1
|
Mousavian Z, Fahimi-Kashani E, Nafisi V, Fahimi-Kashani N. Recent Advances in Development of Biosensors for Monitoring of Airborne Microorganisms. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3722. [PMID: 39220332 PMCID: PMC11364924 DOI: 10.30498/ijb.2024.399314.3722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/12/2023] [Indexed: 09/04/2024]
Abstract
Background The early detection of infectious microorganisms is crucial for preventing and controlling the transmission of diseases. This article provides a comprehensive review of biosensors based on various diagnostic methods for measuring airborne pathogens. Objective This article aims to explore recent advancements in the field of biosensors tailored for the detection and monitoring of airborne microorganisms, offering insights into emerging technologies and their potential applications in environmental surveillance and public health management. Materials and Methods The study summarizes the research conducted on novel methods of detecting airborne microorganisms using different biological sensors, as well as the application of signal amplification technologies such as polymerase chain reaction (PCR), immunoassay reactions, molecular imprinted polymers (MIP) technique, lectin and cascade reactions, and nanomaterials. Results Antibody and PCR detection methods are effective for specific microbial strains, but they have limitations including limited stability, high cost, and the need for skilled operators with basic knowledge of the target structure. Biosensors based on MIP and lectin offer a low-cost, stable, sensitive, and selective alternative to antibodies and PCR. However, challenges remain, such as the detection of small gas molecules by MIP and the lower sensitivity of lectins compared to antibodies. Additionally, achieving high sensitivity in complex environments poses difficulties for both methods. Conclusion The development of sensitive, reliable, accessible, portable, and inexpensive biosensors holds great potential for clinical and environmental applications, including disease diagnosis, treatment monitoring, and point-of-care testing, offering a promising future in this field. This review presents an overview of biosensor detection principles, covering component identification, energy conversion principles, and signal amplification. Additionally, it summarizes the research and applications of biosensors in the detection of airborne microorganisms. The latest advancements and future trends in biosensor detection of airborne microorganisms are also analyzed.
Collapse
Affiliation(s)
- Zahra Mousavian
- Ph.D. Candidate, Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Ensieh Fahimi-Kashani
- Bachelor student, Faculty of Basic Sciences, Malayer International University, Hamedan
| | - Vahidreza Nafisi
- Associate Professor, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Nafiseh Fahimi-Kashani
- Assistant Professor, Faculty of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
2
|
Carbohydrates: Binding Sites and Potential Drug Targets for Neural-Affecting Pathogens. ADVANCES IN NEUROBIOLOGY 2023; 29:449-477. [DOI: 10.1007/978-3-031-12390-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
van Belkum A, Almeida C, Bardiaux B, Barrass SV, Butcher SJ, Çaykara T, Chowdhury S, Datar R, Eastwood I, Goldman A, Goyal M, Happonen L, Izadi-Pruneyre N, Jacobsen T, Johnson PH, Kempf VAJ, Kiessling A, Bueno JL, Malik A, Malmström J, Meuskens I, Milner PA, Nilges M, Pamme N, Peyman SA, Rodrigues LR, Rodriguez-Mateos P, Sande MG, Silva CJ, Stasiak AC, Stehle T, Thibau A, Vaca DJ, Linke D. Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens. Diagnostics (Basel) 2021; 11:diagnostics11071259. [PMID: 34359341 PMCID: PMC8305138 DOI: 10.3390/diagnostics11071259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases are an existential health threat, potentiated by emerging and re-emerging viruses and increasing bacterial antibiotic resistance. Targeted treatment of infectious diseases requires precision diagnostics, especially in cases where broad-range therapeutics such as antibiotics fail. There is thus an increasing need for new approaches to develop sensitive and specific in vitro diagnostic (IVD) tests. Basic science and translational research are needed to identify key microbial molecules as diagnostic targets, to identify relevant host counterparts, and to use this knowledge in developing or improving IVD. In this regard, an overlooked feature is the capacity of pathogens to adhere specifically to host cells and tissues. The molecular entities relevant for pathogen–surface interaction are the so-called adhesins. Adhesins vary from protein compounds to (poly-)saccharides or lipid structures that interact with eukaryotic host cell matrix molecules and receptors. Such interactions co-define the specificity and sensitivity of a diagnostic test. Currently, adhesin-receptor binding is typically used in the pre-analytical phase of IVD tests, focusing on pathogen enrichment. Further exploration of adhesin–ligand interaction, supported by present high-throughput “omics” technologies, might stimulate a new generation of broadly applicable pathogen detection and characterization tools. This review describes recent results of novel structure-defining technologies allowing for detailed molecular analysis of adhesins, their receptors and complexes. Since the host ligands evolve slowly, the corresponding adhesin interaction is under selective pressure to maintain a constant receptor binding domain. IVD should exploit such conserved binding sites and, in particular, use the human ligand to enrich the pathogen. We provide an inventory of methods based on adhesion factors and pathogen attachment mechanisms, which can also be of relevance to currently emerging pathogens, including SARS-CoV-2, the causative agent of COVID-19.
