1
|
Prusty JS, Kumar A, Kumar A. Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis. Crit Rev Microbiol 2024:1-37. [PMID: 39440616 DOI: 10.1080/1040841x.2024.2418125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
2
|
Song X, Qiao Y, Ma J, Zhang X, Liu J, Xin W, Xing S, Wang Y. Co-expression of four penaeidins in transgenic rice seeds: an alternative strategy for substitute antibiotic agricultural products. Transgenic Res 2023; 32:463-473. [PMID: 37535257 DOI: 10.1007/s11248-023-00361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
The co-expression of multiple antimicrobial peptides (AMPs) in genetically modified (GM) crops can give plants a broader antibacterial spectrum and lower the pathogen risk of drug resistance. Therefore, four penaeidins (shrimp-derived AMPs) were fused and encoded in an artificial gene (PEN1234), driven by the seed-specific promoter Pzein, with the aim of co-expression in seeds of transgenic rice. The resistant rice plants, acquired via Agrobacterium-mediated transformation and glufosinate screening, were identified by PCR and the modified disk-diffusion method, and eight GM lines with high AMP content in the seeds were obtained. Among them, the PenOs017 line had the largest penaeidin content, at approximately 251-300 μg/g in seeds and 15-47 μg/g in roots and leaves. The AMPs in the seeds kept their antibacterial properties even after the seed had been boiled in hot water and could significantly inhibit the growth of methicillin-resistant Staphylococcus aureus, and AMPs in the leaves could effectively inhibit Xanthomonas oryzae pv. Oryzae. The results indicate that PenOs017 seeds containing AMPs are an ideal raw-material candidate for antibiotic-free food and feed, and may require fewer petrochemical fungicides or bactericides for disease control during cultivation than conventional rice.
Collapse
Affiliation(s)
- Xinyuan Song
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yu Qiao
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130000, China
| | - Xue Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Wen Xin
- Beijing TransGen Biotech Co., Ltd., Beijing, 100192, China
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
3
|
Puan SL, Erriah P, Baharudin MMAA, Yahaya NM, Kamil WNIWA, Ali MSM, Ahmad SA, Oslan SN, Lim S, Sabri S. Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield. Appl Microbiol Biotechnol 2023; 107:5569-5593. [PMID: 37450018 DOI: 10.1007/s00253-023-12651-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
Collapse
Affiliation(s)
- Sheau Ling Puan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Pirasannah Erriah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohamad Malik Al-Adil Baharudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, 31499, Asan-Si, Chungnam, Republic of Korea
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Wei DX, Zhang XW. Biosynthesis, Bioactivity, Biosafety and Applications of Antimicrobial Peptides for Human Health. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
5
|
Jiang DL, Yao CL, Hu NJ, Liu YC. Construction of a Tandem Repeat Peptide Sequence with Pepsin Cutting Sites to Produce Recombinant α-Melanocyte-Stimulating Hormone. Molecules 2021; 26:molecules26206207. [PMID: 34684787 PMCID: PMC8541268 DOI: 10.3390/molecules26206207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022] Open
Abstract
The production of α-melanocyte-stimulating hormone (α-MSH), a peptide hormone composed of 13 amino acids, is attempted by recombinant expression using E. coli as the host. To achieve this aim, a synthetic gene containing eight tandem repeats of msh gene (8msh) was designed for ribosomal synthesis of 8 α-MSH. The merit of the strategy is to diminish the peptide toxicity against the host cell and to achieve a higher production yield. Pepsin cleavage sites are introduced between the peptides for enzymatic proteolysis to obtain the monomeric peptide of α-MSH. The constructed plasmid was transformed into different strains of E. coli hosts, and E. coli XL1-Blue with gene 8msh revealed the highest yield of 8 α-MSH. Although 8 α-MSH was fractionalized in the insoluble pellets after cell lysis, pepsin cleavage was able to produce soluble α-MSH peptide, as analyzed and confirmed by mass spectrometry and peptide activity assays. The production of α-MSH was quantified using HPLC with a yield of 42.9 mg/L of LB culture. This study demonstrates the feasibility of producing α-MSH using recombinant expression of tandem repeat gene. The production procedure involves minimal post-treatment and processing and can be scaled up for industrial application.
