817/j.issn.1672-7347.2023.220396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 07/01/2023]
Abstract
OBJECTIVES Glioma is the most common malignant tumor in the central nervous system, and the hypoxic microenvironment is prevalent in solid tumors. This study aims to investigate the up-regulation of genes under the condition of hypoxia and their roles in glioma growth, as well as their impact on glioma prognosis. METHODS The hypoxia-related dataset with glioma was screened in the Gene Expression Omnibus database (GEO), and the differentially expressed genes were analyzed between hypoxia and normoxia through bioinformatics, and chromosome 10 open reading frame 10 (C10orf10) was verified and screened in hypoxia-treated cells through real-time PCR and Western blotting. The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) datasets were downloaded to analyze the mRNA expression of C10orf10 in different grades of glioma and its impact on prognosis. The glioma specimens and follow-up data of 68 gliomas who underwent surgical treatment in Xiangya Hospital of Central South University from March 2017 to January 2021 were collected, and real-time PCR was used to detect the mRNA expression of C10orf10 in different grades of glioma, and the Kaplan-Meier method was used to analyze the relationship between the expression C10orf10 and prognosis. The glioma cells, which could interfere the expression of C10orf10, were constructed, and the effect of C10orf10 on the proliferation of glioma cells was evaluated by cell counting kit-8 (CCK-8) and colony formation assays. RESULTS Compared with the condition of normoxia, the expression levels of C10orf10 mRNA and protein were significantly up-regulated in glioma cells under hypoxia (P<0.001), and the mRNA expression level of C10orf10 in glioma tissues was up-regulated with the increase of WHO grade in glioma (P<0.001). Based on Kaplan-Meier survival analysis, the higher the mRNA expression level of C10orf10 was, the shorter the survival time of the patient was (P<0.05). And the expression of C10orf10 mRNA was higher in recurrent gliomas than that in primary gliomas in the CGGA database (P<0.001). Knockdown of C10orf10 could significantly inhibit the growth of glioma cells both under hypoxia and normoxia (both P<0.001). CONCLUSIONS The expression level of C10orf10 can promote the proliferation and prognosis of glioma, which is expected to become a prognostic marker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008.
| | - Miao Tang
- Department of Neurosurgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Hui Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008.
| |
Collapse
|
13
|
Luo Y, Chen Y, Jin H, Hou B, Li H, Li X, Liu L, Zhou Y, Li Y, Song YS, Liu Q, Zou Z. The suppression of cervical cancer ferroptosis by macrophages: The attenuation of ALOX15 in cancer cells by macrophages-derived exosomes. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
14
|
Zheng D, Li J, Yan H, Zhang G, Li W, Chu E, Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm Sin B 2023. [PMID: 37521867 PMCID: PMC10372834 DOI: 10.1016/j.apsb.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Aurora kinase A (Aurora-A), a serine/threonine kinase, plays a pivotal role in various cellular processes, including mitotic entry, centrosome maturation and spindle formation. Overexpression or gene-amplification/mutation of Aurora-A kinase occurs in different types of cancer, including lung cancer, colorectal cancer, and breast cancer. Alteration of Aurora-A impacts multiple cancer hallmarks, especially, immortalization, energy metabolism, immune escape and cell death resistance which are involved in cancer progression and resistance. This review highlights the most recent advances in the oncogenic roles and related multiple cancer hallmarks of Aurora-A kinase-driving cancer therapy resistance, including chemoresistance (taxanes, cisplatin, cyclophosphamide), targeted therapy resistance (osimertinib, imatinib, sorafenib, etc.), endocrine therapy resistance (tamoxifen, fulvestrant) and radioresistance. Specifically, the mechanisms of Aurora-A kinase promote acquired resistance through modulating DNA damage repair, feedback activation bypass pathways, resistance to apoptosis, necroptosis and autophagy, metastasis, and stemness. Noticeably, our review also summarizes the promising synthetic lethality strategy for Aurora-A inhibitors in RB1, ARID1A and MYC gene mutation tumors, and potential synergistic strategy for mTOR, PAK1, MDM2, MEK inhibitors or PD-L1 antibodies combined with targeting Aurora-A kinase. In addition, we discuss the design and development of the novel class of Aurora-A inhibitors in precision medicine for cancer treatment.
Collapse
|
15
|
Micellar Form of a Ferrocene-Containing Camphor Sulfonamide with Improved Aqueous Solubility and Tumor Curing Potential. Pharmaceutics 2023; 15:pharmaceutics15030791. [PMID: 36986651 PMCID: PMC10054005 DOI: 10.3390/pharmaceutics15030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The discovery of new anticancer drugs with а higher, more specific activity and diminished side effects than the conventional chemotherapeutic agents is a tremendous challenge to contemporary medical research and development. To achieve a pronounced efficacy, the design of antitumor agents can combine various biologically active subunits in one molecule, which can affect different regulatory pathways in cancer cells. We recently demonstrated that a newly synthesized organometallic compound, a ferrocene-containing camphor sulfonamide (DK164), possesses promising antiproliferative activity against breast and lung cancer cells. However, it still encounters the problem of solubility in biological fluids. In this work, we describe a novel micellar form of DK164 with significantly improved solubility in aqueous medium. DK164 was embedded in biodegradable micelles based on a poly(ethylene oxide)-b-poly(α-cinnamyl-ε-caprolactone-co-ε-caprolactone)-b-poly(ethylene oxide) triblock copolymer (PEO113-b-P(CyCL3-co-CL46)-b-PEO113), and the physicochemical parameters (size, size distribution, zeta potential, encapsulation efficiency) and biological activity of the obtained system were studied. We used cytotoxicity assays and flow cytometry to determine the type of cell death, as well as immunocytochemistry to assess the influence of the encapsulated drug on the dynamics of cellular key proteins (p53 and NFkB) and the process of autophagy. According to our results, the micellar form of the organometallic ferrocene derivate (DK164-NP) exhibited several advantages compared to the free substance, such as higher metabolic stability, better cellular uptake, improved bioavailability, and long-term activity, maintaining nearly the same biological activity and anticancer properties of the drug.
Collapse
|
16
|
Matrood S, Melms LE, Bartsch DK, Di Fazio P. The Expression of Autophagy-Associated Genes Represents a Valid Footprint for Aggressive Pancreatic Neuroendocrine Neoplasms. Int J Mol Sci 2023; 24:3636. [PMID: 36835048 PMCID: PMC9966877 DOI: 10.3390/ijms24043636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNEN) are rare and heterogeneous tumors. Previous investigations have shown that autophagy can be a target for cancer therapy. This study aimed to determine the association between the expression of autophagy-associated gene transcripts and clinical parameters in pNEN. In total, 54 pNEN specimens were obtained from our human biobank. The patient characteristics were retrieved from the medical record. RT-qPCR was performed to assess the expression of the autophagic transcripts BECN1, MAP1LC3B, SQSTM1, UVRAG, TFEB, PRKAA1, and PRKAA2 in the pNEN specimens. A Mann-Whitney U test was used to detect differences in the expression of autophagic gene transcripts between different tumor characteristics. This study showed that G1 sporadic pNEN have a higher expression of autophagic genes compared to G2. Lymphatic and distant metastasis occurred significantly more often in pNEN with a decreased expression of the autophagic genes. Within sporadic pNEN, the insulinomas express higher levels of autophagic transcripts than gastrinomas and non-functional pNEN. MEN1-associated pNEN show a higher expression of autophagic genes than sporadic pNEN. In summary, a decreased expression of autophagic transcripts distinguishes metastatic from non-metastatic sporadic pNEN. The significance of autophagy as a molecular marker for prognosis and therapy decisions needs to be further investigated.