Collapse
Affiliation(s)
- Alex van Belkum
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
- Correspondence: (A.v.B.); (D.L.)
| | | | - Benjamin Bardiaux
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Sarah V. Barrass
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Sarah J. Butcher
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Tuğçe Çaykara
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Sounak Chowdhury
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Rucha Datar
- BioMérieux, Microbiology R&D, 38390 La Balme Les Grottes, France;
| | | | - Adrian Goldman
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Manisha Goyal
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Theis Jacobsen
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Pirjo H. Johnson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Andreas Kiessling
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Juan Leva Bueno
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Anchal Malik
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Paul A. Milner
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Michael Nilges
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Nicole Pamme
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Sally A. Peyman
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Pablo Rodriguez-Mateos
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Maria G. Sande
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Carla Joana Silva
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Aleksandra Cecylia Stasiak
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
- Correspondence: (A.v.B.); (D.L.)
| |
Collapse
|
4
|
Tóth S, Kovács M, Bóta B, Szabó-Fodor J, Bakos G, Fébel H. Effect of mannanoligosaccharide (MOS) and inulin supplementation on the performance and certain physiological parameters of calves reared on milk replacer. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1770096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Szandra Tóth
- Agrár és Környezettudományi Kar, Kaposvári Egyetem, Kaposvár, Magyarország
- BOS-FRUCHT Agráripari Termékelőállító, Feldolgozó és Értékesítő Szövetkezet, Kazsok, Magyarország
| | - Melinda Kovács
- Agrár és Környezettudományi Kar, Kaposvári Egyetem, Kaposvár, Magyarország
- MTA-KE Mikotoxinok az Élelmiszerláncban Kutatócsoport, Kaposvár, Magyarország
| | - Brigitta Bóta
- MTA-KE Mikotoxinok az Élelmiszerláncban Kutatócsoport, Kaposvár, Magyarország
| | - Judit Szabó-Fodor
- MTA-KE Mikotoxinok az Élelmiszerláncban Kutatócsoport, Kaposvár, Magyarország
| | - Gábor Bakos
- BOS-FRUCHT Agráripari Termékelőállító, Feldolgozó és Értékesítő Szövetkezet, Kazsok, Magyarország
| | - Hedvig Fébel
- Állattenyésztési, Takarmányozási és Húsipari Kutatóintézet, Nemzeti Agrárkutatási és Innovációs Központ, Herceghalom, Magyarország
| |
Collapse
|
5
|
Rodrigues JM, Duarte MER, Noseda MD. Modified soybean meal polysaccharide with high adhesion capacity to Salmonella. Int J Biol Macromol 2019; 139:1074-1084. [PMID: 31398402 DOI: 10.1016/j.ijbiomac.2019.08.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
Carbohydrates are known to act as analog receptors for bacteria and therefore are promising alternatives for the control and prevention of bacterial infections. The present study evaluated the chemical structure of modified soybean meal polysaccharides and their capacity to adhere enterobacteria (Salmonella Typhimurium) and to interfere with the bacteria adhesion to the known analogue receptors, using in vitro assays. For this, soybean meal suspensions were subjected to a thermochemical extraction process and structural analyses showed that the fraction with higher adhesion and adhesion-inhibition potential, SAP, was constituted by two types of polysaccharides: a partially depolymerized pectin, of high molar mass, composed of xylogalacturonan and rhamnogalacturonan regions (SAP1, 545.5 kDa), and a (1 → 4)-linked-β-D-galactan of low molar mass (SAP2, 8.7 kDa). The results showed a high affinity of Salmonella for galactans, while high molar mass pectins showed no adhesion capacity. The chemical compositions of the fractions suggested that galactose could be responsible for the recognition process in the adhesion process. Other factors, such as structure and degree of polymerization of the polymers, may also be influencing the adhesion process. Modified soybean meal polysaccharides appear to be a promising alternative agent to antibiotics for the control and prevention of foodborne diseases.
