1
|
Bieber BV, Lockett SG, Glasser SK, St Clair FA, Portillo NO, Adler LS, Povelones ML. Genetic modification of the bee parasite Crithidia bombi for improved visualization and protein localization. Exp Parasitol 2024; 262:108789. [PMID: 38762201 DOI: 10.1016/j.exppara.2024.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Crithidia bombi is a trypanosomatid parasite that infects several species of bumble bees (Bombus spp.), by adhering to their intestinal tract. Crithidia bombi infection impairs learning and reduces survival of workers and the fitness of overwintering queens. Although there is extensive research on the ecology of this host-pathogen system, we understand far less about the mechanisms that mediate internal infection dynamics. Crithidia bombi infects hosts by attaching to the hindgut via the flagellum, and one previous study found that a nectar secondary compound removed the flagellum, preventing attachment. However, approaches that allow more detailed observation of parasite attachment and growth would allow us to better understand factors mediating this host-pathogen relationship. We established techniques for genetic manipulation and visualization of cultured C. bombi. Using constructs established for Crithidia fasciculata, we successfully generated C. bombi cells expressing ectopic fluorescent transgenes using two different selectable markers. To our knowledge, this is the first genetic modification of this species. We also introduced constructs that label the mitochondrion and nucleus of the parasite, showing that subcellular targeting signals can function across parasite species to highlight specific organelles. Finally, we visualized fluorescently tagged parasites in vitro in both their swimming and attached forms, and in vivo in bumble bee (Bombus impatiens) hosts. Expanding our cell and molecular toolkit for C. bombi will help us better understand how factors such as host diet, immune system, and physiology mediate outcomes of infection by these common parasites.
Collapse
Affiliation(s)
| | - Sarah G Lockett
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Sonja K Glasser
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Faith A St Clair
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Neida O Portillo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Megan L Povelones
- Department of Biology, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
2
|
Zakharova A, Albanaz ATS, Opperdoes FR, Škodová-Sveráková I, Zagirova D, Saura A, Chmelová L, Gerasimov ES, Leštinová T, Bečvář T, Sádlová J, Volf P, Lukeš J, Horváth A, Butenko A, Yurchenko V. Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content. PLoS Negl Trop Dis 2022; 16:e0010510. [PMID: 35749562 PMCID: PMC9232130 DOI: 10.1371/journal.pntd.0010510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.
Collapse
Affiliation(s)
- Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Amanda T. S. Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R. Opperdoes
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Diana Zagirova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Lˇubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Evgeny S. Gerasimov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
3
|
Kumar V, Ghosh S, Roy K, Pal C, Singh S. Deletion of Glutamine Synthetase Gene Disrupts the Survivability and Infectivity of Leishmania donovani. Front Cell Infect Microbiol 2021; 11:622266. [PMID: 33732662 PMCID: PMC7959746 DOI: 10.3389/fcimb.2021.622266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Glutamine synthetase (GS) is one of the most important metabolic enzymes which catalyzes ligation of glutamate and ammonia to form glutamine. Previous studies from our lab had revealed significant differences in parasite and host GS enzyme which warranted us to further work on its relevance in parasite. To analyze glutamine synthetase function in Leishmania, we generated GS overexpressors and knockout mutants and evaluated their ability to grow in vitro in monocyte differentiated macrophage and in vivo by infections in BALB/c mice. GS knocked out strain showed significant growth retardation with delayed cell cycle progression and morphological alteration. Null mutants exhibited attenuated infectivity both in in vitro and in vivo experiments and the effect was reverted back when infected with GS complemented parasites. This indicated that the alterations in phenotype observed were indeed due to GS knockout. GS knockout also made the parasite increasingly sensitive to Miltefosine. Detailed investigation of mode of parasite death upon Miltefosine treatment by dual staining with Annexin-V conjugated FITC and propidium iodide, pointed towards apoptotic or necrotic mode of cell death. This is the first report to confirm that GS is essential for the survivability and infectivity of Leishmania donovani, and can be exploited as a potential drug-target.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Sanhita Ghosh
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Kamalika Roy
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Chiranjib Pal