Collapse
Affiliation(s)
- Dai-Lin Jiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | - Chao-Ling Yao
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Nien-Jen Hu
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (N.-J.H.); (Y.-C.L.); Tel.: +886-(0)4-2285-3769 (Y.-C.L.)
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- Correspondence: (N.-J.H.); (Y.-C.L.); Tel.: +886-(0)4-2285-3769 (Y.-C.L.)
| |
Collapse
|
6
|
Islam MS, Mohamed G, Polash SA, Hasan MA, Sultana R, Saiara N, Dong W. Antimicrobial Peptides from Plants: A cDNA-Library Based Isolation, Purification, Characterization Approach and Elucidating Their Modes of Action. Int J Mol Sci 2021; 22:8712. [PMID: 34445412 PMCID: PMC8395713 DOI: 10.3390/ijms22168712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022] Open
Abstract
Even in a natural ecosystem, plants are continuously threatened by various microbial diseases. To save themselves from these diverse infections, plants build a robust, multilayered immune system through their natural chemical compounds. Among the several crucial bioactive compounds possessed by plants' immune systems, antimicrobial peptides (AMPs) rank in the first tier. These AMPs are environmentally friendly, anti-pathogenic, and do not bring harm to humans. Antimicrobial peptides can be isolated in several ways, but recombinant protein production has become increasingly popular in recent years, with the Escherichia coli expression system being the most widely used. However, the efficacy of this expression system is compromised due to the difficulty of removing endotoxin from its system. Therefore, this review suggests a high-throughput cDNA library-based plant-derived AMP isolation technique using the Bacillus subtilis expression system. This method can be performed for large-scale screening of plant sources to classify unique or homologous AMPs for the agronomic and applied field of plant studies. Furthermore, this review also focuses on the efficacy of plant AMPs, which are dependent on their numerous modes of action and exceptional structural stability to function against a wide range of invaders. To conclude, the findings from this study will be useful in investigating how novel AMPs are distributed among plants and provide detailed guidelines for an effective screening strategy of AMPs.
Collapse
Affiliation(s)
- Md. Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| | - Gamarelanbia Mohamed
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| | | | - Md. Amit Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Razia Sultana
- State Key Laboratory of Agricultural Microbiology, Department of Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Noshin Saiara
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh;
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| |
Collapse
|
7
|
Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W. Biotechnological Insights on the Expression and Production of Antimicrobial Peptides in Plants. Molecules 2021; 26:4032. [PMID: 34279372 PMCID: PMC8272150 DOI: 10.3390/molecules26134032] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of drug-resistant pathogens poses a serious critical threat to global public health and requires immediate action. Antimicrobial peptides (AMPs) are a class of short peptides ubiquitously found in all living forms, including plants, insects, mammals, microorganisms and play a significant role in host innate immune system. These peptides are considered as promising candidates to treat microbial infections due to its distinct advantages over conventional antibiotics. Given their potent broad spectrum of antimicrobial action, several AMPs are currently being evaluated in preclinical/clinical trials. However, large quantities of highly purified AMPs are vital for basic research and clinical settings which is still a major bottleneck hindering its application. This can be overcome by genetic engineering approaches to produce sufficient amount of diverse peptides in heterologous host systems. Recently plants are considered as potential alternatives to conventional protein production systems such as microbial and mammalian platforms due to their unique advantages such as rapidity, scalability and safety. In addition, AMPs can also be utilized for development of novel approaches for plant protection thereby increasing the crop yield. Hence, in order to provide a spotlight for the expression of AMP in plants for both clinical or agricultural use, the present review presents the importance of AMPs and efforts aimed at producing recombinant AMPs in plants for molecular farming and plant protection so far.