Collapse
Affiliation(s)
- Jenifer Mota Rodrigues
- Bioprocess Engineering and Biotechnology Dept., Federal University of Paraná, PO Box: 19011, 81531-990 Curitiba, Paraná, Brazil; Biochemistry and Molecular Biology Dept., Federal University of Paraná, PO Box: 19046, 81531-980 Curitiba, Paraná, Brazil
| | - Maria Eugênia Rabello Duarte
- Biochemistry and Molecular Biology Dept., Federal University of Paraná, PO Box: 19046, 81531-980 Curitiba, Paraná, Brazil.
| | - Miguel Daniel Noseda
- Biochemistry and Molecular Biology Dept., Federal University of Paraná, PO Box: 19046, 81531-980 Curitiba, Paraná, Brazil.
| |
Collapse
|
6
|
Blundell PA, Lu D, Wilkinson M, Dell A, Haslam S, Pleass RJ. Insertion of N-Terminal Hinge Glycosylation Enhances Interactions of the Fc Region of Human IgG1 Monomers with Glycan-Dependent Receptors and Blocks Hemagglutination by the Influenza Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1595-1611. [PMID: 30683699 PMCID: PMC6379808 DOI: 10.4049/jimmunol.1801337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/29/2018] [Indexed: 11/28/2022]
Abstract
In therapeutic applications in which the Fc of IgG is critically important, the receptor binding and functional properties of the Fc are lost after deglycosylation or removal of the unique Asn297 N-X-(T/S) sequon. A population of Fcs bearing sialylated glycans has been identified as contributing to this functionality, and high levels of sialylation also lead to longer serum retention times advantageous for therapy. The efficacy of sialylated Fc has generated an incentive to modify the unique N-linked glycosylation site at Asn297, either through chemical and enzymatic methods or by mutagenesis of the Fc, that disrupts the protein-Asn297 carbohydrate interface. In this study, we took an alternative approach by inserting or deleting N-linked attachment sites into the body of the Fc to generate a portfolio of mutants with tailored effector functions. For example, we describe mutants with enhanced binding to low-affinity inhibitory human Fcγ and glycan receptors that may be usefully incorporated into existing Ab engineering approaches to treat or vaccinate against disease. The IgG1 Fc fragments containing complex sialylated glycans attached to the N-terminal Asn221 sequon bound influenza virus hemagglutinin and disrupted influenza A-mediated agglutination of human erythrocytes.
Collapse
Affiliation(s)
- Patricia A Blundell
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| | - Dongli Lu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mark Wilkinson
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stuart Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard J Pleass
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| |
Collapse
|
7
|
IgG Antibodies to GlcNAc β and Asialo-GM2 (GA2) Glycans as Potential Markers of Liver Damage in Chronic Hepatitis C and the Efficacy of Antiviral Treatment. DISEASE MARKERS 2018; 2018:4639805. [PMID: 30627223 PMCID: PMC6304914 DOI: 10.1155/2018/4639805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/24/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
Abstract
Total serum IgG level is a surrogate marker of hepatitis C (HC) severity. Antibodies (Abs) to microbial glycans could be markers of HC severity caused by the translocation of microbial products. The level of anti-glycan (AG) Abs was analysed in serum samples of patients (n = 128) with chronic HC in ELISA using fourteen synthetic glycans present in microbes and adhesins to evaluate the association of Abs with clinical parameters and the efficacy of antiviral treatment. The anti-GlcNAcβ IgG level was significantly higher in patients with fibrosis (P = 0.021) and severe portal inflammation (P < 0.001) regardless of other clinical parameters. The ROC curve analysis showed sensitivity of 0.59, specificity of 0.84, and AUC of 0.71 in discriminating F0 from F1–4 (HCV genotype-1b-infected patients). The level of anti-GA2 Abs before Peg-IFN/RBV treatment was significantly higher in nonsustained viral response (non-SVR) to treatment than in SVR (P = 0.033). ROC analysis showed sensitivity of 0.62, specificity of 0.70, and AUC of 64. Correlations of AG Abs to clinical parameters were found. The quantification of anti-GlcNAcβ Abs deserves attention in assessment of the hepatic damage while anti-GA2 Abs may be a sign of immune response related to the antiviral treatment.
