1
|
Shang S, Zhang L, Liu K, Lv M, Zhang J, Ju D, Wei D, Sun Z, Wang P, Yuan J, Zhu Z. Landscape of targeted therapies for advanced urothelial carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:641-677. [PMID: 38966172 PMCID: PMC11220318 DOI: 10.37349/etat.2024.00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 07/06/2024] Open
Abstract
Bladder cancer (BC) is the tenth most common malignancy globally. Urothelial carcinoma (UC) is a major type of BC, and advanced UC (aUC) is associated with poor clinical outcomes and limited survival rates. Current options for aUC treatment mainly include chemotherapy and immunotherapy. These options have moderate efficacy and modest impact on overall survival and thus highlight the need for novel therapeutic approaches. aUC patients harbor a high tumor mutation burden and abundant molecular alterations, which are the basis for targeted therapies. Erdafitinib is currently the only Food and Drug Administration (FDA)-approved targeted therapy for aUC. Many potential targeted therapeutics aiming at other molecular alterations are under investigation. This review summarizes the current understanding of molecular alterations associated with aUC targeted therapy. It also comprehensively discusses the related interventions for treatment in clinical research and the potential of using novel targeted drugs in combination therapy.
Collapse
Affiliation(s)
- Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Lei Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Maoxin Lv
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming 65000, Yunnan, China
| | - Jie Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- College of Life Sciences, Northwest University, Xi’an 710068, Shaanxi, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zelong Sun
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Pinxiao Wang
- School of Clinical Medicine, Xi’an Medical University, Xi’an 710021, Shaanxi, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| |
Collapse
|
2
|
Bae H, Lee B, Hwang S, Lee J, Kim HS, Suh YL. Clinicopathological and Molecular Characteristics of IDH-Wildtype Glioblastoma with FGFR3::TACC3 Fusion. Biomedicines 2024; 12:150. [PMID: 38255255 PMCID: PMC10813214 DOI: 10.3390/biomedicines12010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The World Health Organization Classification of Tumors of the Central Nervous System recently incorporated histological features, immunophenotypes, and molecular characteristics to improve the accuracy of glioblastoma (GBM) diagnosis. FGFR3::TACC3 (F3T3) fusion has been identified as an oncogenic driver in IDH-wildtype GBMs. Recent studies have demonstrated the potential of using FGFR inhibitors in clinical trials and TACC3-targeting agents in preclinical models for GBM treatment. However, there is limited information on the clinicopathological and genetic features of IDH-wildtype GBMs with F3T3 fusion. The aim of this study was to comprehensively investigate the clinical manifestations, histological features, and mutational profiles of F3T3-positive GBMs. Between September 2017 and February 2023, 25 consecutive cases (5.0%) of F3T3-positive GBM were extracted from 504 cases of IDH-wildtype GBM. Clinicopathological information and targeted sequencing results obtained from 25 primary and 4 recurrent F3T3-positive GBMs were evaluated and compared with those from F3T3-negative GBMs. The provisional grades determined by histology only were distributed as follows: 4 (26/29; 89.7%), 3 (2/29; 6.9%), and 2 (1/29; 3.4%). Grade 2-3 tumors were ultimately diagnosed as grade 4 GBMs based on the identification of the TERT promoter mutation and the combined gain of chromosome 7 and loss of chromosome 10 (7+/10-). F3T3-positive GBMs predominantly affected women (2.6 females per male). The mean age of patients with an F3T3-positive GBM at initial diagnosis was 62 years. F3T3-positive GBMs occurred more frequently in the cortical locations compared to F3T3-negative GBMs. Imaging studies revealed that more than one-third (12/29; 41.4%) of F3T3-positive GBMs displayed a circumscribed tumor border. Seven of the seventeen patients (41.2%) whose follow-up periods exceeded 20 months died of the disease. Histologically, F3T3-positive GBMs more frequently showed curvilinear capillary proliferation, palisading nuclei, and calcification compared to F3T3-negative GBMs. Molecularly, the most common alterations observed in F3T3-positive GBMs were TERT promoter mutations and 7+/10-, whereas amplifications of EGFR, PDGFRA, and KIT were not detected at all. Other genetic alterations included CDKN2A/B deletion, PTEN mutation, TP53 mutation, CDK4 amplification, and MDM2 amplification. Our observations suggest that F3T3-positive GBM is a distinct molecular subgroup of the IDH-wildtype GBM. Both clinicians and pathologists should consider this rare entity in the differential diagnosis of diffuse astrocytic glioma to make an accurate diagnosis and to ensure appropriate therapeutic management.
Collapse
Affiliation(s)
- Hyunsik Bae
- Pathology Center, Seegene Medical Foundation, Seoul 04805, Republic of Korea;
| | - Boram Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (B.L.); (S.H.)
| | - Soohyun Hwang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (B.L.); (S.H.)
| | - Jiyeon Lee
- Department of Pathology, Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea;
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (B.L.); (S.H.)
| | - Yeon-Lim Suh
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (B.L.); (S.H.)
| |
Collapse
|
3
|
Monfort-Vengut A, de Cárcer G. Lights and Shadows on the Cancer Multi-Target Inhibitor Rigosertib (ON-01910.Na). Pharmaceutics 2023; 15:pharmaceutics15041232. [PMID: 37111716 PMCID: PMC10145883 DOI: 10.3390/pharmaceutics15041232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Rigosertib (ON-01910.Na) is a small-molecule member of the novel synthetic benzyl-styryl-sulfonate family. It is currently in phase III clinical trials for several myelodysplastic syndromes and leukemias and is therefore close to clinical translation. The clinical progress of rigosertib has been hampered by a lack of understanding of its mechanism of action, as it is currently considered a multi-target inhibitor. Rigosertib was first described as an inhibitor of the mitotic master regulator Polo-like kinase 1 (Plk1). However, in recent years, some studies have shown that rigosertib may also interact with the PI3K/Akt pathway, act as a Ras-Raf binding mimetic (altering the Ras signaling pathway), as a microtubule destabilizing agent, or as an activator of a stress-induced phospho-regulatory circuit that ultimately hyperphosphorylates and inactivates Ras signaling effectors. Understanding the mechanism of action of rigosertib has potential clinical implications worth exploring, as it may help to tailor cancer therapies and improve patient outcomes.