Collapse
Affiliation(s)
| | - Christine Joy I Bulaon
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Ghidey M, Islam SMA, Pruett G, Kearney CM. Making plants into cost-effective bioreactors for highly active antimicrobial peptides. N Biotechnol 2020; 56:63-70. [PMID: 31812667 DOI: 10.1016/j.nbt.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
As antibiotic-resistant bacterial pathogens become an ever-increasing concern, antimicrobial peptides (AMPs) have grown increasingly attractive as alternatives. Potentially, plants could be used as cost-effective AMP bioreactors; however, reported heterologous AMP expression is much lower in plants than in E. coli expression systems and often results in plant cytotoxicity, even for AMPs fused to carrier proteins. This suggests that there may be a physical characteristic of the previously described heterologous AMPs which impedes efficient expression in plants. Using a meta-analysis of protein databases, this study has determined that native plant AMPs were significantly less cationic than AMPs native to other taxa. To apply this finding to plant expression, the transient expression of 10 different heterologous AMPs, ranging in charge from +7 to -5, was tested in the tobacco, Nicotiana benthamiana. Elastin-like polypeptide (ELP) was used as the carrier protein for AMP expression. ELP fusion allowed for a simple, cost-effective temperature shift purification. Using this system, all five anionic AMPs expressed well, with two at unusually high levels (375 and 563 μg/gfw). Furthermore, antimicrobial activity against Staphylococcus epidermidis was an order of magnitude greater (average minimum inhibitory concentration MIC of 0.26μM) than that typically seen for AMPs expressed in E. coli systems and was associated with the uncleaved fusion peptide. In summary, this study describes a means of expressing AMP fusions in plants in high yield, purified by a simple temperature-shift protocol, resulting in a fusion peptide with high antimicrobial activity and without the need for a peptide cleavage step.
Collapse
Affiliation(s)
- Meron Ghidey
- Biomedical Studies Program, Baylor University, Waco, TX, 76798, USA
| | | | - Grace Pruett
- Department of Biology, Baylor University, One Bear Place #7388, Waco, TX, 76798, USA
| | - Christopher Michel Kearney
- Biomedical Studies Program, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, One Bear Place #7388, Waco, TX, 76798, USA.
| |
Collapse
|
9
|
Fernández de Ullivarri M, Arbulu S, Garcia-Gutierrez E, Cotter PD. Antifungal Peptides as Therapeutic Agents. Front Cell Infect Microbiol 2020; 10:105. [PMID: 32257965 PMCID: PMC7089922 DOI: 10.3389/fcimb.2020.00105] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Fungi have been used since ancient times in food and beverage-making processes and, more recently, have been harnessed for the production of antibiotics and in processes of relevance to the bioeconomy. Moreover, they are starting to gain attention as a key component of the human microbiome. However, fungi are also responsible for human infections. The incidence of community-acquired and nosocomial fungal infections has increased considerably in recent decades. Antibiotic resistance development, the increasing number of immunodeficiency- and/or immunosuppression-related diseases and limited therapeutic options available are triggering the search for novel alternatives. These new antifungals should be less toxic for the host, with targeted or broader antimicrobial spectra (for diseases of known and unknown etiology, respectively) and modes of actions that limit the potential for the emergence of resistance among pathogenic fungi. Given these criteria, antimicrobial peptides with antifungal properties, i.e., antifungal peptides (AFPs), have emerged as powerful candidates due to their efficacy and high selectivity. In this review, we provide an overview of the bioactivity and classification of AFPs (natural and synthetic) as well as their mode of action and advantages over current antifungal drugs. Additionally, natural, heterologous and synthetic production of AFPs with a view to greater levels of exploitation is discussed. Finally, we evaluate the current and potential applications of these peptides, along with the future challenges relating to antifungal treatments.