Collapse
Affiliation(s)
- Sami Matrood
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Leander Edwin Melms
- Institute for Artificial Intelligence, University Hospital Marburg, Philipps-University Marburg, 35043 Marburg, Germany
| | - Detlef Klaus Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, 35043 Marburg, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
17
|
Sak M, Williams BJ, Zumbar CT, Teer L, Al-Kawaaz MNG, Kakar A, Hey AJ, Wilson MJ, Schier LM, Chen J, Lehman NL. The CNS-penetrating taxane drug TPI 287 potentiates antiglioma activity of the AURKA inhibitor alisertib in vivo. Cancer Chemother Pharmacol 2023; 91:191-201. [PMID: 36694044 DOI: 10.1007/s00280-023-04503-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) has a very poor prognosis despite current treatment. We previously found cytotoxic synergy between the AURKA inhibitor alisertib and the CNS-penetrating taxane TPI 287 against GBM tumor cells in vitro. METHODS We used an orthotopic human GBM xenograft mouse model to test if TPI 287 potentiates alisertib in vivo. Western blotting, immunohistochemistry, siRNA knockdown, annexin V binding, and 3-dimensional Matrigel invasion assays were used to investigate potential mechanisms of alisertib and TPI 287 treatment interactions. RESULTS Alisertib + TPI 287 combination therapy significantly prolonged animal survival compared to vehicle (p = 0.011), but only marginally compared to alisertib alone. Alisertib, TPI 287, and combined alisertib + TPI 287 reduced animal tumor volume compared to vehicle-treated controls. This was statistically significant for the combination therapy at 4 weeks (p < 0.0001). Alisertib + TPI 287 treatment decreased anti-apoptotic Bcl-2 protein levels in vivo and in vitro. Expression of the pro-apoptotic protein Bak was significantly increased by combination treatment (p < 0.0001). Pro-apoptotic Bim and Bak knockdown by siRNA decreased apoptosis by alisertib + TPI 287 in GB9, GB30, and U87 cells (p = 0.0005 to 0.0381). Although alisertib and TPI 287 significantly reduced GBM cell invasion (p < 0.0001), their combination was no more effective than TPI 287 alone. CONCLUSIONS Results suggest that apoptosis is the dominant mechanism of potentiation of GBM growth inhibition by alisertib + TPI 287, in part through effects on Bcl-2 family proteins, providing a rationale for further laboratory testing of an AURKA inhibitor plus TPI 287 as a potential therapy against GBM.
Collapse
Affiliation(s)
- Müge Sak
- Biochemistry and Molecular Genetics, University of Louisville, 505 S Hancock St, KY, 40202, Louisville, USA
| | - Brian J Williams
- Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Cory T Zumbar
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Landon Teer
- Bioengineering, University of Louisville, Louisville, KY, 40202, USA
| | - Mustafa N G Al-Kawaaz
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Aastha Kakar
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Andrew J Hey
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Megan J Wilson
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Leslie M Schier
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Joseph Chen
- Bioengineering, University of Louisville, Louisville, KY, 40202, USA
| | - Norman L Lehman
- Biochemistry and Molecular Genetics, University of Louisville, 505 S Hancock St, KY, 40202, Louisville, USA.
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA.
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
18
|
Khan R, Panja S, Ding L, Tang S, Tang W, Kapoor E, Bennett RG, Oupický D. Polymeric Chloroquine as an Effective Antimigration Agent in the Treatment of Pancreatic Cancer. Mol Pharm 2022; 19:4631-4643. [PMID: 36346968 DOI: 10.1021/acs.molpharmaceut.2c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydroxychloroquine (HCQ) has been the subject of multiple recent preclinical and clinical studies for its beneficial use in the combination treatments of different types of cancers. Polymeric HCQ (PCQ), a macromolecular multivalent version of HCQ, has been shown to be effective in various cancer models both in vitro and in vivo as an inhibitor of cancer cell migration and experimental lung metastasis. Here, we present detailed in vitro studies that show that low concentrations of PCQ can efficiently inhibit cancer cell migration and colony formation orders of magnitude more effectively compared to HCQ. After intraperitoneal administration of PCQ in vivo, high levels of tumor accumulation and penetration are observed, combined with strong antimetastatic activity in an orthotopic pancreatic cancer model. These studies support the idea that PCQ may be effectively used at low doses as an adjuvant in the therapy of pancreatic cancer. In conjunction with previously published literature, these studies further undergird the potential of PCQ as an anticancer agent.
Collapse
Affiliation(s)
- Rubayat Khan
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Robert G Bennett
- Department of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
19
|
Negi S, Chaudhuri A, Kumar DN, Dehari D, Singh S, Agrawal AK. Nanotherapeutics in autophagy: a paradigm shift in cancer treatment. Drug Deliv Transl Res 2022; 12:2589-2612. [PMID: 35149969 DOI: 10.1007/s13346-022-01125-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 12/15/2022]
Abstract
Autophagy is a catabolic process in which an organism responds to its nutrient or metabolic emergencies. It involves the degradation of cytoplasmic proteins and organelles by forming double-membrane vesicles called "autophagosomes." They sequester cargoes, leading them to degradation in the lysosomes. Although autophagy acts as a protective mechanism for maintaining homeostasis through cellular recycling, it is ostensibly a cause of certain cancers, but a cure for others. In other words, insufficient autophagy, due to genetic or cellular dysfunctions, can lead to tumorigenesis. However, many autophagy modulators are developed for cancer therapy. Diverse nanoparticles have been documented to induce autophagy. Also, the highly stable nanoparticles show blockage to autophagic flux. In this review, we revealed a general mechanism by which autophagy can be induced or blocked via nanoparticles as well as several studies recently performed to prove the stated fact. In addition, we have also elucidated the paradoxical roles of autophagy in cancer and how their differential role at different stages of various cancers can affect its treatment outcomes. And finally, we summarize the breakthroughs in cancer disease treatments by using metallic, polymeric, and liposomal nanoparticles as potent autophagy modulators.
Collapse
Affiliation(s)
- Shloka Negi
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Deepa Dehari
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Sanjay Singh
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India.
| |
Collapse
|
20
|
Que T, Ren B, Fan Y, Liu T, Hou T, Dan W, Liu B, Wei Y, Lei Y, Zeng J, Li L. Capsaicin inhibits the migration, invasion and EMT of renal cancer cells by inducing AMPK/mTOR-mediated autophagy. Chem Biol Interact 2022; 366:110043. [PMID: 36044967 DOI: 10.1016/j.cbi.2022.110043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022]
Abstract
Capsaicin (CAP), extracted from Capsicum fruits, has been reported to exhibit antitumor effects in various lines of cancer cells. However, the mechanism underlying its antitumor efficiency is not fully understood. Autophagy is a fundamental self-degradation process of cells that maintains homeostasis and plays a controversial role in tumor initiation and progression. The EMT is defined as a system regulating cells transformed from an epithelial-like phenotype into a mesenchymal phenotype by several internal and external factors, following the metastatic performance of the cells developed. The present study aimed to investigate the potential role of autophagy in CAP-induced antitumor effects in renal cell carcinoma (RCC) 786-O and CAKI-1 cell lines. The results revealed that CAP remarkably inhibited the migration and invasion of RCC cells in vitro and metastasis in vivo. Moreover, we found that the CAP treatment increased the formation of autophagolysosome vacuoles and LC3 yellow and red fluorescent puncta in RCC cells and upregulated the expression of LC3, suggesting that autophagy was induced by CAP in 786-O and CAKI-1 cell lines. Our further results demonstrated that CAP-induced autophagy was mediated by the AMPK/mTOR pathway. In conclusion, our study provides new knowledge of the potential relationship between autophagy and metastasis inhibition induced by CAP, which might be a promising therapeutic strategy in RCC.
Collapse
Affiliation(s)
- Taotao Que
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Bingyi Ren
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Tao Hou
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Weichao Dan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Bo Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Yi Wei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Yuzeshi Lei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China.
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China.
| |
Collapse
|
21
|
Jo H, Shim K, Jeoung D. Targeting HDAC6 to Overcome Autophagy-Promoted Anti-Cancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23179592. [PMID: 36076996 PMCID: PMC9455701 DOI: 10.3390/ijms23179592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylases (HDACs) regulate gene expression through the epigenetic modification of chromatin structure. HDAC6, unlike many other HDACs, is present in the cytoplasm. Its deacetylates non-histone proteins and plays diverse roles in cancer cell initiation, proliferation, autophagy, and anti-cancer drug resistance. The development of HDAC6-specific inhibitors has been relatively successful. Mechanisms of HDAC6-promoted anti-cancer drug resistance, cancer cell proliferation, and autophagy are discussed. The relationship between autophagy and anti-cancer drug resistance is discussed. The effects of combination therapy, which includes HDAC6 inhibitors, on the sensitivity of cancer cells to chemotherapeutics and immune checkpoint blockade are presented. A summary of clinical trials involving HDAC6-specific inhibitors is also presented. This review presents HDAC6 as a valuable target for developing anti-cancer drugs.