Collapse
|
8
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
9
|
Blundell PA, Le NPL, Allen J, Watanabe Y, Pleass RJ. Engineering the fragment crystallizable (Fc) region of human IgG1 multimers and monomers to fine-tune interactions with sialic acid-dependent receptors. J Biol Chem 2017; 292:12994-13007. [PMID: 28620050 PMCID: PMC5546038 DOI: 10.1074/jbc.m117.795047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/12/2017] [Indexed: 12/24/2022] Open
Abstract
Multimeric fragment crystallizable (Fc) regions and Fc-fusion proteins are actively being explored as biomimetic replacements for IVIG therapy, which is deployed to manage many diseases and conditions but is expensive and not always efficient. The Fc region of human IgG1 (IgG1-Fc) can be engineered into multimeric structures (hexa-Fcs) that bind their cognate receptors with high avidity. The critical influence of the unique N-linked glycan attached at Asn-297 on the structure and function of IgG1-Fc is well documented; however, whether the N-linked glycan has a similarly critical role in multimeric, avidly binding Fcs, is unknown. Hexa-Fc contains two N-linked sites at Asn-77 (equivalent to Asn-297 in the Fc of IgG1) and Asn-236 (equivalent to Asn-563 in the tail piece of IgM). We report here that glycosylation at Asn-297 is critical for interactions with Fc receptors and complement and that glycosylation at Asn-563 is essential for controlling multimerization. We also found that introduction of an additional fully occupied N-linked glycosylation site at the N terminus at position 1 (equivalent to Asp-221 in the Fc of IgG1) dramatically enhances overall sialic acid content of the Fc multimers. Furthermore, replacement of Cys-575 in the IgM tail piece of multimers resulted in monomers with enhanced sialic acid content and differential receptor-binding profiles. Thus insertion of additional N-linked glycans into either the hinge or tail piece of monomers or multimers leads to molecules with enhanced sialylation that may be suitable for managing inflammation or blocking pathogen invasion.
Collapse
Affiliation(s)
- Patricia A Blundell
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom
| | - Ngoc Phuong Lan Le
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joel Allen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Yasunori Watanabe
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Richard J Pleass
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom.
| |
Collapse
|
10
|
Recombinant Mucin-Type Fusion Proteins with a Galα1,3Gal Substitution as Clostridium difficile Toxin A Inhibitors. Infect Immun 2016; 84:2842-52. [PMID: 27456831 DOI: 10.1128/iai.00341-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/18/2016] [Indexed: 02/04/2023] Open
Abstract
The capability of a recombinant mucin-like fusion protein, P-selectin glycoprotein ligand-1/mouse IgG2b (PSGL-1/mIgG2b), carrying Galα1,3Galβ1,4GlcNAc determinants to bind and inhibit Clostridium difficile toxin A (TcdA) was investigated. The fusion protein, produced by a glyco-engineered stable CHO-K1 cell line and designated C-PGC2, was purified by affinity and gel filtration chromatography from large-scale cultures. Liquid chromatography-mass spectrometry was used to characterize O-glycans released by reductive β-elimination, and new diagnostic ions to distinguish Galα1,3Gal- from Galα1,4Gal-terminated O-glycans were identified. The C-PGC2 cell line, which was 20-fold more sensitive to TcdA than the wild-type CHO-K1, is proposed as a novel cell-based model for TcdA cytotoxicity and neutralization assays. The C-PGC2-produced fusion protein could competitively inhibit TcdA binding to rabbit erythrocytes, making it a high-efficiency inhibitor of the hemagglutination property of TcdA. The fusion protein also exhibited a moderate capability for neutralization of TcdA cytotoxicity in both C-PGC2 and CHO-K1 cells, the former with and the latter without cell surface Galα1,3Galβ1,4GlcNAc sequences. Future studies in animal models of C. difficile infection will reveal its TcdA-inhibitory effect and therapeutic potential in C. difficile-associated diseases.