Collapse
Affiliation(s)
- Miguel Fernández de Ullivarri
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Sara Arbulu
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Enriqueta Garcia-Gutierrez
- Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland.,Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
10
|
Choudhury A, Islam SMA, Ghidey MR, Kearney CM. Repurposing a drug targeting peptide for targeting antimicrobial peptides against Staphylococcus. Biotechnol Lett 2019; 42:287-294. [DOI: 10.1007/s10529-019-02779-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/26/2019] [Indexed: 11/28/2022]
|
11
|
Shams MV, Nazarian-Firouzabadi F, Ismaili A, Shirzadian-Khorramabad R. Production of a Recombinant Dermaseptin Peptide in Nicotiana tabacum Hairy Roots with Enhanced Antimicrobial Activity. Mol Biotechnol 2019; 61:241-252. [PMID: 30649664 DOI: 10.1007/s12033-019-00153-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expression of strong antimicrobial peptides in plants is of great interest to combat a wide range of plant pathogens. To bring the Dermaseptin B1 (DrsB1) peptide to the intimate contact of the plant pathogens cell wall surface, the DrsB1 encoding sequence was fused to the C-terminal part of the two copies of the chitin-binding domain (CBD) of the Avr4 effector protein and used for Agrobacterium rhizogenes-mediated transformation. The expression of the recombinant protein in the tobacco hairy roots (HRs) was confirmed by molecular analysis. Antimicrobial activity analysis of the recombinant protein purified from the transgenic HRs showed that the (CBD)2-DrsB1 recombinant protein had a significant (p < 0.01) antimicrobial effect on the growth of different fungal and bacterial pathogens. The results of this study indicated that the recombinant protein had a higher antifungal activity against chitin-producing Alternaria alternata than Pythium spp. Scanning electron microscopy images demonstrated that the recombinant protein led to fungal hypha deformation, fragmentation, and agglutination of growing hypha, possibly by dissociating fungal cell wall components. In vitro evidences suggest that the expression of the (CBD)2-DrsB1 recombinant protein in plants by generating transgenic lines is a promising approach to produce disease-resistant plants, resistance to chitin-producing pathogenic fungi.
Collapse
Affiliation(s)
- Marzieh Varasteh Shams
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | | | - Ahmad Ismaili
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Reza Shirzadian-Khorramabad
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, 4199613776, Iran
| |
Collapse
|
12
|
Chahardoli M, Fazeli A, Niazi A, Ghabooli M. Recombinant expression of LFchimera antimicrobial peptide in a plant-based expression system and its antimicrobial activity against clinical and phytopathogenic bacteria. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1451780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mahmood Chahardoli
- Department of Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Arash Fazeli
- Department of Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Mehdi Ghabooli
- Department of Agronomy, Faculty of Agriculture, Malayer University, Malayer, Iran
| |
Collapse
|
13
|
Dong B, Cheng RQ, Liu QY, Wang J, Fan ZC. Multimer of the antimicrobial peptide Mytichitin-A expressed in Chlamydomonas reinhardtii exerts a broader antibacterial spectrum and increased potency. J Biosci Bioeng 2018; 125:175-179. [DOI: 10.1016/j.jbiosc.2017.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/11/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023]
|
14
|
Kuddus MR, Yamano M, Rumi F, Kikukawa T, Demura M, Aizawa T. Enhanced expression of cysteine-rich antimicrobial peptide snakin-1 in Escherichia coli using an aggregation-prone protein coexpression system. Biotechnol Prog 2017; 33:1520-1528. [PMID: 28556600 DOI: 10.1002/btpr.2508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/24/2017] [Indexed: 12/13/2022]
Abstract
Snakin-1 (SN-1) is a cysteine-rich plant antimicrobial peptide and the first purified member of the snakin family. SN-1 shows potent activity against a wide range of microorganisms, and thus has great biotechnological potential as an antimicrobial agent. Here, we produced recombinant SN-1 in Escherichia coli by a previously developed coexpression method using an aggregation-prone partner protein. Our goal was to increase the productivity of SN-1 via the enhanced formation of insoluble inclusion bodies in E. coli cells. The yield of SN-1 by the coexpression method was better than that by direct expression in E. coli cells. After refolding and purification, we obtained several milligrams of functionally active SN-1, the identity of which was verified by MALDI-TOF MS and NMR studies. The purified recombinant SN-1 showed effective antimicrobial activity against test organisms. Our studies indicate that the coexpression method using an aggregation-prone partner protein can serve as a suitable expression system for the efficient production of functionally active SN-1. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1520-1528, 2017.