Collapse
|
22
|
Yao Q, Zhang X, Chen D. The emerging potentials of lncRNA DRAIC in human cancers. Front Oncol 2022; 12:867670. [PMID: 35992823 PMCID: PMC9386314 DOI: 10.3389/fonc.2022.867670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a subtype of noncoding RNA that has more than 200 nucleotides. Numerous studies have confirmed that lncRNA is relevant during multiple biological processes through the regulation of various genes, thus affecting disease progression. The lncRNA DRAIC, a newly discovered lncRNA, has been found to be abnormally expressed in a variety of diseases, particularly cancer. Indeed, the dysregulation of DRAIC expression is closely related to clinicopathological features. It was also reported that DRAIC is key to biological functions such as cell proliferation, autophagy, migration, and invasion. Furthermore, DRAIC is of great clinical significance in human disease. In this review, we discuss the expression signature, clinical characteristics, biological functions, relevant mechanisms, and potential clinical applications of DRAIC in several human diseases.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Xiuyuan Zhang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
- *Correspondence: Dajin Chen,
| |
Collapse
|
23
|
Eberli D, Kranzbühler B, Prause L, Baumgartner V, Preda S, Sousa R, Lehner F, Salemi S. Apalutamide and autophagy inhibition in a xenograft mouse model of human prostate cancer. J Cancer Res Clin Oncol 2022; 148:3351-3360. [PMID: 35751683 PMCID: PMC9587065 DOI: 10.1007/s00432-022-04059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
Background Apalutamide (APA) is a next-generation androgen receptor antagonist for the treatment of advanced prostate cancer. We have previously shown that upregulation of autophagy is one of the mechanisms by which prostate cancer (PC) cells survive APA anti-tumor treatment in vitro. Therefore, we investigated the characteristics of the autophagic response to APA treatment, alone and in combination with autophagy inhibition, in an in vivo model. Methods Tumor cells were injected into previously castrated nude mice. Four groups of mice bearing LNCaP xenografts were treated with daily intraperitoneal (i.p.) injections of vehicle (control), APA (10 mg/kg), APA (10 mg/kg) + Chl (Chloroquine, 10 mg/kg) or Chl (10 mg/kg). The animals of each treatment group (3/treatment) were kept for the duration of 2 and 3 weeks. At the end of the experiments, the animals were sacrificed and all samples assessed for tumor weight and size, histological analysis, immunoblotting (WES) and immunofluorescence. Results The tumor weight was significantly reduced in mice treated with APA + Chl (203.2 ± 5.0, SEM, P = 0.0066) compared to vehicle control (380.4 ± 37.0). Importantly, the combined treatment showed a higher impact on tumor weight than APA (320.4 ± 45.5) or Chl (337.9 ± 35) alone. The mice treated with the combination of APA + Chl exhibited a reduced expression of ATG5 (autophagy-related five protein), Beclin 1 and LC3 punctuations and an increase in P62 as visualized by immunofluorescence and WES. In addition, Ki-67 nuclear staining was detected in all samples however reduced in APA + Chl (58%) compared to vehicle control (100%). The reduction in Ki-67 protein was associated with an increase in caspase 3 and endothelial CD31 protein expression. Conclusion These data demonstrate that a treatment with APA + Chl leads to reduced autophagy levels and to tumor suppression compared to the APA monotherapy. Hence, the increased antitumor effect of APA in combination with autophagy inhibitors might provide a new therapeutic approach potentially translatable to patients.
Collapse
Affiliation(s)
- Daniel Eberli
- Department of Urology, Laboratory for Urologic Oncology and Stem Cell Therapy, University Hospital Zürich, Wagistrasse 21, 8952, Schlieren, Switzerland
| | - Benedikt Kranzbühler
- Department of Urology, Laboratory for Urologic Oncology and Stem Cell Therapy, University Hospital Zürich, Wagistrasse 21, 8952, Schlieren, Switzerland
| | - Lukas Prause
- Department of Urology, Laboratory for Urologic Oncology and Stem Cell Therapy, University Hospital Zürich, Wagistrasse 21, 8952, Schlieren, Switzerland
| | - Valentin Baumgartner
- Department of Urology, Laboratory for Urologic Oncology and Stem Cell Therapy, University Hospital Zürich, Wagistrasse 21, 8952, Schlieren, Switzerland
| | - Sheryl Preda
- Department of Urology, Laboratory for Urologic Oncology and Stem Cell Therapy, University Hospital Zürich, Wagistrasse 21, 8952, Schlieren, Switzerland
| | - Rosa Sousa
- Department of Urology, Laboratory for Urologic Oncology and Stem Cell Therapy, University Hospital Zürich, Wagistrasse 21, 8952, Schlieren, Switzerland
| | - Fabienne Lehner
- Department of Urology, Laboratory for Urologic Oncology and Stem Cell Therapy, University Hospital Zürich, Wagistrasse 21, 8952, Schlieren, Switzerland
| | - Souzan Salemi
- Department of Urology, Laboratory for Urologic Oncology and Stem Cell Therapy, University Hospital Zürich, Wagistrasse 21, 8952, Schlieren, Switzerland.
| |
Collapse
|
24
|
Lee JY, Yang H, Kim D, Kyaw KZ, Hu R, Fan Y, Lee SK. Antiproliferative Activity of a New Quinazolin-4(3H)-One Derivative via Targeting Aurora Kinase A in Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2022; 15:ph15060698. [PMID: 35745617 PMCID: PMC9228987 DOI: 10.3390/ph15060698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common lung cancer subtype. Although chemotherapy and targeted therapy are used for the treatment of patients with NSCLC, the survival rate remains very low. Recent findings suggested that aurora kinase A (AKA), a cell cycle regulator, is a potential target for NSCLC therapy. Previously, we reported that a chemical entity of quinazolin-4(3H)-one represents a new template for AKA inhibitors, with antiproliferative activity against cancer cells. A quinazolin-4(3H)-one derivative was further designed and synthesized in order to improve the pharmacokinetic properties and antiproliferation activity against NSCLC cell lines. The derivative, BIQO-19 (Ethyl 6-(4-oxo-3-(pyrimidin-2-ylmethyl)-3,4-dihydroquinazolin-6-yl)imidazo [1,2-a]pyridine-2-carboxylate), exhibited improved solubility and antiproliferative activity in NSCLC cells, including epidermal growth factor receptor–tyrosine kinase inhibitor (EGFR-TKI)-resistant NSCLC cells. BIQO-19 effectively inhibited the growth of the EGFR-TKI-resistant H1975 NSCLC cells, with the suppression of activated AKA (p-AKA) expression in these cells. The inhibition of AKA by BIQO-19 significantly induced G2/M phase arrest and subsequently evoked apoptosis in H1975 cells. In addition, the combination of gefitinib and BIQO-19 exhibited synergistic antiproliferative activity in NSCLC cells. These findings suggest the potential of BIQO-19 as a novel therapeutic agent for restoring the sensitivity of gefitinib in EGFR-TKI-resistant NSCLC cells.
Collapse
Affiliation(s)
- Ji Yun Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.Y.L.); (D.K.); (K.Z.K.); (R.H.)
| | - Huarong Yang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China;
| | - Donghwa Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.Y.L.); (D.K.); (K.Z.K.); (R.H.)
| | - Kay Zin Kyaw
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.Y.L.); (D.K.); (K.Z.K.); (R.H.)
| | - Ruoci Hu
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.Y.L.); (D.K.); (K.Z.K.); (R.H.)
| | - Yanhua Fan
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China;
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Correspondence: (Y.F.); (S.K.L.); Tel.: +82-2-880-2475 (S.K.L.)
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.Y.L.); (D.K.); (K.Z.K.); (R.H.)
- Correspondence: (Y.F.); (S.K.L.); Tel.: +82-2-880-2475 (S.K.L.)
| |
Collapse
|
25
|
JNK initiates Beclin-1 dependent autophagic cell death against Akt activation. Exp Cell Res 2022; 414:113105. [DOI: 10.1016/j.yexcr.2022.113105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
|
26
|
Bhagya N, Chandrashekar KR. Autophagy and cancer: Can tetrandrine be a potent anticancer drug in the near future? Biomed Pharmacother 2022; 148:112727. [PMID: 35219119 DOI: 10.1016/j.biopha.2022.112727] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Autophagy is an essential catabolic process in mammalian cells to maintain cellular integrity and viability by degrading the old and damaged cell organelles and other contents with the help of lysosomes. Deregulation in autophagy can be one of the major contributors leading to the continuous cell proliferation and development of tumors. Tetrandrine, a bisbenzylisoquinoline alkaloid known to have potent bioactivities such as anticancer, antimicrobial, anti-inflammatory, antidiabetic, antioxidant, immunosuppressive, cardiovascular, and calcium channel blocking effects. The present review evaluated the effectiveness of tetrandrine in targeting key proteins in the autophagy pathway to induce anticancer effect based on the available literature. An attempt is also made to understand the influence of tetrandrine in regulating autophagy by mTOR dependant and mTOR-independent pathways. In addition, the review also highlights the limitations involved and future perspectives in developing tetrandrine as a chemotherapeutic drug to treat cancer.