Collapse
Affiliation(s)
- Ana Monfort-Vengut
- Cell Cycle and Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas Alberto Sols (IIBM) CSIC-UAM, 28029 Madrid, Spain
| | - Guillermo de Cárcer
- Cell Cycle and Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas Alberto Sols (IIBM) CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
4
|
Rajeev R, Mukhopadhyay S, Bhagyanath S, Devu Priya MRS, Manna TK. TACC3-ch-TOG interaction regulates spindle microtubule assembly by controlling centrosomal recruitment of γ-TuRC. Biosci Rep 2023; 43:232568. [PMID: 36790370 PMCID: PMC10037420 DOI: 10.1042/bsr20221882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
γ-Tubulin ring complex (γ-TuRC), composed of γ-tubulin and multiple γ-tubulin complex proteins (GCPs), serves as the major microtubule nucleating complex in animal cells. However, several γ-TuRC-associated proteins have been shown to control its function. Centrosomal adaptor protein, TACC3, is one such γ-TuRC-interacting factor that is essential for proper mitotic spindle assembly across organisms. ch-TOG is another microtubule assembly promoting protein, which interacts with TACC3 and cooperates in mitotic spindle assembly. However, the mechanism how TACC3-ch-TOG interaction regulates microtubule assembly and the γ-TuRC functions at the centrosomes remain unclear. Here, we show that deletion of the ch-TOG-binding region in TACC3 enhances recruitment of the γ-TuRC proteins to centrosomes and aggravates spindle microtubule assembly in human cells. Loss of TACC3-ch-TOG binding imparts stabilization on TACC3 interaction with the γ-TuRC proteins and it does so by stimulating TACC3 phosphorylation and thereby enhancing phospho-TACC3 recruitment to the centrosomes. We also show that localization of ch-TOG at the centrosomes is substantially reduced and the same on the spindle microtubules is increased in its TACC3-unbound condition. Additional results reveal that ch-TOG depletion stimulates γ-tubulin localization on the spindles without significantly affecting the centrosomal γ-tubulin level. The results indicate that ch-TOG binding to TACC3 controls TACC3 phosphorylation and TACC3-mediated stabilization of the γ-TuRCs at the centrosomes. They also implicate that the spatio-temporal control of TACC3 phosphorylation via ch-TOG-binding ensures mitotic spindle assembly to the optimal level.
Collapse
Affiliation(s)
- Resmi Rajeev
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Swarnendu Mukhopadhyay
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Suresh Bhagyanath
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Manu Rani S Devu Priya
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| |
Collapse
|
5
|
Sorokin M, Rabushko E, Rozenberg JM, Mohammad T, Seryakov A, Sekacheva M, Buzdin A. Clinically relevant fusion oncogenes: detection and practical implications. Ther Adv Med Oncol 2022; 14:17588359221144108. [PMID: 36601633 PMCID: PMC9806411 DOI: 10.1177/17588359221144108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/22/2022] [Indexed: 12/28/2022] Open
Abstract
Mechanistically, chimeric genes result from DNA rearrangements and include parts of preexisting normal genes combined at the genomic junction site. Some rearranged genes encode pathological proteins with altered molecular functions. Those which can aberrantly promote carcinogenesis are called fusion oncogenes. Their formation is not a rare event in human cancers, and many of them were documented in numerous study reports and in specific databases. They may have various molecular peculiarities like increased stability of an oncogenic part, self-activation of tyrosine kinase receptor moiety, and altered transcriptional regulation activities. Currently, tens of low molecular mass inhibitors are approved in cancers as the drugs targeting receptor tyrosine kinase (RTK) oncogenic fusion proteins, that is, including ALK, ABL, EGFR, FGFR1-3, NTRK1-3, MET, RET, ROS1 moieties. Therein, the presence of the respective RTK fusion in the cancer genome is the diagnostic biomarker for drug prescription. However, identification of such fusion oncogenes is challenging as the breakpoint may arise in multiple sites within the gene, and the exact fusion partner is generally unknown. There is no gold standard method for RTK fusion detection, and many alternative experimental techniques are employed nowadays to solve this issue. Among them, RNA-seq-based methods offer an advantage of unbiased high-throughput analysis of only transcribed RTK fusion genes, and of simultaneous finding both fusion partners in a single RNA-seq read. Here we focus on current knowledge of biology and clinical aspects of RTK fusion genes, related databases, and laboratory detection methods.
Collapse
Affiliation(s)
| | - Elizaveta Rabushko
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | | | - Tharaa Mohammad
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia
| | | | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry, Moscow, Russia,PathoBiology Group, European Organization for
Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
6
|
Zhao W, Sun X, Shi L, Cai SZ, Ma ZR. Discovery of novel analogs of KHS101 as transforming acidic coiled coil containing protein 3 (TACC3) inhibitors for the treatment of glioblastoma. Eur J Med Chem 2022; 244:114874. [DOI: 10.1016/j.ejmech.2022.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
|
7
|
Fang Z, Lin M, Chen S, Liu H, Zhu M, Hu Y, Han S, Wang Y, Sun L, Zhu F, Xu C, Gong C. E2F1 promotes cell cycle progression by stabilizing spindle fiber in colorectal cancer cells. Cell Mol Biol Lett 2022; 27:90. [PMID: 36221072 PMCID: PMC9552509 DOI: 10.1186/s11658-022-00392-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND E2F1 is a transcription factor that regulates cell cycle progression. It is highly expressed in most cancer cells and activates transcription of cell cycle-related kinases. Stathmin1 and transforming acidic coiled-coil-containing protein 3 (TACC3) are factors that enhance the stability of spindle fiber. METHODS The E2F1-mediated transcription of transforming acidic coiled-coil-containing protein 3 (TACC3) and stathmin1 was examined using the Cancer Genome Atlas (TCGA) analysis, quantitative polymerase chain reaction (qPCR), immunoblotting, chromatin immunoprecipitation (ChIP), and luciferase reporter. Protein-protein interaction was studied using co-IP. The spindle structure was shown by immunofluorescence. Phenotype experiments were performed through MTS assay, flow cytometry, and tumor xenografts. Clinical colorectal cancer (CRC) specimens were analyzed based on immunohistochemistry. RESULTS The present study showed that E2F1 expression correlates positively with the expression levels of stathmin1 and TACC3 in colorectal cancer (CRC) tissues, and that E2F1 transactivates stathmin1 and TACC3 in CRC cells. Furthermore, protein kinase A (PKA)-mediated phosphorylation of stathmin1 at Ser16 is essential to the phosphorylation of TACC3 at Ser558, facilitating the assembly of TACC3/clathrin/α-tubulin complexes during spindle formation. Overexpression of Ser16-mutated stathmin1, as well as knockdown of stathmin1 or TACC3, lead to ectopic spindle poles including disorganized and multipolar spindles. Overexpression of wild-type but not Ser16-mutated stathmin1 promotes cell proliferation in vitro and tumor growth in vivo. Consistently, a high level of E2F1, stathmin1, or TACC3 not only associates with tumor size, lymph node metastasis, TNM stage, and distant metastasis, but predicts poor survival in CRC patients. CONCLUSIONS E2F1 drives the cell cycle of CRC by promoting spindle assembly, in which E2F1-induced stathmin1 and TACC3 enhance the stability of spindle fiber.