Collapse
|
11
|
Short DM, Moore DA, Sischo WM. A Randomized Clinical Trial Evaluating the Effects of Oligosaccharides on Transfer of Passive Immunity in Neonatal Dairy Calves. J Vet Intern Med 2016; 30:1381-9. [PMID: 27278714 PMCID: PMC5089611 DOI: 10.1111/jvim.13949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/22/2016] [Accepted: 03/29/2016] [Indexed: 02/01/2023] Open
Abstract
Background Bacterial contamination of colostrum is common and can decrease IgG absorption in neonatal calves. Strategies that mitigate this situation without complicating colostrum management will benefit dairy calf health and survival. Objectives To evaluate the effects of supplementing colostrum with oligosaccharides (OS) on serum IgG concentration and apparent efficiency of absorption of IgG (AEA%) in calves fed unpasteurized colostrum and characterize these outcomes with respect to colostrum bacterial exposures. Animals One hundred twenty‐three neonatal dairy calves. Methods Randomized, blinded, controlled clinical trial conducted at a commercial dairy operation. Calves were enrolled at birth in 1 of 4 treatment groups. Data were complete for 123 calves, which were distributed across the treatment groups as follows: mannan‐oligosaccharides (MOS), n = 33; Saccharomyces galacto‐oligosaccharides (SGOS), n = 31; Bifidobacterium galacto‐oligosaccharides (BGOS), n = 28; and lactose control (CON), n = 31. A commercial radial immunodiffusion kit was used to determine colostrum and serum IgG concentrations. Conventional microbiology methods were used to enumerate colostrum bacterial counts. Results Bacterial counts were not significantly different among treatment groups. Total bacterial plate counts (TPC) were relatively low for the majority of colostrum samples, but TPC had a significant negative effect on serum IgG concentration and AEA% in the lactose‐supplemented control group but not the OS treatment groups. Conclusions and Clinical Importance These results suggest that a complement of OS structures may mitigate adverse effects of bacteria on transfer of passive immunity (TPI).
Collapse
Affiliation(s)
- D M Short
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA
| | - D A Moore
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA
| | - W M Sischo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA
| |
Collapse
|
12
|
Effect of oligosaccharides on the adhesion of gut bacteria to human HT-29 cells. Anaerobe 2016; 39:136-42. [DOI: 10.1016/j.anaerobe.2016.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/15/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
|
13
|
Inhibiting oral intoxication of botulinum neurotoxin A complex by carbohydrate receptor mimics. Toxicon 2015; 107:43-9. [PMID: 26272706 DOI: 10.1016/j.toxicon.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022]
Abstract
Botulinum neurotoxins (BoNTs) cause the disease botulism manifested by flaccid paralysis that could be fatal to humans and animals. Oral ingestion of the toxin with contaminated food is one of the most common routes for botulism. BoNT assembles with several auxiliary proteins to survive in the gastrointestinal tract and is subsequently transported through the intestinal epithelium into the general circulation. Several hemagglutinin proteins form a multi-protein complex (HA complex) that recognizes host glycans on the intestinal epithelial cell surface to facilitate BoNT absorption. Blocking carbohydrate binding to the HA complex could significantly inhibit the oral toxicity of BoNT. Here, we identify lactulose, a galactose-containing non-digestible sugar commonly used to treat constipation, as a prototype inhibitor against oral BoNT/A intoxication. As revealed by a crystal structure, lactulose binds to the HA complex at the same site where the host galactose-containing carbohydrate receptors bind. In vitro assays using intestinal Caco-2 cells demonstrated that lactulose inhibits HA from compromising the integrity of the epithelial cell monolayers and blocks the internalization of HA. Furthermore, co-administration of lactulose significantly protected mice against BoNT/A oral intoxication in vivo. Taken together, these data encourage the development of carbohydrate receptor mimics as a therapeutic intervention to prevent BoNT oral intoxication.
Collapse
|
14
|
Dong N, Luo L, Wu J, Jia P, Li Q, Wang Y, Gao Z, Peng H, Lv M, Huang C, Feng J, Li H, Shan J, Han G, Shen B. Monoclonal antibody, mAb 4C13, an effective detoxicant antibody against ricin poisoning. Vaccine 2015; 33:3836-42. [PMID: 26141013 DOI: 10.1016/j.vaccine.2015.06.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 11/30/2022]
Abstract
Ricin is a glycoprotein produced in castor seeds and consists of two polypeptide chains named Ricin Toxin A Chain (RTA) and Ricin Toxin B Chain (RTB), linked via a disulfide bridge. Due to its high toxicity, ricin is regarded as a high terrorist risk for the public. However, antibodies can play a pivotal role in neutralizing the toxin. In this research, the anti-toxicant effect of mAb 4C13, a monoclonal antibody (mAb) established using detoxicated ricin as the immunized antigen, was evaluated. Compared with mAb 4F2 and mAb 5G6, the effective mechanism of mAb 4C13 was analyzed by experiments relating to its cytotoxicity, epitope on ricin, binding kinetics with the toxin, its blockage on the protein synthesis inhibition induced by ricin and the intracelluar tracing of its complex with ricin. Our result indicated that mAb 4C13 could recognize and bind to RTA, RTB and exert its high affinity to the holotoxin. Both cytotoxicity and animal toxicity of ricin were well blocked by pre-incubating the toxin with mAb 4C13. By intravenous injection, mAb 4C13 could rescue the mouse intraperitoneally (ip) injected with a lethal dose of ricin (20μg/kg) even at 6h after the intoxication and its efficacy was dependent on its dosage. This research indicated that mAb 4C13 could be an excellent candidate for therapeutic antibodies. Its potent antitoxic efficiency was related to its recognition on the specific epitope with very high affinity and its blockage of protein synthesis inhibition in cytoplasm followed by cellular internalization with ricin.