Collapse
Affiliation(s)
- N Bhagya
- Yenepoya Research Center, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - K R Chandrashekar
- Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| |
Collapse
|
27
|
Kovács D, Igaz N, Gopisetty MK, Kiricsi M. Cancer Therapy by Silver Nanoparticles: Fiction or Reality? Int J Mol Sci 2022; 23:839. [PMID: 35055024 PMCID: PMC8777983 DOI: 10.3390/ijms23020839] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
As an emerging new class, metal nanoparticles and especially silver nanoparticles hold great potential in the field of cancer biology. Due to cancer-specific targeting, the consequently attenuated side-effects and the massive anti-cancer features render nanoparticle therapeutics desirable platforms for clinically relevant drug development. In this review, we highlight those characteristics of silver nanoparticle-based therapeutic concepts that are unique, exploitable, and achievable, as well as those that represent the critical hurdle in their advancement to clinical utilization. The collection of findings presented here will describe the features that distinguish silver nanoparticles from other anti-cancer agents and display the realistic opportunities and implications in oncotherapeutic innovations to find out whether cancer therapy by silver nanoparticles is fiction or reality.
Collapse
Affiliation(s)
- Dávid Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, 660 Route des Lucioles, 06560 Valbonne, France
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
| | - Mohana K. Gopisetty
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
- Interdisciplinary Center of Excellence, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Tér 1, H-6720 Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
| |
Collapse
|
28
|
Jane EP, Premkumar DR, Rajasundaram D, Thambireddy S, Reslink MC, Agnihotri S, Pollack IF. Reversing tozasertib resistance in glioma through inhibition of pyruvate dehydrogenase kinases. Mol Oncol 2022; 16:219-249. [PMID: 34058053 PMCID: PMC8732347 DOI: 10.1002/1878-0261.13025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Acquired resistance to conventional chemotherapeutic agents limits their effectiveness and can cause cancer treatment to fail. Because enzymes in the aurora kinase family are vital regulators of several mitotic events, we reasoned that targeting these kinases with tozasertib, a pan-aurora kinase inhibitor, would not only cause cytokinesis defects, but also induce cell death in high-grade pediatric and adult glioma cell lines. We found that tozasertib induced cell cycle arrest, increased mitochondrial permeability and reactive oxygen species generation, inhibited cell growth and migration, and promoted cellular senescence and pro-apoptotic activity. However, sustained exposure to tozasertib at clinically relevant concentrations conferred resistance, which led us to examine the mechanistic basis for the emergence of drug resistance. RNA-sequence analysis revealed a significant upregulation of the gene encoding pyruvate dehydrogenase kinase isoenzyme 4 (PDK4), a pyruvate dehydrogenase (PDH) inhibitory kinase that plays a crucial role in the control of metabolic flexibility under various physiological conditions. Upregulation of PDK1, PDK2, PDK3, or PDK4 protein levels was positively correlated with tozasertib-induced resistance through inhibition of PDH activity. Tozasertib-resistant cells exhibited increased mitochondrial mass as measured by 10-N-nonyl-Acridine Orange. Inhibition of PDK with dichloroacetate resulted in increased mitochondrial permeability and cell death in tozasertib-resistant glioma cell lines. Based on these results, we believe that PDK is a selective target for the tozasertib resistance phenotype and should be considered for further preclinical evaluations.
Collapse
Affiliation(s)
- Esther P Jane
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | - Daniel R Premkumar
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
- Department of Neurosurgery, UPMC Hillman Cancer Center, PA, USA
| | | | - Swetha Thambireddy
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | - Matthew C Reslink
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | - Sameer Agnihotri
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
- Department of Neurosurgery, UPMC Hillman Cancer Center, PA, USA
| | - Ian F Pollack
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
- Department of Neurosurgery, UPMC Hillman Cancer Center, PA, USA
| |
Collapse
|
29
|
Garrido MP, Fredes AN, Lobos-González L, Valenzuela-Valderrama M, Vera DB, Romero C. Current Treatments and New Possible Complementary Therapies for Epithelial Ovarian Cancer. Biomedicines 2021; 10:77. [PMID: 35052757 PMCID: PMC8772950 DOI: 10.3390/biomedicines10010077] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynaecological malignancies. The late diagnosis is frequent due to the absence of specific symptomatology and the molecular complexity of the disease, which includes a high angiogenesis potential. The first-line treatment is based on optimal debulking surgery following chemotherapy with platinum/gemcitabine and taxane compounds. During the last years, anti-angiogenic therapy and poly adenosine diphosphate-ribose polymerases (PARP)-inhibitors were introduced in therapeutic schemes. Several studies have shown that these drugs increase the progression-free survival and overall survival of patients with ovarian cancer, but the identification of patients who have the greatest benefits is still under investigation. In the present review, we discuss about the molecular characteristics of the disease, the recent evidence of approved treatments and the new possible complementary approaches, focusing on drug repurposing, non-coding RNAs, and nanomedicine as a new method for drug delivery.
Collapse
Affiliation(s)
- Maritza P. Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Allison N. Fredes
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile;
| | - Daniela B. Vera
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
| | - Carmen Romero
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
30
|
Ziegler DV, Huber K, Fajas L. The Intricate Interplay between Cell Cycle Regulators and Autophagy in Cancer. Cancers (Basel) 2021; 14:cancers14010153. [PMID: 35008317 PMCID: PMC8750274 DOI: 10.3390/cancers14010153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Autophagy is an intracellular catabolic program regulated by multiple external and internal cues. A large amount of evidence unraveled that cell-cycle regulators are crucial in its control. This review highlights the interplay between cell-cycle regulators, including cyclin-dependent kinase inhibitors, cyclin-dependent kinases, and E2F factors, in the control of autophagy all along the cell cycle. Beyond the intimate link between cell cycle and autophagy, this review opens therapeutic perspectives in modulating together these two aspects to block cancer progression. Abstract In the past decade, cell cycle regulators have extended their canonical role in cell cycle progression to the regulation of various cellular processes, including cellular metabolism. The regulation of metabolism is intimately connected with the function of autophagy, a catabolic process that promotes the efficient recycling of endogenous components from both extrinsic stress, e.g., nutrient deprivation, and intrinsic sub-lethal damage. Mediating cellular homeostasis and cytoprotection, autophagy is found to be dysregulated in numerous pathophysiological contexts, such as cancer. As an adaptative advantage, the upregulation of autophagy allows tumor cells to integrate stress signals, escaping multiple cell death mechanisms. Nevertheless, the precise role of autophagy during tumor development and progression remains highly context-dependent. Recently, multiple articles has suggested the importance of various cell cycle regulators in the modulation of autophagic processes. Here, we review the current clues indicating that cell-cycle regulators, including cyclin-dependent kinase inhibitors (CKIs), cyclin-dependent kinases (CDKs), and E2F transcription factors, are intrinsically linked to the regulation of autophagy. As an increasing number of studies highlight the importance of autophagy in cancer progression, we finally evoke new perspectives in therapeutic avenues that may include both cell cycle inhibitors and autophagy modulators to synergize antitumor efficacy.
Collapse
|
31
|
Raufi AG, Liguori NR, Carlsen L, Parker C, Hernandez Borrero L, Zhang S, Tian X, Louie A, Zhou L, Seyhan AA, El-Deiry WS. Therapeutic Targeting of Autophagy in Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2021; 12:751568. [PMID: 34916936 PMCID: PMC8670090 DOI: 10.3389/fphar.2021.751568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by early metastasis, late detection, and poor prognosis. Progress towards effective therapy has been slow despite significant efforts. Novel treatment approaches are desperately needed and autophagy, an evolutionary conserved process through which proteins and organelles are recycled for use as alternative energy sources, may represent one such target. Although incompletely understood, there is growing evidence suggesting that autophagy may play a role in PDAC carcinogenesis, metastasis, and survival. Early clinical trials involving autophagy inhibiting agents, either alone or in combination with chemotherapy, have been disappointing. Recently, evidence has demonstrated synergy between the MAPK pathway and autophagy inhibitors in PDAC, suggesting a promising therapeutic intervention. In addition, novel agents, such as ONC212, have preclinical activity in pancreatic cancer, in part through autophagy inhibition. We discuss autophagy in PDAC tumorigenesis, metabolism, modulation of the immune response, and preclinical and clinical data with selected autophagy modulators as therapeutics.