Collapse
Affiliation(s)
- Zejun Fang
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmen, 317100, China.,Department of Clinical Laboratory, Sanmen People's Hospital of Zhejiang Province, No. 15 Taihe Road, Hairun Street, Sanmen, 317100, China.,Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Min Lin
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmen, 317100, China
| | - Shenghui Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China.,Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Hong Liu
- Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Minjing Zhu
- Department of Clinical Laboratory, Sanmen People's Hospital of Zhejiang Province, No. 15 Taihe Road, Hairun Street, Sanmen, 317100, China
| | - Yanyan Hu
- Department of Clinical Laboratory, Sanmen People's Hospital of Zhejiang Province, No. 15 Taihe Road, Hairun Street, Sanmen, 317100, China
| | - Shanshan Han
- Department of Clinical Laboratory, Sanmen People's Hospital of Zhejiang Province, No. 15 Taihe Road, Hairun Street, Sanmen, 317100, China
| | - Yizhang Wang
- Department of Clinical Laboratory, Sanmen People's Hospital of Zhejiang Province, No. 15 Taihe Road, Hairun Street, Sanmen, 317100, China
| | - Long Sun
- Department of Gastrointestinal Surgery, Sanmen People's Hospital of Zhejiang Province, Sanmen, 317100, China
| | - Fengjiao Zhu
- Department of Clinical Laboratory, Sanmen People's Hospital of Zhejiang Province, No. 15 Taihe Road, Hairun Street, Sanmen, 317100, China.
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China.
| | - Chaoju Gong
- Central Laboratory, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 19 Zhongshan Bei Road, Xuzhou, 221100, China.
| |
Collapse
|
8
|
Thomas J, Sonpavde G. Molecularly Targeted Therapy towards Genetic Alterations in Advanced Bladder Cancer. Cancers (Basel) 2022; 14:1795. [PMID: 35406567 PMCID: PMC8997162 DOI: 10.3390/cancers14071795] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the introduction of immune checkpoint inhibitors and antibody-drug conjugates to the management of advanced urothelial carcinoma, the disease is generally incurable. The increasing incorporation of next-generation sequencing of tumor tissue into the characterization of bladder cancer has led to a better understanding of the somatic genetic aberrations potentially involved in its pathogenesis. Genetic alterations have been observed in kinases, such as FGFRs, ErbBs, PI3K/Akt/mTOR, and Ras-MAPK, and genetic alterations in critical cellular processes, such as chromatin remodeling, cell cycle regulation, and DNA damage repair. However, activating mutations or fusions of FGFR2 and FGFR3 remains the only validated therapeutically actionable alteration, with erdafitinib as the only targeted agent currently approved for this group. Bladder cancer is characterized by genomic heterogeneity and a high tumor mutation burden. This review highlights the potential relevance of aberrations and discusses the current status of targeted therapies directed at them.
Collapse
Affiliation(s)
- Jonathan Thomas
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Guru Sonpavde
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| |
Collapse
|
9
|
You G, Fan X, Hu H, Jiang T, Chen CC. Fusion Genes Altered in Adult Malignant Gliomas. Front Neurol 2021; 12:715206. [PMID: 34671307 PMCID: PMC8520976 DOI: 10.3389/fneur.2021.715206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Malignant gliomas are highly heterogeneous brain tumors in molecular genetic background. Despite the many recent advances in the understanding of this disease, patients with adult high-grade gliomas retain a notoriously poor prognosis. Fusions involving oncogenes have been reported in gliomas and may serve as novel therapeutic targets to date. Understanding the gene fusions and how they regulate oncogenesis and malignant progression will contribute to explore new approaches for personalized treatment. By now, studies on gene fusions in gliomas remain limited. However, some current clinical trials targeting fusion genes have presented exciting preliminary findings. The aim of this review is to summarize all the reported fusion genes in high-grade gliomas so far, discuss the characterization of some of the most popular gene fusions occurring in malignant gliomas, as well as their function in tumorigenesis, and the underlying clinical implication as therapeutic targets.
Collapse
Affiliation(s)
- Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurophysiology, Beijing Neurosurgical Institute, Beijing, China
| | - Xing Fan
- Department of Neurophysiology, Beijing Neurosurgical Institute, Beijing, China
| | - Huimin Hu
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Nita A, Abraham SP, Krejci P, Bosakova M. Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling. Cells 2021; 10:1445. [PMID: 34207779 PMCID: PMC8227969 DOI: 10.3390/cells10061445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
11
|
Pederzoli F, Bandini M, Marandino L, Ali SM, Madison R, Chung J, Ross JS, Necchi A. Targetable gene fusions and aberrations in genitourinary oncology. Nat Rev Urol 2020; 17:613-625. [PMID: 33046892 DOI: 10.1038/s41585-020-00379-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Gene fusions result from either structural chromosomal rearrangement or aberrations caused by splicing or transcriptional readthrough. The precise and distinctive presence of fusion genes in neoplastic tissues and their involvement in multiple pathways central to cancer development, growth and survival make them promising targets for personalized therapy. In genitourinary malignancies, rearrangements involving the E26 transformation-specific family of transcription factors have emerged as very frequent alterations in prostate cancer, especially the TMPRSS2-ERG fusion. In renal malignancies, Xp11 and t(6;11) translocations are hallmarks of a distinct pathological group of tumours described as microphthalmia-associated transcription factor family translocation-associated renal cell carcinomas. Novel druggable fusion events have been recognized in genitourinary malignancies, leading to the activation of several clinical trials. For instance, ALK-rearranged renal cell carcinomas have shown responses to alectinib and crizotinib. Erdafitinib has been tested for the treatment of FGFR-rearranged bladder cancer. Other anti-fibroblast growth factor receptor 3 (FGFR3) compounds are showing promising results in the treatment of bladder cancer, including infigratinib and pemigatinib, and all are currently in clinical trials.