Collapse
Affiliation(s)
- Md Ruhul Kuddus
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Dept. of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Megumi Yamano
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Farhana Rumi
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Takashi Kikukawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Global Station for Soft Matter, Global Inst. for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Global Station for Soft Matter, Global Inst. for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Tomoyasu Aizawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Global Station for Soft Matter, Global Inst. for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Schreiber C, Müller H, Birrenbach O, Klein M, Heerd D, Weidner T, Salzig D, Czermak P. A high-throughput expression screening platform to optimize the production of antimicrobial peptides. Microb Cell Fact 2017; 16:29. [PMID: 28193216 PMCID: PMC5307881 DOI: 10.1186/s12934-017-0637-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/21/2017] [Indexed: 12/25/2022] Open
Abstract
Background Antimicrobial peptides (AMPs) are promising candidates for the development of novel antibiotics, but it is difficult to produce sufficient quantities for preclinical and clinical studies due to their toxicity towards microbial expression hosts. To avoid laborious trial-and-error testing for the identification of suitable expression constructs, we have developed a small-scale expression screening platform based on a combinatorial plasmid library. Results The combinatorial library is based on the Golden Gate cloning system. In each reaction, six donor plasmids (each containing one component: a promoter, fusion partner 1, fusion partner 2, protease cleavage site, gene of interest, or transcriptional terminator) were combined with one acceptor plasmid to yield the final expression construct. As a proof of concept, screening was carried out in Escherichia coli and Pichia pastoris to study the expression of three different model AMPs with challenging characteristics, such as host toxicity or multiple disulfide bonds. The corresponding genes were successfully cloned in 27 E. coli and 18 P. pastoris expression plasmids, each in a one-step Golden Gate reaction. After transformation, small-scale expression screening in microtiter plates was followed by AMP quantification using a His6 tag-specific ELISA. Depending on the plasmid features and the expression host, the protein yields differed by more than an order of magnitude. This allowed the identification of high producers suitable for larger-scale protein expression. Conclusions The optimization of recombinant protein production is best achieved from first principles by initially optimizing the genetic construct. The unrestricted combination of multiple plasmid features yields a comprehensive library of expression strains that can be screened for optimal productivity. The availability of such a platform could benefit all laboratories working in the field of recombinant protein expression. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0637-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Schreiber
- University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390, Giessen, Germany
| | - Hagen Müller
- University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390, Giessen, Germany
| | - Oliver Birrenbach
- University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390, Giessen, Germany
| | - Moritz Klein
- University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390, Giessen, Germany
| | - Doreen Heerd
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
| | - Tobias Weidner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
| | - Denise Salzig
- University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390, Giessen, Germany.
| | - Peter Czermak
- University of Applied Sciences Mittelhessen, Wiesenstraße 14, 35390, Giessen, Germany. .,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany. .,Faculty of Biology and Chemistry, Justus Liebig University Giessen, Giessen, Germany. .,Department of Chemical Engineering, Kansas State University, Manhattan, USA.