Collapse
Affiliation(s)
- Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| | - Nicholas R. Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Cassandra Parker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Liz Hernandez Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Anna Louie
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| |
Collapse
|
32
|
Draf C, Wyrick T, Chavez E, Pak K, Kurabi A, Leichtle A, Dazert S, Ryan AF. A Screen of Autophagy Compounds Implicates the Proteasome in Mammalian Aminoglycoside-Induced Hair Cell Damage. Front Cell Dev Biol 2021; 9:762751. [PMID: 34765606 PMCID: PMC8576371 DOI: 10.3389/fcell.2021.762751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/05/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction: Autophagy is a degradative pathway to safely break down and recycle dysfunctional cellular components. There is prior evidence of autophagy participation during hair cell (HC) damage. Our goal was to screen compounds targeting different aspects of autophagy for their effects on HC loss due to an ototoxic aminoglycoside, gentamicin (GM). Methods: The SELLECKChem autophagy compound library, consisting of 154 compounds with defined autophagy inducing or inhibitory activity, was used for targeted screening in vitro model of ototoxicity. Organ of Corti from postnatal days 3–5 pou4f3/GFP transgenic mice (HCs express green fluorescent protein) were utilized. The organs were micro-dissected, and basal and middle turns divided into micro-explants individually placed into the single wells of a 96-well plate. Samples were treated with 200 μM of GM plus three dosages of tested compound and cultured for 72 h. Negative controls were treated with media only; positive ototoxicity controls were treated with GM only. Results: The majority of the library compounds had no effect on GM-induced HC loss. However, 18 compounds exhibited a significant, protective effect, two compounds were protective at low dosage but showed enhanced GM toxicity at higher doses and one compound was toxic to HCs in the absence of GM. Conclusions: This study evaluated many autophagy compounds that have not been tested previously on HCs. The disparate results obtained underscore the complexity of autophagy events that can influence HC responses to aminoglycosides, but also implicate the proteosome as an important damage mechanism. The screening results can serve as basis for further studies with protective compounds as potential drug targets.
Collapse
Affiliation(s)
- Clara Draf
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States.,Department of Otolaryngology, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Taylor Wyrick
- Department of Biology, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Chavez
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Kwang Pak
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Anke Leichtle
- Department of Otolaryngology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Stefan Dazert
- Department of Otolaryngology, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Allen F Ryan
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States.,Department of Neurosciences, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
33
|
Trelford CB, Di Guglielmo GM. Canonical and Non-canonical TGFβ Signaling Activate Autophagy in an ULK1-Dependent Manner. Front Cell Dev Biol 2021; 9:712124. [PMID: 34760883 PMCID: PMC8573198 DOI: 10.3389/fcell.2021.712124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanism(s) in which transforming growth factor beta 1 (TGFβ) modulates autophagy in cancer remain unclear. Here, we characterized the TGFβ signaling pathways that induce autophagy in non-small cell lung cancer cells, using cells lines stably expressing GFP-LC3-RFP-LC3ΔG constructs that measure autophagic flux. We demonstrated that TGFβ1 increases Unc 51-like kinase 1 (ULK1) protein levels, 5' adenosine monophosphate-activated protein kinase (AMPK)-dependent ULK1 phosphorylation at serine (S) 555 and ULK1 complex formation but decreases mechanistic target of rapamycin (mTOR) activity on ULK1. Further analysis revealed that the canonical Smad4 pathway and the non-canonical TGFβ activated kinase 1/tumor necrosis factor receptor-associated factor 6/P38 mitogen activated protein kinase (TAK1-TRAF6-P38 MAPK) pathway are important for TGFβ1-induced autophagy. The TAK1-TRAF6-P38 MAPK pathway was essential for downregulating mTOR S2448 phosphorylation, ULK1 S555 phosphorylation and autophagosome formation. Furthermore, although siRNA-mediated Smad4 silencing did not alter mTOR-dependent ULK1 S757 phosphorylation, it did reduce AMPK-dependent ULK1 S555 phosphorylation and autophagosome formation. Additionally, Smad4 silencing and inhibiting the TAK1-TRAF6-P38 MAPK pathway decreased autophagosome-lysosome co-localization in the presence of TGFβ. Our results suggest that the Smad4 and TAK1-TRAF6-P38 MAPK signaling pathways are essential for TGFβ-induced autophagy and provide specific targets for the inhibition of TGFβ in tumor cells that utilize autophagy in their epithelial-mesenchymal transition program.
Collapse
Affiliation(s)
| | - Gianni M. Di Guglielmo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
34
|
Sun S, Zhou W, Li X, Peng F, Yan M, Zhan Y, An F, Li X, Liu Y, Liu Q, Piao H. Nuclear Aurora kinase A triggers programmed death-ligand 1-mediated immune suppression by activating MYC transcription in triple-negative breast cancer. Cancer Commun (Lond) 2021; 41:851-866. [PMID: 34251762 PMCID: PMC8441052 DOI: 10.1002/cac2.12190] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/15/2021] [Accepted: 06/19/2021] [Indexed: 11/12/2022] Open
Abstract
Background Increasing studies have reported that oncogenes regulate components of the immune system, suggesting that this is a mechanism for tumorigenesis. Aurora kinase A (AURKA), a serine/threonine kinase, is involved in cell mitosis and is essential for tumor cell proliferation, metastasis, and drug resistance. However, the mechanism by which AURKA is involved in immune response regulation is unclear. Therefore, this study aimed to investigate the role of AURKA in immune regulation in triple‐negative breast cancer (TNBC). Methods Peripheral blood mononuclear cells (PBMCs) were co‐cultured with TNBC cells. The xCELLigence Real‐Time Cell Analyzer‐MP system was used to detect the killing efficiency of immune cells on TNBC cells. The expression of immune effector molecules was tested by quantitative real‐time polymerase chain reaction (qRT‐PCR) to evaluate immune function. Furthermore, to validate AURKA‐regulated immune response in vivo, 4T1 murine breast cancer cell line with AURKA overexpression or downregulation was engrafted into BALB/c mice. The distribution and proportion of immune cells in tumors were further evaluated by immunohistochemistry and flow cytometry. Results Downregulation of AURKA in TNBC cells increased immune response by activating CD8+ T cell proliferation and activity. Nuclear rather than cytoplasmic AURKA‐derived programmed death‐ligand 1 (PD‐L1) expression was independent of its kinase activity. Mechanistic investigations showed that nuclear AURKA increased PD‐L1 expression via an MYC‐dependent pathway. PD‐L1 overexpression mostly reversed AURKA silencing‐induced expression of immune effector molecules, including interleukin‐ (IL‐2), interferon‐γ (IFN‐γ), and perforin. Moreover, AURKA expression was negatively correlated with the enrichment and activity of tumor‐infiltrating CD8+ T cells in 4T1 engrafted BALB/c mouse model. Conclusions Nuclear AURKA elevated PD‐L1 expression via an MYC‐dependent pathway and contributed to immune evasion in TNBC. Therapies targeting nuclear AURKA may restore immune responses against tumors.
Collapse
Affiliation(s)
- Shulan Sun
- Central Laboratory, Cancer Hospital of China Medical University, Dalian Medical University Clinical Oncology College, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P. R. China
| | - Wei Zhou
- Central Laboratory, Cancer Hospital of China Medical University, Dalian Medical University Clinical Oncology College, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P. R. China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P. R. China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of China Medical University, Dalian Medical University Clinical Oncology College, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P. R. China
| | - Fei Peng
- Central Laboratory, Cancer Hospital of China Medical University, Dalian Medical University Clinical Oncology College, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P. R. China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P. R. China
| | - Min Yan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yajing Zhan
- Central Laboratory, Cancer Hospital of China Medical University, Dalian Medical University Clinical Oncology College, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P. R. China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P. R. China
| | - Fan An
- Central Laboratory, Cancer Hospital of China Medical University, Dalian Medical University Clinical Oncology College, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P. R. China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P. R. China
| | - Xiaoyan Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and institute, Shenyang, Liaoning, 110042, P. R. China
| | - Yunyong Liu
- Department of Cancer Prevention and Treatment, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P. R. China
| | - Quentin Liu
- Central Laboratory, Cancer Hospital of China Medical University, Dalian Medical University Clinical Oncology College, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P. R. China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P. R. China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Haozhe Piao
- Central Laboratory, Cancer Hospital of China Medical University, Dalian Medical University Clinical Oncology College, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P. R. China.,Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P. R. China
| |
Collapse
|
35
|
Aurora kinase inhibitors as potential anticancer agents: Recent advances. Eur J Med Chem 2021; 221:113495. [PMID: 34020340 DOI: 10.1016/j.ejmech.2021.113495] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/20/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022]
Abstract
Aurora kinases are a family of serine/threonine kinases that play a crucial role in cell proliferation through the regulation of mitotic spindles. These kinases are the regulatory proteins localized in the various phases of the cell cycle and are involved in centrosome maturation, chromosome alignment, chromosomal segregation, and cytokinesis. They have emerged as one of the validated drug targets for anticancer drug discovery as their overexpression has been implicated in the pathogenesis of various carcinomas. Inhibitors of Aurora kinases induce growth inhibition and apoptosis in a variety of tumor cells. Hence, the design and development of Aurora kinase inhibitors have been widely explored in recent years by the scientific community as potential anticancer agents. Various Aurora kinase inhibitors have been under preclinical and clinical investigations as antitumor agents. This review summarizes the recent strategies of various researchers for the design and development of Aurora kinase inhibitors belonging to different structural classes. Their bioactivity, SARs, molecular modelling, and mechanistic studies have also been described. The comprehensive compilation of research work carried out in the field will provide inevitable scope for the design and development of novel drug candidates with better selectivity and efficacy. The review is constructed after the exhaustive research in this discipline and includes the papers from 2011 to 2020.