Collapse
Affiliation(s)
- Filippo Pederzoli
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy.
| | - Marco Bandini
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Marandino
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Siraj M Ali
- Foundation Medicine Inc., Cambridge, MA, USA
| | | | - Jon Chung
- Foundation Medicine Inc., Cambridge, MA, USA
| | - Jeffrey S Ross
- Foundation Medicine Inc., Cambridge, MA, USA.,Upstate Medical University, Syracuse, NY, USA
| | - Andrea Necchi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
12
|
De Luca A, Esposito Abate R, Rachiglio AM, Maiello MR, Esposito C, Schettino C, Izzo F, Nasti G, Normanno N. FGFR Fusions in Cancer: From Diagnostic Approaches to Therapeutic Intervention. Int J Mol Sci 2020; 21:E6856. [PMID: 32962091 PMCID: PMC7555921 DOI: 10.3390/ijms21186856] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are tyrosine kinase receptors involved in many biological processes. Deregulated FGFR signaling plays an important role in tumor development and progression in different cancer types. FGFR genomic alterations, including FGFR gene fusions that originate by chromosomal rearrangements, represent a promising therapeutic target. Next-generation-sequencing (NGS) approaches have significantly improved the discovery of FGFR gene fusions and their detection in clinical samples. A variety of FGFR inhibitors have been developed, and several studies are trying to evaluate the efficacy of these agents in molecularly selected patients carrying FGFR genomic alterations. In this review, we describe the most frequent FGFR aberrations in human cancer. We also discuss the different approaches employed for the detection of FGFR fusions and the potential role of these genomic alterations as prognostic/predictive biomarkers.
Collapse
Affiliation(s)
- Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (R.E.A.); (A.M.R.); (M.R.M.); (C.E.)
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (R.E.A.); (A.M.R.); (M.R.M.); (C.E.)
| | - Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (R.E.A.); (A.M.R.); (M.R.M.); (C.E.)
| | - Monica Rosaria Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (R.E.A.); (A.M.R.); (M.R.M.); (C.E.)
| | - Claudia Esposito
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (R.E.A.); (A.M.R.); (M.R.M.); (C.E.)
| | - Clorinda Schettino
- Clinical Trials Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Francesco Izzo
- Division of Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Guglielmo Nasti
- SSD Innovative Therapies for Abdominal Cancers, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (R.E.A.); (A.M.R.); (M.R.M.); (C.E.)
| |
Collapse
|
13
|
Bale TA. FGFR- gene family alterations in low-grade neuroepithelial tumors. Acta Neuropathol Commun 2020; 8:21. [PMID: 32085805 PMCID: PMC7035775 DOI: 10.1186/s40478-020-00898-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of fibroblast growth factor receptor (FGFR) gene family alterations as drivers of primary brain tumors has generated significant excitement, both as potential therapeutic targets as well as defining hallmarks of histologic entities. However, FGFR alterations among neuroepithelial lesions are not restricted to high or low grade, nor to adult vs. pediatric-type tumors. While it may be tempting to consider FGFR-altered tumors as a unified group, this underlying heterogeneity poses diagnostic and interpretive challenges. Therefore, understanding the underlying biology of tumors harboring specific FGFR alterations is critical. In this review, recent evidence for recurrent FGFR alterations in histologically and biologically low-grade neuroepithelial tumors (LGNTs) is examined (namely FGFR1 tyrosine kinase domain duplication in low grade glioma, FGFR1-TACC1 fusions in extraventricular neurocytoma [EVN], and FGFR2-CTNNA3 fusions in polymorphous low-grade neuroepithelial tumor of the young [PLNTY]). Additionally, FGFR alterations with less well-defined prognostic implications are considered (FGFR3-TACC3 fusions, FGFR1 hotspot mutations). Finally, a framework for practical interpretation of FGFR alterations in low grade glial/glioneuronal tumors is proposed.
Collapse
Affiliation(s)
- Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Street, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Abstract
The discovery of fibroblast growth factor receptor (FGFR) gene family alterations as drivers of primary brain tumors has generated significant excitement, both as potential therapeutic targets as well as defining hallmarks of histologic entities. However, FGFR alterations among neuroepithelial lesions are not restricted to high or low grade, nor to adult vs. pediatric-type tumors. While it may be tempting to consider FGFR-altered tumors as a unified group, this underlying heterogeneity poses diagnostic and interpretive challenges. Therefore, understanding the underlying biology of tumors harboring specific FGFR alterations is critical. In this review, recent evidence for recurrent FGFR alterations in histologically and biologically low-grade neuroepithelial tumors (LGNTs) is examined (namely FGFR1 tyrosine kinase domain duplication in low grade glioma, FGFR1-TACC1 fusions in extraventricular neurocytoma [EVN], and FGFR2-CTNNA3 fusions in polymorphous low-grade neuroepithelial tumor of the young [PLNTY]). Additionally, FGFR alterations with less well-defined prognostic implications are considered (FGFR3-TACC3 fusions, FGFR1 hotspot mutations). Finally, a framework for practical interpretation of FGFR alterations in low grade glial/glioneuronal tumors is proposed.
Collapse
Affiliation(s)
- Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Street, New York, NY, 10065, USA.