| |
Collapse
|
16
|
Meng DM, Zhao JF, Ling X, Dai HX, Guo YJ, Gao XF, Dong B, Zhang ZQ, Meng X, Fan ZC. Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris. Protein Expr Purif 2017; 130:90-99. [DOI: 10.1016/j.pep.2016.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/29/2016] [Accepted: 10/08/2016] [Indexed: 11/24/2022]
|
17
|
Zhao H, Tang J, Cao L, Jia G, Long D, Liu G, Chen X, Cai J, Shang H. Characterization of bioactive recombinant antimicrobial peptide parasin I fused with human lysozyme expressed in the yeast Pichia pastoris system. Enzyme Microb Technol 2015; 77:61-7. [PMID: 26138401 DOI: 10.1016/j.enzmictec.2015.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 11/16/2022]
Abstract
Parasin I (PI) is a 19 amino acid peptide with potent antimicrobial activities against a broad spectrum of microorganisms and is a good candidate for development as a novel antimicrobial agent. The objective of this study was to express and characterize a codon optimized parasin I peptide fused with human lysozyme (hLY). A 513 bp cDNA fragment encoding the mature hLY protein and parasin I peptide was designed and synthesized according to the codon bias of Pichia pastoris. A 4×Gly flexible amino acid linker with an enterokinase cleavage (DDDDK) was designed to link the PI to the C-terminal of hLY. The codon optimized recombinant hLY-PI was cloned into the pPICZαA vector and expressed in P. pastoris. The over-expressed extracellular rehLY-PI was purified using Ni sepharose affinity column and exhibited a molecular mass of approximately 18 kDa. After digested with enterokinase the rehLY-PI protein release its corresponding rehLY and rePI, with molecular mass of 16 kDa and 2 kDa, respectively, on Tricine-SDS-PAGE. The released rehLY exhibited similar lytical activity against Micrococcus lysodeikticus to its commercial hLY. The digested rehLY-PI product exhibited antimicrobial activities against Bacillus subtilis, Staphylococcus aureus and Escherichia coli, and synergism has been found between the released rePI and rehLY. In conclusion, we successfully optimized a rehLY-PI fusion protein encoding gene and over-expressed the rehLY-PI in P. pastoris. The recombination protein digested with enterokinase released functional hLY and antimicrobial parasin I, which demonstrates a potential for future use as an animal feed additive to partly replace antibiotic.
Collapse
Affiliation(s)
- Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lei Cao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dingbiao Long
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haiying Shang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
18
|
Müller H, Salzig D, Czermak P. Considerations for the process development of insect-derived antimicrobial peptide production. Biotechnol Prog 2014; 31:1-11. [DOI: 10.1002/btpr.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Hagen Müller
- Inst. of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen; Wiesenstrasse 14 Giessen 35390 Germany
| | - Denise Salzig
- Inst. of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen; Wiesenstrasse 14 Giessen 35390 Germany
| | - Peter Czermak
- Inst. of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen; Wiesenstrasse 14 Giessen 35390 Germany
- Faculty of Biology and Chemistry; Justus-Liebig-University, Giessen; Germany
- Dept. of Chemical Engineering; Kansas State University; Manhattan KS USA
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME); Project group “Bioresources”, Winchesterstrasse 3; Giessen 35394 Germany
| |
Collapse
|
19
|
Tavares LS, Silva CSF, de Souza VC, da Silva VL, Diniz CG, Santos MO. Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides. Front Microbiol 2013; 4:412. [PMID: 24427156 PMCID: PMC3876575 DOI: 10.3389/fmicb.2013.00412] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/15/2013] [Indexed: 11/13/2022] Open
Abstract
The increasing number of antibiotic resistant bacteria motivates prospective research toward discovery of new antimicrobial active substances. There are, however, controversies concerning the cost-effectiveness of such research with regards to the description of new substances with novel cellular interactions, or description of new uses of existing substances to overcome resistance. Although examination of bacteria isolated from remote locations with limited exposure to humans has revealed an absence of antibiotic resistance genes, it is accepted that these genes were both abundant and diverse in ancient living organisms, as detected in DNA recovered from Pleistocene deposits (30,000 years ago). Indeed, even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit different strategies for resistance against antibiotics. New genetic information may lead to the modification of protein structure affecting the antibiotic carriage into the cell, enzymatic inactivation of drugs, or even modification of cellular structure interfering in the drug-bacteria interaction. There are still plenty of new genes out there in the environment that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents. On the other hand, there are several natural compounds with antibiotic activity that may be used to oppose them. Antimicrobial peptides (AMPs) are molecules which are wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to interfere with microbial growth. Several AMPs have been shown to be effective against multi-drug resistant bacteria and have low propensity to resistance development, probably due to their unique mode of action, different from well-known antimicrobial drugs. These substances may interact in different ways with bacterial cell membrane, protein synthesis, protein modulation, and protein folding. The analysis of bacterial transcriptome may contribute to the understanding of microbial strategies under different environmental stresses and allows the understanding of their interaction with novel AMPs.