Collapse
Affiliation(s)
- Na Dong
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Longlong Luo
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Junhua Wu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Peiyuan Jia
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Qian Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yuxia Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| | - Zhongcai Gao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Hui Peng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Lv
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chunqian Huang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Jiannan Feng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Hua Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Junjie Shan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Gang Han
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
15
|
Dong N, Li Z, Li Q, Wu J, Jia P, Wang Y, Gao Z, Han G, Wu Y, Zhou J, Shan J, Li H, Wei W. Absorption, distribution and pathological injury in mice due to ricin poisoning via the alimentary pathway. J Toxicol Pathol 2014; 27:73-80. [PMID: 24791070 PMCID: PMC4000076 DOI: 10.1293/tox.2013-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/19/2013] [Indexed: 01/31/2023] Open
Abstract
The aim of this work was to investigate the potential interactions between intestinal absorbance and ricin poisoning. The Caco-2 cell monolayer and everted intestinal sac (VEIS) models were used. The distribution of ricin in CD-1 mice intoxicated with 0.1 mg/kg of ricin intragastrically was determined by immunohistochemistry. The results showed that ricin could not transfer across the healthy Caco-2 cell monolayer within three hours after poisoning. However, it could pass through the everted rat intestinal wall after 0.5 h of incubation. The toxin in the liver, spleen, lungs and kidneys of mice could be detected as early as 1 h after intoxication. The pathological results were in accordance with the cytotoxicities of ricin in Caco-2, HepG 2, H1299 and MDCK cells, indicating that though no significant symptom in mice could be observed within 3 h after ricin intoxication, important tissues, especially the kidneys, were being injured by the toxin and that the injuries were progressing.
Collapse
Affiliation(s)
- Na Dong
- General Hospital of Beijing Military Command, Beijing 100700, China ; Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zheng Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Qian Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Junhua Wu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Peiyuan Jia
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuxia Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhongcai Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Gang Han
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yifan Wu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China ; School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Jianping Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Junjie Shan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hua Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wenqing Wei
- General Hospital of Beijing Military Command, Beijing 100700, China
| |
Collapse
|
16
|
Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science 2014; 343:1235681. [PMID: 24385630 DOI: 10.1126/science.1235681] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosylation plays a key role in a wide range of biological processes. Specific modification to a glycan's structure can directly modulate its biological function. Glycans are not only essential to glycoprotein folding, cellular homeostasis, and immune regulation but are involved in multiple disease conditions. An increased molecular and structural understanding of the mechanistic role that glycans play in these pathological processes has driven the development of therapeutics and illuminated novel targets for drug design. This knowledge has enabled the treatment of metabolic disorders and the development of antivirals and shaped cancer and viral vaccine strategies. Furthermore, an understanding of glycosylation has led to the development of specific drug glycoforms, for example, monoclonal antibodies, with enhanced potency.
Collapse
Affiliation(s)
- Martin Dalziel
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
17
|
Krachler AM, Orth K. Targeting the bacteria-host interface: strategies in anti-adhesion therapy. Virulence 2014; 4:284-94. [PMID: 23799663 PMCID: PMC3710331 DOI: 10.4161/viru.24606] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacterial infections are a major cause of morbidity and mortality worldwide and are increasingly problematic to treat due to the rise in antibiotic-resistant strains. It becomes more and more challenging to develop new antimicrobials that are able to withstand the ever-increasing repertoire of bacterial resistance mechanisms. This necessitates the development of alternative approaches to prevent and treat bacterial infections. One of the first steps during bacterial infection is adhesion of the pathogen to host cells. A pathogen’s ability to colonize and invade host tissues strictly depends on this process. Thus, interference with adhesion (anti-adhesion therapy) is an efficient way to prevent or treat bacterial infections. As a basis to present different strategies to interfere with pathogen adhesion, this review briefly introduces general concepts of bacterial attachment to host cells. We further discuss advantages and disadvantages of anti-adhesion treatments and issues that are in need of improvement so as to make anti-adhesion compounds a more broadly applicable alternative to conventional antimicrobials.