| |
Collapse
|
15
|
Wang Y, Jiang X, Feng F, Liu W, Sun H. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B 2020; 10:207-238. [PMID: 32082969 PMCID: PMC7016280 DOI: 10.1016/j.apsb.2019.08.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Blocking the biological functions of scaffold proteins and aggregated proteins is a challenging goal. PROTAC proteolysis-targeting chimaera (PROTAC) technology may be the solution, considering its ability to selectively degrade target proteins. Recent progress in the PROTAC strategy include identification of the structure of the first ternary eutectic complex, extra-terminal domain-4-PROTAC-Von-Hippel-Lindau (BRD4-PROTAC-VHL), and PROTAC ARV-110 has entered clinical trials for the treatment of prostate cancer in 2019. These discoveries strongly proved the value of the PROTAC strategy. In this perspective, we summarized recent meaningful research of PROTAC, including the types of degradation proteins, preliminary biological data in vitro and in vivo, and new E3 ubiquitin ligases. Importantly, the molecular design, optimization strategy and clinical application of candidate molecules are highlighted in detail. Future perspectives for development of advanced PROTAC in medical fields have also been discussed systematically.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
16
|
Chew NJ, Nguyen EV, Su SP, Novy K, Chan HC, Nguyen LK, Luu J, Simpson KJ, Lee RS, Daly RJ. FGFR3 signaling and function in triple negative breast cancer. Cell Commun Signal 2020; 18:13. [PMID: 31987043 PMCID: PMC6986078 DOI: 10.1186/s12964-019-0486-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) accounts for 16% of breast cancers and represents an aggressive subtype that lacks targeted therapeutic options. In this study, mass spectrometry (MS)-based tyrosine phosphorylation profiling identified aberrant FGFR3 activation in a subset of TNBC cell lines. This kinase was therefore evaluated as a potential therapeutic target. Methods MS-based tyrosine phosphorylation profiling was undertaken across a panel of 24 TNBC cell lines. Immunoprecipitation and Western blot were used to further characterize FGFR3 phosphorylation. Indirect immunofluorescence and confocal microscopy were used to determine FGFR3 localization. The selective FGFR1–3 inhibitor, PD173074 and siRNA knockdowns were used to characterize the functional role of FGFR3 in vitro. The TCGA and Metabric breast cancer datasets were interrogated to identify FGFR3 alterations and how they relate to breast cancer subtype and overall patient survival. Results High FGFR3 expression and phosphorylation were detected in SUM185PE cells, which harbor a FGFR3-TACC3 gene fusion. Low FGFR3 phosphorylation was detected in CAL51, MFM-223 and MDA-MB-231 cells. In SUM185PE cells, the FGFR3-TACC3 fusion protein contributed the majority of phosphorylated FGFR3, and largely localized to the cytoplasm and plasma membrane, with staining at the mitotic spindle in a small subset of cells. Knockdown of the FGFR3-TACC3 fusion and wildtype FGFR3 in SUM185PE cells decreased FRS2, AKT and ERK phosphorylation, and induced cell death. Knockdown of wildtype FGFR3 resulted in only a trend for decreased proliferation. PD173074 significantly decreased FRS2, AKT and ERK activation, and reduced SUM185PE cell proliferation. Cyclin A and pRb were also decreased in the presence of PD173074, while cleaved PARP was increased, indicating cell cycle arrest in G1 phase and apoptosis. Knockdown of FGFR3 in CAL51, MFM-223 and MDA-MB-231 cells had no significant effect on cell proliferation. Interrogation of public datasets revealed that increased FGFR3 expression in breast cancer was significantly associated with reduced overall survival, and that potentially oncogenic FGFR3 alterations (eg mutation and amplification) occur in the TNBC/basal, luminal A and luminal B subtypes, but are rare. Conclusions These results indicate that targeting FGFR3 may represent a therapeutic option for TNBC, but only for patients with oncogenic FGFR3 alterations, such as the FGFR3-TACC3 fusion. Video abstract.
Collapse
Affiliation(s)
- Nicole J Chew
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Elizabeth V Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Shih-Ping Su
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Karel Novy
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Howard C Chan
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Lan K Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jennii Luu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Rachel S Lee
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
17
|
Chou VT, Johnson S, Long J, Vounatsos M, Van Vactor D. dTACC restricts bouton addition and regulates microtubule organization at the Drosophila neuromuscular junction. Cytoskeleton (Hoboken) 2020; 77:4-15. [PMID: 31702858 PMCID: PMC7027520 DOI: 10.1002/cm.21578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Abstract
Regulation of the synaptic cytoskeleton is essential to proper neuronal development and wiring. Perturbations in neuronal microtubules (MTs) are associated with numerous pathologies, yet it remains unclear how changes in MTs may be coupled to synapse morphogenesis. Studies have identified many MT regulators that promote synapse growth. However, less is known about the factors that restrict growth, despite the potential links of synaptic overgrowth to severe neurological conditions. Here, we report that dTACC, which is implicated in MT assembly and stability, prevents synapse overgrowth at the Drosophila neuromuscular junction by restricting addition of new boutons throughout larval development. dTACC localizes to the axonal MT lattice and is required to maintain tubulin levels and the integrity of higher-order MT structures in motor axon terminals. While previous reports have demonstrated the roles of MT-stabilizing proteins in promoting synapse growth, our findings suggest that in certain contexts, MT stabilization may correlate with restricted growth.
Collapse
Affiliation(s)
- Vivian T. Chou
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Seth Johnson
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Jennifer Long
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Maxime Vounatsos
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - David Van Vactor
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| |
Collapse
|
18
|
Yabuno Y, Uchihashi T, Sasakura T, Shimizu H, Naito Y, Fukushima K, Ota K, Kogo M, Nojima H, Yabuta N. Clathrin heavy chain phosphorylated at T606 plays a role in proper cell division. Cell Cycle 2019; 18:1976-1994. [PMID: 31272276 PMCID: PMC6681784 DOI: 10.1080/15384101.2019.1637201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022] Open
Abstract
Clathrin regulates mitotic progression, in addition to membrane trafficking. However, the detailed regulatory mechanisms of clathrin during mitosis remain elusive. Here, we demonstrate novel regulation of clathrin during mitotic phase of the cell cycle. Clathrin heavy chain (CHC) was phosphorylated at T606 by its association partner cyclin G-associated kinase (GAK). This phosphorylation was required for proper cell proliferation and tumor growth of cells implanted into nude mice. Immunofluorescence analysis showed that the localization of CHC-pT606 signals changed during mitosis. CHC-pT606 signals localized in the nucleus and at the centrosome during interphase, whereas CHC signals were mostly cytoplasmic. Co-immunoprecipitation suggested that CHC formed a complex with GAK and polo-like kinase 1 (PLK1). Depletion of GAK using siRNA induced metaphase arrest and aberrant localization of CHC-pT606, which abolished Kiz-pT379 (as a phosphorylation target of PLK1) signals on chromatin at metaphase. Taken together, we propose that the GAK_CHC-pT606_PLK1_Kiz-pT379 axis plays a role in proliferation of cancer cells.