Collapse
Affiliation(s)
| | - Carolina S. F. Silva
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | | | - Vânia L. da Silva
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | - Cláudio G. Diniz
- Department of Microbiology, Immunology and Infectious Diseases, University of Juiz de ForaJuiz de Fora, Brazil
| | - Marcelo O. Santos
- Department of Biology, University of Juiz de ForaJuiz de Fora, Brazil
| |
Collapse
|
20
|
Orrapin S, Intorasoot S. Recombinant expression of novel protegrin-1 dimer and LL-37-linker-histatin-5 hybrid peptide mediated biotin carboxyl carrier protein fusion partner. Protein Expr Purif 2013; 93:46-53. [PMID: 24184402 DOI: 10.1016/j.pep.2013.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides (AMPs) hold great promise as potential therapeutic approach for curing of infectious diseases. Prokaryotic protein expression renders high scalability with an effective purification of several heterogeneous proteins. However, it might be inappropriate for recombinant AMPs expression thereby its antimicrobial activity against the host cells. Several fusion partners demonstrated antimicrobial activity neutralization of AMPs expression and purification in Escherichia coli. In order to improve the antimicrobial effect, several hybrid AMPs have been designed and developed. As expected to increase the antimicrobial activity, a dimeric form of porcine protegrin-1 (PG-1) and human LL-37-linker-histatin-5 (LL-37-linker-Hst-5) hybrid peptide were alternatively constructed in this study. Hydroxylamine hydrochloride and thrombin cleavage sites were designed for releasing of hybrid peptide and PG-1 dimer from biotin carboxyl carrier protein (BCCP) fusion partner. The full-length AMPs gene was connected down-stream of BCCP gene using the overlap extension-PCR, cloned into pET-28a vector and expressed in E. coli BL21(DE3)pLysS. After IPTG induction, approximately 20% of BCCP-AMPs was expressed as intracytoplasmic inclusion bodies with an expected molecular weight of 24.5kDa. The mean of purified and refolded BCCP-AMPs was 1.5mg/L with 76% purity. The presence of expressed protein was subsequently determined by Western blotting analysis. Finally, radial diffusion assay supported that these peptides displayed functional antimicrobial activity against E. coli and Staphylococcus aureus standard strains. Two novel AMPs established in this study would be potentially developed as extensive intervention for treating of infectious diseases.
Collapse
Affiliation(s)
- Santhasiri Orrapin
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | |
Collapse
|
21
|
Parachin NS, Mulder KC, Viana AAB, Dias SC, Franco OL. Expression systems for heterologous production of antimicrobial peptides. Peptides 2012; 38:446-56. [PMID: 23022589 DOI: 10.1016/j.peptides.2012.09.020] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/16/2012] [Accepted: 09/16/2012] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs) consist of molecules that act on the defense systems of numerous organisms toward multiple pathogens such as bacteria, fungi, parasites and viruses. These compounds have become extremely significant due to the increasing resistance of microorganisms to common antibiotics. However, the low quantity of peptides obtained from direct purification is, to date, still a remarkable bottleneck for scientific and industrial research development. Therefore, this review describes the main heterologous systems currently used for AMP production, including bacteria, fungi and plants, and also the related strategies for reaching greater functional peptide production. The main difficulties of each system are also described in order to provide some directions for AMP production. In summary, data revised here indicate that large-scale production of AMPs can be obtained using biotechnological tools, and the products may be applied in the pharmaceutical industry as well as in agribusiness.