Collapse
|
36
|
Mitochondrial Dynamics, ROS, and Cell Signaling: A Blended Overview. Life (Basel) 2021; 11:life11040332. [PMID: 33920160 PMCID: PMC8070048 DOI: 10.3390/life11040332] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are key intracellular organelles involved not only in the metabolic state of the cell, but also in several cellular functions, such as proliferation, Calcium signaling, and lipid trafficking. Indeed, these organelles are characterized by continuous events of fission and fusion which contribute to the dynamic plasticity of their network, also strongly influenced by mitochondrial contacts with other subcellular organelles. Nevertheless, mitochondria release a major amount of reactive oxygen species (ROS) inside eukaryotic cells, which are reported to mediate a plethora of both physiological and pathological cellular functions, such as growth and proliferation, regulation of autophagy, apoptosis, and metastasis. Therefore, targeting mitochondrial ROS could be a promising strategy to overcome and hinder the development of diseases such as cancer, where malignant cells, possessing a higher amount of ROS with respect to healthy ones, could be specifically targeted by therapeutic treatments. In this review, we collected the ultimate findings on the blended interplay among mitochondrial shaping, mitochondrial ROS, and several signaling pathways, in order to contribute to the dissection of intracellular molecular mechanisms involved in the pathophysiology of eukaryotic cells, possibly improving future therapeutic approaches.
Collapse
|
37
|
Chen Y, Song Y, Mi Y, Jin H, Cao J, Li H, Han L, Huang T, Zhang X, Ren S, Ma Q, Zou Z. microRNA-499a promotes the progression and chemoresistance of cervical cancer cells by targeting SOX6. Apoptosis 2021; 25:205-216. [PMID: 31938895 DOI: 10.1007/s10495-019-01588-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence has indicated that microRNAs are involved in multiple processes of cancer development. Previous studies have demonstrated that microRNA-499a (miR-499a) plays both oncogenic and tumor suppressive roles in several types of malignancies, and genetic variants in miR-499a are associated with the risk of cervical cancer. However, the biological roles of miR-499a in cervical cancer have not been investigated. Quantitative real-time PCR was used to assess miR-499a expression in cervical cancer cells. Mimics or inhibitor of miR-499a was transfected into cervical cancer cells to upregulate or downregulate miR-499a expression. The effects of miR-499a expression change on cervical cancer cells proliferation, colony formation, tumorigenesis, chemosensitivity, transwell migration and invasion were assessed. The potential targets of miR-499a were predicted using online database tools and validated using real-time PCR, Western blot and luciferase reporter experiments. miR-499a was significantly upregulated in cervical cancer cells. Moreover, overexpression of miR-499a significantly enhanced the proliferation, cell cycle progression, colony formation, apoptosis resistance, migration and invasion of cervical cancer cells, while inhibiting miR-499a showed the opposite effects. Further exploration demonstrated that Sex-determining region Y box 6 was the direct target of miR-499a. miR-499a-induced SOX6 downregulation mediated the oncogenic effects of miR-499a in cervical cancer. Inhibiting miR-499a could enhance the anticancer effects of cisplatin in the xenograft mouse model of cervical cancer. Our findings for the first time suggest that miRNA-499a may play an important role in the development of cervical cancer and could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China.
| | - Yucen Song
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Yanjun Mi
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Jun Cao
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Haolong Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Liping Han
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ting Huang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Xiaofei Zhang
- Department of Medical Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shumin Ren
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Qian Ma
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China.
| |
Collapse
|
38
|
Hijjawi MS, Abutayeh RF, Taha MO. Structure-Based Discovery and Bioactivity Evaluation of Novel Aurora-A Kinase Inhibitors as Anticancer Agents via Docking-Based Comparative Intermolecular Contacts Analysis (dbCICA). Molecules 2020; 25:molecules25246003. [PMID: 33353031 PMCID: PMC7766225 DOI: 10.3390/molecules25246003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/12/2023] Open
Abstract
Aurora-A kinase plays a central role in mitosis, where aberrant activation contributes to cancer by promoting cell cycle progression, genomic instability, epithelial-mesenchymal transition, and cancer stemness. Aurora-A kinase inhibitors have shown encouraging results in clinical trials but have not gained Food and Drug Administration (FDA) approval. An innovative computational workflow named Docking-based Comparative Intermolecular Contacts Analysis (dbCICA) was applied—aiming to identify novel Aurora-A kinase inhibitors—using seventy-nine reported Aurora-A kinase inhibitors to specify the best possible docking settings needed to fit into the active-site binding pocket of Aurora-A kinase crystal structure, in a process that only potent ligands contact critical binding-site spots, distinct from those occupied by less-active ligands. Optimal dbCICA models were transformed into two corresponding pharmacophores. The optimal one, in capturing active hits and discarding inactive ones, validated by receiver operating characteristic analysis, was used as a virtual in-silico search query for screening new molecules from the National Cancer Institute database. A fluorescence resonance energy transfer (FRET)-based assay was used to assess the activity of captured molecules and five promising Aurora-A kinase inhibitors were identified. The activity was next validated using a cell culture anti-proliferative assay (MTT) and revealed a most potent lead 85(NCI 14040) molecule after 72 h of incubation, scoring IC50 values of 3.5–11.0 μM against PANC1 (pancreas), PC-3 (prostate), T-47D and MDA-MB-231 (breast)cancer cells, and showing favorable safety profiles (27.5 μM IC50 on fibroblasts). Our results provide new clues for further development of Aurora-A kinase inhibitors as anticancer molecules.
Collapse
Affiliation(s)
- Majd S Hijjawi
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
39
|
Targeting autophagy to overcome drug resistance: further developments. J Hematol Oncol 2020; 13:159. [PMID: 33239065 PMCID: PMC7687716 DOI: 10.1186/s13045-020-01000-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Inhibiting cell survival and inducing cell death are the main approaches of tumor therapy. Autophagy plays an important role on intracellular metabolic homeostasis by eliminating dysfunctional or unnecessary proteins and damaged or aged cellular organelles to recycle their constituent metabolites that enable the maintenance of cell survival and genetic stability and even promotes the drug resistance, which severely limits the efficacy of chemotherapeutic drugs. Currently, targeting autophagy has a seemingly contradictory effect to suppress and promote tumor survival, which makes the effect of targeting autophagy on drug resistance more confusing and fuzzier. In the review, we summarize the regulation of autophagy by emerging ways, the action of targeting autophagy on drug resistance and some of the new therapeutic approaches to treat tumor drug resistance by interfering with autophagy-related pathways. The full-scale understanding of the tumor-associated signaling pathways and physiological functions of autophagy will hopefully open new possibilities for the treatment of tumor drug resistance and the improvement in clinical outcomes.
Collapse
|
40
|
Chen Y, Jin H, Song Y, Huang T, Cao J, Tang Q, Zou Z. Targeting tumor-associated macrophages: A potential treatment for solid tumors. J Cell Physiol 2020; 236:3445-3465. [PMID: 33200401 DOI: 10.1002/jcp.30139] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) in solid tumors exert protumor activities by releasing cytokines or growth factors into the tumor microenvironment. Increasing studies have also shown that TAMs play a key role in tumor progression, such as tumor angiogenesis, immunosuppression, cell proliferation, migration, invasion, and metastasis. A large body of evidence shows that the abundance of TAMs in solid tumors is correlated with poor disease prognosis and resistance to therapies. Therefore, targeting TAMs in solid tumors is considered to be a promising immunotherapeutic strategy. At present, the therapeutic strategies of targeting macrophages mainly include limiting monocyte recruitment, depletion strategies, promoting macrophage phagocytic activity, and induction of macrophage reprogramming. Additionally, targeting TAMs in combination with conventional therapies has been demonstrated to be a promising therapeutic strategy in solid tumors. In the present review, we summarized various TAMs-targeting therapeutic strategies for treating solid tumors. This review also discusses the challenges for targeting TAMs as tumor treatments, the obstacles in clinical trials, and the perspective for the future development of TAMs-targeting therapies for various cancers.