Collapse
Affiliation(s)
- Yusuke Yabuno
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Toshihiro Uchihashi
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Towa Sasakura
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Shimizu
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Kohshiro Fukushima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kaori Ota
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
19
|
Tuna M, Amos CI, Mills GB. Molecular mechanisms and pathobiology of oncogenic fusion transcripts in epithelial tumors. Oncotarget 2019; 10:2095-2111. [PMID: 31007851 PMCID: PMC6459343 DOI: 10.18632/oncotarget.26777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Recurrent fusion transcripts, which are one of the characteristic hallmarks of cancer, arise either from chromosomal rearrangements or from transcriptional errors in splicing. DNA rearrangements include intrachromosomal or interchromosomal translocation, tandem duplication, deletion, inversion, or result from chromothripsis, which causes complex rearrangements. In addition, fusion proteins can be created through transcriptional read-through. Fusion genes can be transcribed to fusion transcripts and translated to chimeric proteins, with many having demonstrated transforming activities through multiple mechanisms in cells. Fusion proteins represent novel therapeutic targets and diagnostic biomarkers of diagnosis, disease status, or progression. This review focuses on the mechanisms underlying the formation of oncogenic fusion genes and transcripts and their impact on the pathobiology of epithelial tumors.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I. Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Gordon B. Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health Science University, Portland, OR, USA
- Precision Oncology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
20
|
Zhang Y, Tan L, Yang Q, Li C, Liou YC. The microtubule-associated protein HURP recruits the centrosomal protein TACC3 to regulate K-fiber formation and support chromosome congression. J Biol Chem 2018; 293:15733-15747. [PMID: 30054275 DOI: 10.1074/jbc.ra118.003676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/19/2018] [Indexed: 11/06/2022] Open
Abstract
Kinetochore fibers (K-fibers) are microtubule bundles attached to chromosomes. Efficient K-fiber formation is required for chromosome congression, crucial for faithful chromosome segregation in cells. However, the mechanisms underlying K-fiber formation before chromosome biorientation remain unclear. Depletion of hepatoma up-regulated protein (HURP), a RanGTP-dependent microtubule-associated protein localized on K-fibers, has been shown to result in low-efficiency K-fiber formation. Therefore, here we sought to identify critical interaction partners of HURP that may modulate this function. Using co-immunoprecipitation and bimolecular fluorescence complementation assays, we determined that HURP interacts directly with the centrosomal protein transforming acidic coiled coil-containing protein 3 (TACC3), a centrosomal protein, both in vivo and in vitro through the HURP1-625 region. We found that HURP is important for TACC3 function during kinetochore microtubule assembly at the chromosome region in prometaphase. Moreover, HURP regulates stable lateral kinetochore attachment and chromosome congression in early mitosis by modulation of TACC3. These findings provide new insight into the coordinated regulation of K-fiber formation and chromosome congression in prometaphase by microtubule-associated proteins.
Collapse
Affiliation(s)
- Yajun Zhang
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Lora Tan
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Qiaoyun Yang
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Chenyu Li
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Yih-Cherng Liou
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and .,the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117573, Singapore
| |
Collapse
|
21
|
Nelson KN, Meyer AN, Wang CG, Donoghue DJ. Oncogenic driver FGFR3-TACC3 is dependent on membrane trafficking and ERK signaling. Oncotarget 2018; 9:34306-34319. [PMID: 30344944 PMCID: PMC6188140 DOI: 10.18632/oncotarget.26142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 12/30/2022] Open
Abstract
Fusion proteins resulting from chromosomal translocations have been identified as oncogenic drivers in many cancers, allowing them to serve as potential drug targets in clinical practice. The genes encoding FGFRs, Fibroblast Growth Factor Receptors, are commonly involved in such translocations, with the FGFR3-TACC3 fusion protein frequently identified in many cancers, including glioblastoma, cervical cancer, bladder cancer, nasopharyngeal carcinoma, and lung adenocarcinoma among others. FGFR3-TACC3 retains the entire extracellular domain and most of the kinase domain of FGFR3, with its C-terminal domain fused to TACC3. We examine here the effects of targeting FGFR3-TACC3 to different subcellular localizations by appending either a nuclear localization signal (NLS) or a myristylation signal, or by deletion of the normal signal sequence. We demonstrate that the oncogenic effects of FGFR3-TACC3 require either entrance to the secretory pathway or plasma membrane localization, leading to overactivation of canonical MAPK/ERK pathways. We also examined the effects of different translocation breakpoints in FGFR3-TACC3, comparing fusion at TACC3 exon 11 with fusion at exon 8. Transformation resulting from FGFR3-TACC3 was not affected by association with the canonical TACC3-interacting proteins Aurora-A, clathrin, and ch-TOG. We have shown that kinase inhibitors for MEK (Trametinib) and FGFR (BGJ398) are effective in blocking cell transformation and MAPK pathway upregulation. The development of personalized medicines will be essential in treating patients who harbor oncogenic drivers such as FGFR3-TACC3.
Collapse
Affiliation(s)
- Katelyn N Nelson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Clark G Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA.,UCSD Moores Cancer Center and University of California San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Polson ES, Kuchler VB, Abbosh C, Ross EM, Mathew RK, Beard HA, da Silva B, Holding AN, Ballereau S, Chuntharpursat-Bon E, Williams J, Griffiths HBS, Shao H, Patel A, Davies AJ, Droop A, Chumas P, Short SC, Lorger M, Gestwicki JE, Roberts LD, Bon RS, Allison SJ, Zhu S, Markowetz F, Wurdak H. KHS101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice. Sci Transl Med 2018; 10:eaar2718. [PMID: 30111643 DOI: 10.1126/scitranslmed.aar2718] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/24/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022]
Abstract
Pharmacological inhibition of uncontrolled cell growth with small-molecule inhibitors is a potential strategy for treating glioblastoma multiforme (GBM), the most malignant primary brain cancer. We showed that the synthetic small-molecule KHS101 promoted tumor cell death in diverse GBM cell models, independent of their tumor subtype, and without affecting the viability of noncancerous brain cell lines. KHS101 exerted cytotoxic effects by disrupting the mitochondrial chaperone heat shock protein family D member 1 (HSPD1). In GBM cells, KHS101 promoted aggregation of proteins regulating mitochondrial integrity and energy metabolism. Mitochondrial bioenergetic capacity and glycolytic activity were selectively impaired in KHS101-treated GBM cells. In two intracranial patient-derived xenograft tumor models in mice, systemic administration of KHS101 reduced tumor growth and increased survival without discernible side effects. These findings suggest that targeting of HSPD1-dependent metabolic pathways might be an effective strategy for treating GBM.
Collapse
Affiliation(s)
- Euan S Polson
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Edith M Ross
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ryan K Mathew
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Neurosurgery, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Hester A Beard
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | - Andrew N Holding
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Stephane Ballereau
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | | | - Hollie B S Griffiths
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Hao Shao
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Anjana Patel
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Adam J Davies
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair Droop
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Paul Chumas
- Department of Neurosurgery, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Susan C Short
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Mihaela Lorger
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Lee D Roberts
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Robin S Bon
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Simon J Allison
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Shoutian Zhu
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, USA
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Heiko Wurdak
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
23
|
Xu T, Wang H, Huang X, Li W, Huang Q, Yan Y, Chen J. Gene Fusion in Malignant Glioma: An Emerging Target for Next-Generation Personalized Treatment. Transl Oncol 2018; 11:609-618. [PMID: 29571074 PMCID: PMC6071515 DOI: 10.1016/j.tranon.2018.02.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 01/02/2023] Open
Abstract
Malignant gliomas are heterogeneous diseases in genetic basis. The development of sequencing techniques has identified many gene rearrangements encoding novel oncogenic fusions in malignant glioma to date. Understanding the gene fusions and how they regulate cellular processes in different subtypes of glioma will shed light on genomic diagnostic approaches for personalized treatment. By now, studies of gene fusions in glioma remain limited, and no medication has been approved for treating the malignancy harboring gene fusions. This review will discuss the current characterization of gene fusions occurring in both adult and pediatric malignant gliomas, their roles in oncogenesis, and the potential clinical implication as therapeutic targets.