Collapse
Affiliation(s)
- Nádia Skorupa Parachin
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | | | | | | | | |
Collapse
|
22
|
Pan CY, Huang TC, Wang YD, Yeh YC, Hui CF, Chen JY. Oral administration of recombinant epinecidin-1 protected grouper (Epinephelus coioides) and zebrafish (Danio rerio) from Vibrio vulnificus infection and enhanced immune-related gene expressions. FISH & SHELLFISH IMMUNOLOGY 2012; 32:947-957. [PMID: 22554570 DOI: 10.1016/j.fsi.2012.01.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 05/31/2023]
Abstract
Immunostimulatory effects of the oral administration of the recombinant epinecidin-1 protein from BL21 Escherichia coli (containing the pET28a-epinecidin-1-dsRed plasmid) were studied in grouper (Epinephelus coioides) and zebrafish (Danio rerio). For this purpose, fish were fed diets for 30 days containing the recombinant epinecidin-1 protein from BL21 E. coli (containing the pET28a-epinecidin-1-dsRed plasmid) at different bacterial numbers (10(4), 10(6), 10(8), and 10(10) colony-forming units (cfu) of BL21 E. coli in 50 ml of LB medium) mixed with 50 g of eel powder as fodder. After 30 days of feeding, immune-related gene expressions for bacterial-infection responses and disease resistance against Vibrio vulnificus (204) were determined. The V. vulnificus (204) injected into the fish abdominal cavity mimicked gram-negative bacterial infections in culture ponds. Experimental results assessed whether the recombinant epinecidin-1 protein from BL21 E. coli (containing the pET28a-epinecidin-1-dsRed plasmid) has up- (or down-) regulation immune-related genes expression. Results indicated that the recombinant epinecidin-1 protein from BL21 E. coli administered as a feed supplement significantly enhanced expressions several immune-related genes such as tumor necrosis factor (TNF)-1 in grouper and Toll-like receptor (TLR)4, interleukin (IL)-1β, nitric oxide synthase (NOS)2, and nuclear factor (NF)-κB in zebrafish. After being challenged with V. vulnificus (204) for 24, 48, 72, or 96 h, the percentage mortality was significantly reduced in treated fish, which indicated that the recombinant epinecidin-1 protein from BL21 E. coli administered as a feed supplement could bring about downregulation of TNF-1 expression and functioned like an antagonist for binding TLR4, which reduced the signal transduction pathway for inhibiting TNF and IL-1β expressions while reducing binding of the transcription factor, NF-κB, to TNF and the IL-1β promoter region. The experimental results indicated that dietary intake of the recombinant epinecidin-1 protein from BL21 E. coli modulated immune-related gene expressions and disease resistance of grouper and zebrafish after a V. vulnificus (204) infection.
Collapse
Affiliation(s)
- Chieh-Yu Pan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan 262, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Silva ON, Mulder KCL, Barbosa AEAD, Otero-Gonzalez AJ, Lopez-Abarrategui C, Rezende TMB, Dias SC, Franco OL. Exploring the pharmacological potential of promiscuous host-defense peptides: from natural screenings to biotechnological applications. Front Microbiol 2011; 2:232. [PMID: 22125552 PMCID: PMC3222093 DOI: 10.3389/fmicb.2011.00232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/01/2011] [Indexed: 02/02/2023] Open
Abstract
In the last few years, the number of bacteria with enhanced resistance to conventional antibiotics has dramatically increased. Most of such bacteria belong to regular microbial flora, becoming a real challenge, especially for immune-depressed patients. Since the treatment is sometimes extremely expensive, and in some circumstances completely inefficient for the most severe cases, researchers are still determined to discover novel compounds. Among them, host-defense peptides (HDPs) have been found as the first natural barrier against microorganisms in nearly all living groups. This molecular class has been gaining attention every day for multiple reasons. For decades, it was believed that these defense peptides had been involved only with the permeation of the lipid bilayer in pathogen membranes, their main target. Currently, it is known that these peptides can bind to numerous targets, as well as lipids including proteins and carbohydrates, from the surface to deep within the cell. Moreover, by using in vivo models, it was shown that HDPs could act both in pathogens and cognate hosts, improving immunological functions as well as acting through multiple pathways to control infections. This review focuses on structural and functional properties of HDP peptides and the additional strategies used to select them. Furthermore, strategies to avoid problems in large-scale manufacture by using molecular and biochemical techniques will also be explored. In summary, this review intends to construct a bridge between academic research and pharmaceutical industry, providing novel insights into the utilization of HDPs against resistant bacterial strains that cause infections in humans.
Collapse
Affiliation(s)
- Osmar N Silva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Protômicas e Bioquímicas, Universidade Católica de Brasília Brasília, Brazil
| | | | | | | | | | | | | | | |
Collapse
|