Collapse
Affiliation(s)
- Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yucen Song
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ting Huang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Cao
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
41
|
Adir O, Bening-Abu-Shach U, Arbib S, Henis-Korenblit S, Broday L. Inactivation of the Caenorhabditis elegans RNF-5 E3 ligase promotes IRE-1-independent ER functions. Autophagy 2020; 17:2401-2414. [DOI: 10.1080/15548627.2020.1827778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Orit Adir
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ulrike Bening-Abu-Shach
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shir Arbib
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
42
|
Long J, He Q, Yin Y, Lei X, Li Z, Zhu W. The effect of miRNA and autophagy on colorectal cancer. Cell Prolif 2020; 53:e12900. [PMID: 32914514 PMCID: PMC7574865 DOI: 10.1111/cpr.12900] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) has become a concern because of its high recurrence rate and metastasis rate, low early diagnosis rate and poor therapeutic effect. At present, various studies have shown that autophagy is closely connected with the occurrence and progression of CRC. Autophagy is a highly cytosolic catabolic process involved in lysosomes in biological evolution. Cells degrade proteins and damaged organelles by autophagy to achieve material circulation and maintain cell homeostasis. Moreover, microRNAs are key regulators of autophagy, and their mediated regulation of transcriptional and post-transcriptional levels plays an important role in autophagy in CRC cells. This review focuses on the recent research advances of how autophagy and related microRNAs are involved in affecting occurrence and progression of CRC and provides a new perspective for the study of CRC treatment strategies.
Collapse
Affiliation(s)
- Jiali Long
- Department of PathologyGuangdong Medical UniversityDongguanChina
- Department of Pathologythe Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Qinglian He
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Yuting Yin
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Xue Lei
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Ziqi Li
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Wei Zhu
- Department of PathologyGuangdong Medical UniversityDongguanChina
| |
Collapse
|
43
|
Qiao J, Chen Y, Mi Y, Jin H, Wang L, Huang T, Li H, Song Y, Cao J, Wu B, Wang Q, Zou Z. Macrophages confer resistance to BET inhibition in triple-negative breast cancer by upregulating IKBKE. Biochem Pharmacol 2020; 180:114126. [PMID: 32603665 DOI: 10.1016/j.bcp.2020.114126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/13/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
BET inhibitors (BETi) exhibit a strong anti-tumor activity in triple-negative breast cancer (TNBC). However, BETi resistance has been reported in TNBC. The mechanisms of resistance have not been demonstrated. Tumor-associated macrophages (TAMs) are frequently involved in cancer cells resistance to chemotherapy, also associated with poor prognosis in TNBC. However, the role of TAMs in BETi resistance remains unknown. Here, we found that BETi JQ1 and I-BET151 exerted anti-tumor effects in TNBC by decreasing IKBKE expression to attenuate NF-κB signaling. TAMs have been reported to associate with chemoresistance in breast cancer. Here, we firstly found that TNBC-stimulated TAMs activated NF-κB signaling by upregulating IKBKE expression to enhance breast cancer cells resistance to BETi. The IKBKE levels were also proved to be higher in clinical TNBC tissues than Non-TNBC tissues, suggesting feedback induction of IKBKE expression by TNBC-stimulated TAMs in TNBC. Moreover, the induction of IKBKE by TAMs in TNBC cells was identified to be associated with STAT3 signaling, which was activated by TAM-secreted IL-6 and IL-10. Lastly, the combination of inhibitors of BET and STAT3 exerted a synergistic inhibition effects in TAM-cocultured or TAM CM-treated TNBC cells in vitro and in vivo. Altogether, our findings illustrated TNBC-activated macrophages conferred TNBC cells resistance to BETi via IL-6 or IL-10/STAT3/IKBKE/NF-κB axis. Blockade of IKBKE or double inhibition of BET and STAT3 might be a novel strategy for treatment of TNBC.
Collapse
Affiliation(s)
- Jianghua Qiao
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital. Zhengzhou 450008 China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research and Thoracic Tumor Diagnosis & Treatment, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen 361003, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lina Wang
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital. Zhengzhou 450008 China
| | - Ting Huang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haolong Li
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yucen Song
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Jun Cao
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Baoyan Wu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qiming Wang
- Department of Clinical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital. Zhengzhou 450008, China.
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
44
|
NR5A2 synergizes with NCOA3 to induce breast cancer resistance to BET inhibitor by upregulating NRF2 to attenuate ferroptosis. Biochem Biophys Res Commun 2020; 530:402-409. [PMID: 32536370 DOI: 10.1016/j.bbrc.2020.05.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022]
Abstract
BET inhibitors (BETi) exert an excellent anti-cancer activity in breast cancer. However, the identification of new potential targets to enhance breast cancer sensitivity to BETi is still an enormous challenge. Both NR5A2 and NCOA3 are frequently involved in cancer cells resistance to chemotherapy, also associated with poor prognosis in breast cancer. However, the functions of NR5A2 and NCOA3 in BETi resistance remains unknown. In this study, we found that BETi JQ1 and I-BET151 exhibited anti-cancer effects in breast cancer by inducing ferroptosis. NCOA3 as a coactivator synergized with NR5A2 to prevent BETi-induced ferroptosis. Mechanistically, we identified NR5A2 synergized with NCOA3 to increase expression of NRF2, a transcription factor that controls the expression of many antioxidant genes. Moreover, inhibition of NR5A2 or NCOA3 using small molecule inhibitors enhanced anti-cancer effects of BETi against breast cancer in vivo and in vitro. Altogether, our findings illustrated NR5A2 synergized with NCOA3 to confer breast cancer cells resistance to BETi by induction of NRF2. Inhibition of NR5A2/NCOA3 combined with BETi might be a novel strategy for treatment of breast cancer.
Collapse
|
45
|
Apalutamide in combination with autophagy inhibitors improves treatment effects in prostate cancer cells. Urol Oncol 2020; 38:683.e19-683.e26. [PMID: 32466878 DOI: 10.1016/j.urolonc.2020.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND ARN-509 (Apalutamide) is a unique androgen receptor (AR) antagonist for the treatment of castration-resistant (CR) prostate cancer (PC). It inhibits AR nuclear translocation, DNA binding and transcription of AR gene targets. As dysregulation of autophagy has been detected in PC, the targeting of autophagy is a potential approach to overcome early therapeutic resistance. Therefore, we investigated the characteristics of autophagic response to ARN-509 treatment and evaluated the potential effect of a combination with autophagy inhibition. METHODS Human prostate cancer cells (LNCaP) were cultivated in a steroid-free medium. Cells were treated with ARN-509 (50 µM) alone or in combination with the autophagy inhibitors 3-methyladenine (3MA, 5 mM) or chloroquine (Chl, 20 µM) or with ATG5 siRNA knock-down. Cell viability and apoptosis were measured by flow cytometry and fluorescence microscopy. Autophagy was monitored by immunohistochemistry, AUTOdot and immunoblotting (WES). RESULTS Treatment with ARN-509 led to cell death of up to 37% with 50 µM and 60% with 100 µM by day 7. The combination of 50 µM ARN-509 with autophagy inhibitors produced a further increase in cell death by day 7. Immunostaining results showed that ARN-509 induced autophagy in LNCaP cells as evidenced by elevated levels of ATG5, Beclin 1 and LC3 punctuation and by an increase in the LC3-II band detected by WES. Autophagic flux was restored by the treatment of cells with Chl, intensifying the LC3-II band. These findings were further supported by an enhanced autophagosome punctuation observed by Autodot staining. CONCLUSIONS These data demonstrate that treatment with ARN-509 leads to increased autophagy levels in LNCaP cells. Furthermore, in combination with autophagy inhibitors, ARN-509 provided a significantly elevated antitumor effect, thus providing a new therapeutic approach potentially translatable to patients.