Collapse
Affiliation(s)
- Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Hongxiang Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiaoquan Huang
- Center of Evidence-based Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weiqing Li
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Qilin Huang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yong Yan
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Juxiang Chen
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
24
|
Zhao C, He X, Li H, Zhou J, Han X, Wang D, Tian G, Sui F. Downregulation of TACC3 inhibits tumor growth and migration in osteosarcoma cells through regulation of the NF-κB signaling pathway. Oncol Lett 2018; 15:6881-6886. [PMID: 29725420 PMCID: PMC5920203 DOI: 10.3892/ol.2018.8262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
TACC3, a member of the transforming acidic coiled-coil protein (TACC) family, is a multifunctional protein that is involved in various biological functions, including proliferation and differentiation of tumor cells, cancer progression and metastasis. The aims of the present study were to examine whether TACC3 expression is associated with the proliferation and migration of osteosarcoma (OS) cells and to investigate the potential underlying molecular mechanisms of TACC3 in OS. First, the levels of mRNA and protein expression in OS cell lines by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively were examined. Second, the effects of TACC3 knockdown and overexpression on the proliferative, migratory and invasive capacities of OS cells were investigated. Finally, western blot analysis was employed to detect the potential mechanism of TACC3 in osteosarcoma. TACC3 expression was significantly increased in osteosarcoma tissues and cell lines, compared to matched controls. The knockdown of TACC3 was able to significantly inhibit the proliferation, migration and invasion of osteosarcoma cells, whereas the overexpression of TACC3 was able to promote cell proliferation and migration. Mechanistically, TACC3 may promote the migration and invasion of osteosarcoma cells via through nuclear factor-κB signaling. These data suggest that TACC3 has an important part in the progression of osteosarcoma and may serve as a potential target for gene therapy.
Collapse
Affiliation(s)
- Congran Zhao
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Xiaofeng He
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Heng Li
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Jihui Zhou
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Xiuying Han
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Dongjun Wang
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Guofeng Tian
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Fuge Sui
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| |
Collapse
|
25
|
Abstract
Transforming acidic coiled-coil protein 3 (TACC3) is a member of the TACC family and plays an important role in regulating cell mitosis, transcription, and tumorigenesis. However, the expression pattern and roles of TACC3 in renal cell carcinoma (RCC) remain unclear. The aim of this study was to investigate the role of TACC3 in RCC. We demonstrated overexpression of TACC3 in human RCC cell lines at both RNA and protein levels. Moreover, knockdown of TACC3 repressed RCC cell proliferation, migration, and invasion in vitro. In addition, knockdown of TACC3 inactivated PI3K/Akt signaling in RCC cells. Furthermore, knockdown of TACC3 significantly reduced tumor growth in xenograft tumor-bearing mice. Taken together, our findings showed that TACC3 was increased in human RCC cell lines, and knockdown of TACC3 inhibited the ability of cell proliferation, migration, invasion, and tumorigenesis in vivo. Therefore, TACC3 may act as a therapeutic target for the treatment of human RCC.
Collapse
Affiliation(s)
- Feng Guo
- Department of Urology, The Central Hospital of Wuhan, Wuhan, P.R. China
| | - Yaquan Liu
- Department of Urology, The Central Hospital of Wuhan, Wuhan, P.R. China
| |
Collapse
|
26
|
Kim Y, Kim ST, Lee J, Kang WK, Kim KM, Park SH. Identification of FGFR3-TACC3 gene fusion in metastatic gastric cancer. PRECISION AND FUTURE MEDICINE 2017. [DOI: 10.23838/pfm.2017.00170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Jost M, Chen Y, Gilbert LA, Horlbeck MA, Krenning L, Menchon G, Rai A, Cho MY, Stern JJ, Prota AE, Kampmann M, Akhmanova A, Steinmetz MO, Tanenbaum ME, Weissman JS. Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Mol Cell 2017; 68:210-223.e6. [PMID: 28985505 PMCID: PMC5640507 DOI: 10.1016/j.molcel.2017.09.012] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/19/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
Chemical libraries paired with phenotypic screens can now readily identify compounds with therapeutic potential. A central limitation to exploiting these compounds, however, has been in identifying their relevant cellular targets. Here, we present a two-tiered CRISPR-mediated chemical-genetic strategy for target identification: combined genome-wide knockdown and overexpression screening as well as focused, comparative chemical-genetic profiling. Application of these strategies to rigosertib, a drug in phase 3 clinical trials for high-risk myelodysplastic syndrome whose molecular target had remained controversial, pointed singularly to microtubules as rigosertib's target. We showed that rigosertib indeed directly binds to and destabilizes microtubules using cell biological, in vitro, and structural approaches. Finally, expression of tubulin with a structure-guided mutation in the rigosertib-binding pocket conferred resistance to rigosertib, establishing that rigosertib kills cancer cells by destabilizing microtubules. These results demonstrate the power of our chemical-genetic screening strategies for pinpointing the physiologically relevant targets of chemical agents.
Collapse
Affiliation(s)
- Marco Jost
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuwen Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lenno Krenning
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| | - Grégory Menchon
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Ankit Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3548CH Utrecht, the Netherlands
| | - Min Y Cho
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacob J Stern
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3548CH Utrecht, the Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland; Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marvin E Tanenbaum
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584CT Utrecht, the Netherlands.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
28
|
Sarkar S, Ryan EL, Royle SJ. FGFR3-TACC3 cancer gene fusions cause mitotic defects by removal of endogenous TACC3 from the mitotic spindle. Open Biol 2017; 7:170080. [PMID: 28855393 PMCID: PMC5577446 DOI: 10.1098/rsob.170080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/22/2017] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factor receptor 3-transforming acidic coiled-coil containing protein 3 (FGFR3-TACC3; FT3) is a gene fusion resulting from rearrangement of chromosome 4 that has been identified in many cancers including those of the urinary bladder. Altered FGFR3 signalling in FT3-positive cells is thought to contribute to cancer progression. However, potential changes in TACC3 function in these cells have not been explored. TACC3 is a mitotic spindle protein required for accurate chromosome segregation. Errors in segregation lead to aneuploidy, which can contribute to cancer progression. Here we show that FT3-positive bladder cancer cells have lower levels of endogenous TACC3 on the mitotic spindle, and that this is sufficient to cause mitotic defects. FT3 is not localized to the mitotic spindle, and by virtue of its TACC domain, recruits endogenous TACC3 away from the spindle. Knockdown of the fusion gene or low-level overexpression of TACC3 partially rescues the chromosome segregation defects in FT3-positive bladder cancer cells. This function of FT3 is specific to TACC3 as inhibition of FGFR3 signalling does not rescue the TACC3 level on the spindle in these cancer cells. Models of FT3-mediated carcinogenesis should, therefore, include altered mitotic functions of TACC3 as well as altered FGFR3 signalling.