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, India
| |
Collapse
|
4
|
Growth arrested live-attenuated Leishmania infantum KHARON1 null mutants display cytokinesis defect and protective immunity in mice. Sci Rep 2018; 8:11627. [PMID: 30072701 PMCID: PMC6072785 DOI: 10.1038/s41598-018-30076-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/24/2018] [Indexed: 01/30/2023] Open
Abstract
There is no safe and efficacious vaccine against human leishmaniasis available and live attenuated vaccines have been used as a prophylactic alternative against the disease. In order to obtain an attenuated Leishmania parasite for vaccine purposes, we generated L. infantum KHARON1 (KH1) null mutants (ΔLikh1). This gene was previously associated with growth defects in L. mexicana. ΔLikh1 was obtained and confirmed by PCR, qPCR and Southern blot. We also generate a KH1 complemented line with the introduction of episomal copies of KH1. Although ΔLikh1 promastigote forms exhibited a growth pattern similar to the wild-type line, they differ in morphology without affecting parasite viability. L. infantum KH1-deficient amastigotes were unable to sustain experimental infection in macrophages, forming multinucleate cells which was confirmed by in vivo attenuation phenotype. The cell cycle analysis of ΔLikh1 amastigotes showed arrested cells at G2/M phase. ΔLikh1-immunized mice presented reduced parasite burden upon challenging with virulent L. infantum, when compared to naïve mice. An effect associated with increased Li SLA-specific IgG serum levels and IL-17 production. Thus, ΔLikh1 parasites present an infective-attenuated phenotype due to a cytokinesis defect, whereas it induces immunity against visceral leishmaniasis in mouse model, being a candidate for antileishmanial vaccine purposes.
Collapse
|
5
|
A novel protein coding potential of long intergenic non-coding RNAs (lincRNAs) in the kinetoplastid protozoan parasite Leishmania major. Acta Trop 2017; 167:21-25. [PMID: 27988178 DOI: 10.1016/j.actatropica.2016.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/03/2016] [Accepted: 12/12/2016] [Indexed: 01/07/2023]
Abstract
Cutaneous leishmaniasis (CL) is caused by a kinetoplastid protozoan parasite Leishmania major, as a skin ulcer at the site of the sandfly bite. CL is curable and in most cases ulcers heal spontaneously within three to six months leaving a scar and disfiguration. Complete genome of L. major was reported in 2005 at the very initial phase of kinetoplastid parasite genome sequencing project. Presently, L. major genome is most studied and comprehensively annotated genome and therefore, it is being used as a reference genome for annotating recently sequenced Leishmanial genomes. A recent study reporting global transcriptome of L. major promastigotes, identified 1884 uniquely expressed non-coding RNAs (ncRNA) in L. major. In the current study, an in-depth analysis of the 1884 novel ncRNAs was carried out using a proteogenomic approach to identify their protein coding potential. Our analysis resulted in identification of eight novel protein coding genes based on mass spectrometry data. We have analyzed each of these eight novel CDS and in the process have improved the genome annotation of L. major on the basis of mass spectrometry derived peptide data. Although sequenced a decade ago, the improvement in the L. major genome annotation thus is an ongoing process.
Collapse
|
6
|
Damerow S, Hoppe C, Bandini G, Zarnovican P, Buettner FR, Lüder CGK, Ferguson MAJ, Routier FH. Depletion of UDP-Glucose and UDP-Galactose Using a Degron System Leads to Growth Cessation of Leishmania major. PLoS Negl Trop Dis 2015; 9:e0004205. [PMID: 26529232 PMCID: PMC4631452 DOI: 10.1371/journal.pntd.0004205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/11/2015] [Indexed: 11/25/2022] Open
Abstract
Interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) by the UDP-Glc 4´-epimerase intimately connects the biosynthesis of these two nucleotide sugars. Their de novo biosynthesis involves transformation of glucose-6-phosphate into glucose-1-phosphate by the phosphoglucomutase and subsequent activation into UDP-Glc by the specific UDP-Glc pyrophosphorylase (UGP). Besides UGP, Leishmania parasites express an uncommon UDP-sugar pyrophosphorylase (USP) able to activate both galactose-1-phosphate and glucose-1-phosphate in vitro. Targeted gene deletion of UGP alone was previously shown to principally affect expression of lipophosphoglycan, resulting in a reduced virulence. Since our attempts to delete both UGP and USP failed, deletion of UGP was combined with conditional destabilisation of USP to control the biosynthesis of UDP-Glc and UDP-Gal. Stabilisation of the enzyme produced by a single USP allele was sufficient to maintain the steady-state pools of these two nucleotide sugars and preserve almost normal glycoinositolphospholipids galactosylation, but at the apparent expense of lipophosphoglycan biosynthesis. However, under destabilising conditions, the absence of both UGP and USP resulted in depletion of UDP-Glc and UDP-Gal