Collapse
|
46
|
Zhang R, Pan T, Xiang Y, Zhang M, Feng J, Liu S, Duan T, Chen P, Zhai B, Chen X, Wang W, Chen B, Han X, Chen L, Yan L, Jin T, Liu Y, Li G, Huang X, Zhang W, Sun Y, Li Q, Zhang Q, Zhuo L, Xie T, Wu Q, Sui X. β-Elemene Reverses the Resistance of p53-Deficient Colorectal Cancer Cells to 5-Fluorouracil by Inducing Pro-death Autophagy and Cyclin D3-Dependent Cycle Arrest. Front Bioeng Biotechnol 2020; 8:378. [PMID: 32457882 PMCID: PMC7225311 DOI: 10.3389/fbioe.2020.00378] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Colorectal cancer is a malignant tumor of the digestive system with high morbidity and mortality. 5-fluorouracil remains a widely used chemotherapeutic drug in the treatment of advanced colorectal cancer, but chemotherapy drugs are prone to develop drug resistance, p53 deletion or mutation is an important reason for the resistance of colorectal cancer cells to 5-fluorouracil. β-elemene has been proved to have the potential of reverse chemotherapy drug resistance, but the mechanism is unknown. This study aimed to investigate the effect of β-elemene to 5-fluorouracil in drug-resistant p53-deficient colorectal cancer cells HCT116p53–/–, and determine the possible molecular mechanism of β-elemene to reverse 5-fluorouracil resistance. Methods The effect of β-elemene on HCT116p53–/– cell activity was detected by Cell counting Kit-8. Cell proliferation was detected by monoclonal plate. The apoptosis was detected by flow cytometry and western blot. The autophagy was detected by western blot, immunofluorescence and transmission electron microscope. Determine the role of Cyclin-related protein Cyclin D3 in β-elemene reversing the resistance of HCT116p53–/– to 5-fluorouracil was detected by overexpression of Cyclin D3. The effect of β-elemene on the tumorigenic ability of p53-deficient colorectal cancer cells was detected establishing HCT116p53–/– all line xenograft model. Results For p53 wildtype colorectal cancer cells, β-elemene could augment the sensitivity of 5-fluorouracil, for p53-deficient colorectal cancer cells, β-elemene significantly inhibited cell proliferation in a concentration-dependent manner, and reversed the resistance of HCT116p53–/– to 5-fluorouracil by inducing pro-death autophagy and Cyclin D3-dependent cycle arrest. Conclusion β-elemene enhances the sensitivity of p53 wild-type cells to 5-fluorouracil, β-elemene can reverse the resistance of HCT116p53–/– to 5-fluorouracil by inducing pro-death autophagy and Cyclin D3-dependent cycle arrest in p53-deficient colorectal cancer, which will provide a new method for the treatment of p53 deletion colorectal cancer patients.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ting Pan
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Xiang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Mingming Zhang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jiao Feng
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shuiping Liu
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Duan
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Peng Chen
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Bingtao Zhai
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiaying Chen
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wengang Wang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Bi Chen
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xuemeng Han
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Liuxi Chen
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lili Yan
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Jin
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Guohua Li
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xingxing Huang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenzheng Zhang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yitian Sun
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qiujie Li
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qin Zhang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lvjia Zhuo
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xinbing Sui
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
47
|
Hu H, Tu W, Chen Y, Zhu M, Jin H, Huang T, Zou Z, Xia Q. The combination of PKM2 overexpression and M2 macrophages infiltration confers a poor prognosis for PDAC patients. J Cancer 2020; 11:2022-2031. [PMID: 32127930 PMCID: PMC7052945 DOI: 10.7150/jca.38981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/26/2019] [Indexed: 01/22/2023] Open
Abstract
Macrophages play a critical role in the initiation and progression in various human solid tumors; however, their role and transformation in pancreatic ductal adenocarcinoma (PDAC) were still illusive. Here, immunohistochemistry was used to determine CD206 (specific marker of M2 macrophage) and PKM2 expression in PDAC tissues. Statistical analysis, such as Pearson χ2 test, Spearman's rank test, Kaplan-Meier and COX regression assay were used to evaluate their roles on PDAC prognosis. Data showed that both CD206 and PKM2 were elevated and responsible for a poor prognosis for PDAC. In addition, we showed that the two factors were positively correlated; co-overexpression of the two factors conferred the worst prognosis and functioned as an independent prognostic factor for the disease. Our data showed that M2 macrophage infiltration was correlated with PKM2 expression in PDAC cells. The two markers exerted synergistic effect on PDAC progression. Our results suggested dual-target inhibition M2 macrophage polarization and PKM2 expression of cancer cells might be novel approaches to treat PDAC.
Collapse
Affiliation(s)
- Hai Hu
- Department of Oncology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Wenzhi Tu
- The Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yungu Chen
- Department of Oncology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Ming Zhu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201620, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Ting Huang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Qing Xia
- Department of Oncology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Cancer Institute, Shanghai, 200127, China
| |
Collapse
|
48
|
Fan C, Zhong T, Yang H, Yang Y, Wang D, Yang X, Xu Y, Fan Y. Design, synthesis, biological evaluation of 6-(2-amino-1H-benzo[d]imidazole-6-yl)quinazolin-4(3H)-one derivatives as novel anticancer agents with Aurora kinase inhibition. Eur J Med Chem 2020; 190:112108. [PMID: 32058239 DOI: 10.1016/j.ejmech.2020.112108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/11/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Aurora A kinase, a member of the Aurora kinase family, is frequently overexpressed in various human cancers. In addition, Overexpression of Aurora A kinase is associated with drug resistance and poor prognosis in many cancers including breast cancer. Therefore, Aurora A kinase has been considered as an attractive anticancer target for the treatment of human cancers. Herein, A series of 6-(2-amino-1H-benzo[d]imidazole-6-yl)quinazolin-4(3H)-one derivatives were designed, synthesized, and evaluated as Aurora A kinase inhibitors. The cell-based cytotoxicity assays showed that compound 16h was the most potent cytotoxic agent against all tested cancer cells and had a lower IC50 value than ENMD-2076 against MDA-MB-231 cells. Meanwhile, Aurora A kinase assay and Western blot analysis showed that 16h inhibited Aurora A kinase with an IC50 value of 21.94 nM and suppressed the phosphorylation of Histone H3 on Ser10 and Aurora A kinase on Thr288, which were consistent with the activation of Aurora A kinase. Accordingly, 16h caused aberrant mitotic phenotypes and obvious G2/M phase arrest in MDA-MB-231 cells and induced caspase-dependent apoptosis in MDA-MB-231 cells. These results demonstrated that 16h is a potential candidate for the development of anticancer agents targeting Aurora A kinase.
Collapse
Affiliation(s)
- Chengcheng Fan
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ting Zhong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Huarong Yang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Ying Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Daoping Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Xiaosheng Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Yongnan Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| |
Collapse
|
49
|
Yin Y, Chen F, Li J, Yang J, Li Q, Jin P. AURKA Enhances Autophagy of Adipose Derived Stem Cells to Promote Diabetic Wound Repair via Targeting FOXO3a. J Invest Dermatol 2020; 140:1639-1649.e4. [PMID: 32004564 DOI: 10.1016/j.jid.2019.12.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022]
Abstract
AURKA regulates apoptosis and autophagy in a diverse range of diseases and exhibits promising clinical efficacy; however, the role of AURKA in regulating adipose-derived stem cells (ADSCs) and repairing diabetic wound remains unclear. Here, we showed that ADSCs subjected to high glucose stress displayed an obvious induction of AURKA and FOXO3a, and a significant increase in autophagy and apoptosis. AURKA was confirmed to regulate autophagy through FOXO3a. AURKA-mediated autophagy inhibited high-glucose-induced apoptosis of ADSCs. Furthermore, co-immunoprecipitation and chromatin immunoprecipitation assays were employed to investigate the interaction of AURKA and FOXO3a. FOXO3a bound to its own promoter and transactivated its own expression. AURKA was found to interact with FOXO3a to regulate FOXO3a activity. In diabetic mice, ADSCs overexpressing AURKA led to a decrease of apoptosis of ADSCs and promoted wound healing in the skin. Taken together, our data suggest that transcriptional regulation of FOXO3a by high-glucose-mediated AURKA is necessary for ADSCs autophagy. Our data reveal a potential therapeutic strategy for targeting AURKA involved in high-glucose-induced anti-apoptotic autophagy in ADSCs.
Collapse
Affiliation(s)
- Yating Yin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feifei Chen
- Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Cancer Biotherapy Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Jianhua Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
50
|
Transferrin-Modified Nanoliposome Codelivery Strategies for Enhancing the Cancer Therapy. J Pharm Sci 2019; 109:2426-2436. [PMID: 31760084 DOI: 10.1016/j.xphs.2019.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/22/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Chemotherapy remains one of the most effective treatments for many cancers in a clinic. At present, various targets have been used to modify the PEGylated liposomes for doxorubicin (Dox) delivery, but the antitumor effect of Dox is not satisfactory. Therefore, combination chemotherapeutics has been considered as a promising method to improve tumor treatment. These years, RAF/MEK/ERK-mediated cell signaling pathway has been discovered to inhibit the growth of tumors. Thus, Sorafenib tosylate (Sor) was used in this study, which directly inhibited tumor cell proliferation through blocking RAF/MEK/ERK-mediated cell signaling pathway and indirectly inhibited tumor cell growth through blocking angiogenesis by VEGFR and PDGF. In this article, we develop a "combination delivery system" to deliver the hydrophobic drug (Sor) in phospholipid bilayer and hydrophilic drug (Dox) in inner cores for enhancing the antitumor effect. Moreover, in vitro experiments verified whether the physicochemical properties of carriers were stable and transferrin-modified liposomes displayed the highest uptake. The results of in vivo experiments showed that the codelivery system inhibited the tumor growth more effectively than monotherapy. Overall, this combination delivery system for delivering the hydrophobic and hydrophilic drugs simultaneously may offer a novel strategy for breast cancer treatment and provide a reference for the possibility of clinical usage.
Collapse
|