Collapse
Affiliation(s)
- Anne Marie Krachler
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
18
|
Roles of Carbohydrates in the Interaction of Pathogens with Neural Cells. ADVANCES IN NEUROBIOLOGY 2014; 9:395-413. [DOI: 10.1007/978-1-4939-1154-7_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Quintero-Villegas MI, Aam BB, Rupnow J, Sørlie M, Eijsink VGH, Hutkins RW. Adherence inhibition of enteropathogenic Escherichia coli by chitooligosaccharides with specific degrees of acetylation and polymerization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2748-2754. [PMID: 23428168 DOI: 10.1021/jf400103g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Some oligosaccharides are known to act as molecular decoys by inhibiting pathogen adherence to epithelial cells. The present study was aimed at analyzing whether chitooligosaccharides (CHOS), that is, oligomers of D-glucosamine and N-acetyl-D-glucosamine, have such antiadherence activity. CHOS of varied degree of polymerization (DP) and fraction of acetylation (F(A)) were produced. Adherence of enteropathogenic Escherichia coli (EPEC) to the surface of a human HEp-2 cell line was determined in the absence or presence of the various CHOS fractions. Adherence was assessed by microscopic counting and image analysis of bacterial clusters and cells. The results showed that all CHOS fractions inhibited adherence of EPEC to HEp-2 cells. Hydrolysates with lower F(A) were more effective at reducing adherence. This effect is greater than that obtained with other oligosaccharides, such as galactooligosaccharides, applied at the same concentrations.
Collapse
Affiliation(s)
- Maria I Quintero-Villegas
- Department of Food Science and Technology, University of Nebraska , Lincoln, Nebraska 68583-0919, United States
| | | | | | | | | | | |
Collapse
|
20
|
Bauwens A, Betz J, Meisen I, Kemper B, Karch H, Müthing J. Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci 2013; 70:425-57. [PMID: 22766973 PMCID: PMC11113656 DOI: 10.1007/s00018-012-1060-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/25/2012] [Accepted: 06/14/2012] [Indexed: 12/23/2022]
Abstract
The two major Shiga toxin (Stx) types, Stx1 and Stx2, produced by enterohemorrhagic Escherichia coli (EHEC) in particular injure renal and cerebral microvascular endothelial cells after transfer from the human intestine into the circulation. Stxs are AB(5) toxins composed of an enzymatically active A subunit and the pentameric B subunit, which preferentially binds to the glycosphingolipid globotriaosylceramide (Gb3Cer/CD77). This review summarizes the current knowledge on Stx-caused cellular injury and the structural diversity of Stx receptors as well as the initial molecular interaction of Stxs with the human endothelium of different vascular beds. The varying lipoforms of Stx receptors and their spatial organization in lipid rafts suggest a central role in different modes of receptor-mediated endocytosis and intracellular destiny of the toxins. The design and development of tailored Stx neutralizers targeting the oligosaccharide-toxin recognition event has become a very real prospect to ameliorate or prevent life-threatening renal and neurological complications.
Collapse
Affiliation(s)
- Andreas Bauwens
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Josefine Betz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Iris Meisen
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Björn Kemper
- Center for Biomedical Optics and Photonics, University of Münster, Robert-Koch-Str. 45, 48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
21
|
Kolter T. Ganglioside biochemistry. ISRN BIOCHEMISTRY 2012; 2012:506160. [PMID: 25969757 PMCID: PMC4393008 DOI: 10.5402/2012/506160] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.