and led to growth cessation and cell death, suggesting that either or both of these metabolites is/are essential. Leishmaniases are a set of tropical and sub-tropical diseases caused by protozoan parasites of the genus Leishmania. They affect about 12 million people and cause a high morbidity. Since treatments against all forms of leishmaniasis are limited in number and efficacy, many efforts are made to identify potential drug targets and develop new therapies. Although considerable progress in genetic manipulation of Leishmania parasites have been made, it remains difficult to study molecules or metabolic pathways essential for parasite viability and growth. In the present work, we used a combination of gene deletion and conditional protein destabilization to demonstrate that biosynthesis of the nucleotide sugar UDP-glucose and its derivative UDP-galactose is essential for parasite growth. Addition of a specific ligand to the culture medium of the engineered parasite protected the targeted enzyme from degradation and enabled cell growth and viability. However, removal of the stabilizing compound led to depletion of UDP-glucose and UDP-galactose, growth arrest and cell death. This work thus opens a new possibility for the study of essential proteins.
Collapse
Affiliation(s)
- Sebastian Damerow
- Department of Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Carolin Hoppe
- Department of Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Giulia Bandini
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Patricia Zarnovican
- Department of Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Falk R. Buettner
- Department of Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Carsten G. K. Lüder
- Institute for Medical Microbiology, Georg-August University, Goettingen, Germany
| | - Michael A. J. Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Françoise H. Routier
- Department of Cellular Chemistry, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
7
|
Rajasekaran R, Chen YPP. Potential therapeutic targets and the role of technology in developing novel antileishmanial drugs. Drug Discov Today 2015; 20:958-68. [PMID: 25936844 DOI: 10.1016/j.drudis.2015.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/25/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is the most prevalent pathogenic disease in many countries around the world, but there are few drugs available to treat it. Most antileishmanial drugs available are highly toxic, have resistance issues or require hospitalization for their use; therefore, they are not suitable for use in most of the affected countries. Over the past decade, the completion of the genomes of many human pathogens, including that of Leishmania spp., has opened new doors for target identification and validation. Here, we focus on the potential drug targets that can be used for the treatment of leishmaniasis and bring to light how recent technological advances, such as structure-based drug design, structural genomics, and molecular dynamics (MD), can be used to our advantage to develop potent and affordable antileishmanial drugs.
Collapse
Affiliation(s)
| | - Yi-Ping Phoebe Chen
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Chhajer R, Ali N. Genetically modified organisms and visceral leishmaniasis. Front Immunol 2014; 5:213. [PMID: 24860575 PMCID: PMC4030198 DOI: 10.3389/fimmu.2014.00213] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/28/2014] [Indexed: 11/18/2022] Open
Abstract
Vaccination is the most effective method of preventing infectious diseases. Since the eradication of small pox in 1976, many other potentially life compromising if not threatening diseases have been dealt with subsequently. This event was a major leap not only in the scientific world already burdened with many diseases but also in the mindset of the common man who became more receptive to novel treatment options. Among the many protozoan diseases, the leishmaniases have emerged as one of the largest parasite killers of the world, second only to malaria. There are three types of leishmaniasis namely cutaneous (CL), mucocutaneous (ML), and visceral (VL), caused by a group of more than 20 species of Leishmania parasites. Visceral leishmaniasis, also known as kala-azar is the most severe form and almost fatal if untreated. Since the first attempts at leishmanization, we have killed parasite vaccines, subunit protein, or DNA vaccines, and now we have live recombinant carrier vaccines and live attenuated parasite vaccines under various stages of development. Although some research has shown promising results, many more potential genes need to be evaluated as live attenuated vaccine candidates. This mini-review attempts to summarize the success and failures of genetically modified organisms used in vaccination against some of major parasitic diseases for their application in leishmaniasis.
Collapse
Affiliation(s)
- Rudra Chhajer
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology , Kolkata , India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology , Kolkata , India
| |
Collapse
|