Collapse
Affiliation(s)
- Thomas Kolter
- Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany
| |
Collapse
|
22
|
Krachler AM, Mende K, Murray C, Orth K. In vitro characterization of multivalent adhesion molecule 7-based inhibition of multidrug-resistant bacteria isolated from wounded military personnel. Virulence 2012; 3:389-99. [PMID: 22722243 DOI: 10.4161/viru.20816] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Treatment of wounded military personnel at military medical centers is often complicated by colonization and infection of wounds with pathogenic bacteria. These include nosocomially transmitted, often multidrug-resistant pathogens such as Acinetobacter baumannii-calcoaceticus complex, Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. We analyzed the efficacy of multivalent adhesion molecule (MAM) 7-based anti-adhesion treatment of host cells against aforementioned pathogens in a tissue culture infection model. Herein, we observed that a correlation between two important hallmarks of virulence, attachment and cytotoxicity, could serve as a useful predictor for the success of MAM7-based inhibition against bacterial infections. Initially, we characterized 20 patient isolates (five from each pathogen mentioned above) in terms of genotypic diversity, antimicrobial susceptibility and important hallmarks of pathogenicity (biofilm formation, attachment to and cytotoxicity toward cultured host cells). All isolates displayed a high degree of genotypic diversity, which was also reflected by large strain-to-strain variability in terms of biofilm formation, attachment and cytotoxicity within each group of pathogen. Using non-pathogenic bacteria expressing MAM7 or latex beads coated with recombinant MAM7 for anti-adhesion treatment, we showed a decrease in cytotoxicity, indicating that MAM7 has potential as a prophylactic agent to attenuate infection by multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Anne Marie Krachler
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | | |
Collapse
|
23
|
Pincus SH, Smallshaw JE, Song K, Berry J, Vitetta ES. Passive and active vaccination strategies to prevent ricin poisoning. Toxins (Basel) 2011; 3:1163-84. [PMID: 22069761 PMCID: PMC3202875 DOI: 10.3390/toxins3091163] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/17/2011] [Accepted: 09/05/2011] [Indexed: 11/16/2022] Open
Abstract
Ricin toxin (RT) is derived from castor beans, produced by the plant Ricinus communis. RT and its toxic A chain (RTA) have been used therapeutically to arm ligands that target disease-causing cells. In most cases these ligands are cell-binding monoclonal antibodies (MAbs). These ligand-toxin conjugates or immunotoxins (ITs) have shown success in clinical trials [1]. Ricin is also of concern in biodefense and has been classified by the CDC as a Class B biothreat. Virtually all reports of RT poisoning have been due to ingestion of castor beans, since they grow abundantly throughout the world and are readily available. RT is easily purified and stable, and is not difficult to weaponize. RT must be considered during any "white powder" incident and there have been documented cases of its use in espionage [2,3]. The clinical syndrome resulting from ricin intoxication is dependent upon the route of exposure. Countermeasures to prevent ricin poisoning are being developed and their use will depend upon whether military or civilian populations are at risk of exposure. In this review we will discuss ricin toxin, its cellular mode of action, the clinical syndromes that occur following exposure and the development of pre- and post-exposure approaches to prevent of intoxication.
Collapse
Affiliation(s)
- Seth H. Pincus
- Children’s Hospital and LSU Health Sciences Center, New Orleans, LA 70118, USA;
| | - Joan E. Smallshaw
- Cancer Immunobiology Center and Department of Microbiology, University of Texas, Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Kejing Song
- Children’s Hospital, New Orleans, LA 70118, USA;
| | - Jody Berry
- Cangene Corporation, Winnipeg, MB R3T 5Y3, Canada;
| | - Ellen S. Vitetta
- Cancer Immunobiology Center, Departments Of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| |
Collapse
|
24
|
Characterization of the retrocyclin analogue RC-101 as a preventative of Staphylococcus aureus nasal colonization. Antimicrob Agents Chemother 2011; 55:5338-46. [PMID: 21825301 DOI: 10.1128/aac.00619-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nasal colonization of Staphylococcus aureus is a risk factor for pathogenic autoinfection, particularly in postoperative patients and the immunocompromised. As such, standardized preoperative nasal decolonization of S. aureus has become a major consideration for the prevention of nosocomial infection. However, only a few treatment options for nasal decolonization are currently available, with resistance to these approaches already a concern. Here we have identified the macrocyclic -defensin analogue RC-101 as a promising anti-S. aureus agent for nasal decolonization. RC-101 exhibits bactericidal effects against S. aureus with the use of in vitro epithelium-free systems, while also preventing the pathogen's proliferation and attachment in an ex vivo human nasal epithelial cell adhesion model and an organotypic model of human airway epithelia. Peptide concentrations as low as 2.5 μM elicited significant reductions in S. aureus growth in epithelium-free systems, with 10 μM concentrations being completely bactericidal for all strains tested, including USA300. In ex vivo nasal colonization models, RC-101 significantly reduced adherence, survival, and proliferation of S. aureus on human nasal epithelia. Reductions in S. aureus viability were evident in these assays, with as little as 1 μg of peptide per tissue, while 10 μg of RC-101 completely prevented adhesion of all strains tested. Furthermore, RC-101 did not exhibit cellular toxicity to human nasal epithelia at concentrations up to 200 μM, nor did it induce a proinflammatory response in these cells. Collectively, the findings of this study identify RC-101 as a potential preventative of S. aureus nasal colonization.
Collapse
|