Collapse
Affiliation(s)
- Sourav Sarkar
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Ellis L Ryan
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
29
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate numerous cellular processes. Deregulation of FGFR signalling is observed in a subset of many cancers, making activated FGFRs a highly promising potential therapeutic target supported by multiple preclinical studies. However, early-phase clinical trials have produced mixed results with FGFR-targeted cancer therapies, revealing substantial complexity to targeting aberrant FGFR signalling. In this Review, we discuss the increasing understanding of the differences between diverse mechanisms of oncogenic activation of FGFR, and the factors that determine response and resistance to FGFR targeting.
Collapse
Affiliation(s)
- Irina S Babina
- Breast Cancer Now Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Nicholas C Turner
- Breast Cancer Now Research Centre, Institute of Cancer Research, London SW3 6JB, UK
- Breast Unit, The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| |
Collapse
|
30
|
Lasorella A, Sanson M, Iavarone A. FGFR-TACC gene fusions in human glioma. Neuro Oncol 2017; 19:475-483. [PMID: 27852792 PMCID: PMC5464372 DOI: 10.1093/neuonc/now240] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/12/2016] [Indexed: 12/30/2022] Open
Abstract
Chromosomal translocations joining in-frame members of the fibroblast growth factor receptor-transforming acidic coiled-coil gene families (the FGFR-TACC gene fusions) were first discovered in human glioblastoma multiforme (GBM) and later in many other cancer types. Here, we review this rapidly expanding field of research and discuss the unique biological and clinical features conferred to isocitrate dehydrogenase wild-type glioma cells by FGFR-TACC fusions. FGFR-TACC fusions generate powerful oncogenes that combine growth-promoting effects with aneuploidy through the activation of as yet unclear intracellular signaling mechanisms. FGFR-TACC fusions appear to be clonal tumor-initiating events that confer strong sensitivity to FGFR tyrosine kinase inhibitors. Screening assays have recently been reported for the accurate identification of FGFR-TACC fusion variants in human cancer, and early clinical data have shown promising effects in cancer patients harboring FGFR-TACC fusions and treated with FGFR inhibitors. Thus, FGFR-TACC gene fusions provide a "low-hanging fruit" model for the validation of precision medicine paradigms in human GBM.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Department of Pediatrics and Pathology, Columbia University Medical Center, New York, New York, USA
| | - Marc Sanson
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, F-75013,Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris, France
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Neurology and Pathology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
31
|
Costa R, Carneiro BA, Taxter T, Tavora FA, Kalyan A, Pai SA, Chae YK, Giles FJ. FGFR3-TACC3 fusion in solid tumors: mini review. Oncotarget 2016; 7:55924-55938. [PMID: 27409839 PMCID: PMC5342462 DOI: 10.18632/oncotarget.10482] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/09/2016] [Indexed: 01/29/2023] Open
Abstract
Fibroblast growth factor receptors (FGFR) are transmembrane kinase proteins with growing importance in cancer biology given the frequency of molecular alterations and vast interface with multiple other signaling pathways. Furthermore, numerous FGFR inhibitors in clinical development demonstrate the expanding therapeutic relevance of this pathway. Indeed, results from early phase clinical trials already indicate that a subset of patients with advanced tumors derive benefit from FGFR targeted therapies. FGFR gene aberrations and FGFR gene rearrangements are relatively rare in solid malignancies. The recently described FGFR3-TACC3 fusion protein has a constitutively active tyrosine kinase domain and promotes aneuploidy. We summarize the prevalence data on FGFR3-TACC3 fusions among different histological tumor types and the preliminary evidence that this rearrangement represents a targetable molecular aberration in some patients with solid tumors.
Collapse
Affiliation(s)
- Ricardo Costa
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Benedito A. Carneiro
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Timothy Taxter
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Fabio A. Tavora
- Department of Pathology, Messejana Heart and Lung Hospital, Fortaleza, Brazil
| | - Aparna Kalyan
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Sachin A. Pai
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Francis J. Giles
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
32
|
Zhou DS, Wang HB, Zhou ZG, Zhang YJ, Zhong Q, Xu L, Huang YH, Yeung SC, Chen MS, Zeng MS. TACC3 promotes stemness and is a potential therapeutic target in hepatocellular carcinoma. Oncotarget 2016. [PMID: 26219398 PMCID: PMC4695177 DOI: 10.18632/oncotarget.4643] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming acidic coiled-coil protein 3 (TACC3) is essential for cell mitosis and transcriptional functions. In the present study, we first demonstrated that both TACC3 protein and mRNA levels were elevated in HCC tissue samples compared with non-cancerous tissue biopsies according to western blot analyses, immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR) assays. Moreover, high TACC3 expression was positively correlated with poor overall survival (OS) and disease-free survival (DFS) (p < 0.001). Using HCC cell lines, we then demonstrated that either TACC3 knockdown or treatment with the potential TACC3 inhibitor KHS101 suppressed cell growth and sphere formation as well as the expression of stem cell transcription factors, including Bmi1, c-Myc and Nanog. Silencing TACC3 may suppress the Wnt/β-catenin and PI3K/AKT signaling pathways, which regulate cancer stem cell-like characteristics. Taken together, these data suggest that TACC3 is enriched in HCC and that TACC3 down-regulation inhibits the proliferation, clonogenicity, and cancer stem cell-like phenotype of HCC cells. KHS101, a TACC3 inhibitor, may serve as a novel therapeutic agent for HCC patients with tumors characterized by high TACC3 expression.
Collapse
Affiliation(s)
- Dong-Sheng Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Shandong Provincial Qianfoshan Hospital, Jinan, P. R. China
| | - Hong-Bo Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhong-Guo Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Yao-Jun Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Qian Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Li Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Yue-Hua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Sai-Ching Yeung
- Department of General Internal Medicine, Ambulatory Treatment and Emergency Care, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min-Shan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Mu-Sheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| |
Collapse
|
33
|
Jiang F, Kuang B, Que Y, Lin Z, Yuan L, Xiao W, Peng R, Zhang X, Zhang X. The clinical significance of transforming acidic coiled-coil protein 3 expression in non-small cell lung cancer. Oncol Rep 2015; 35:436-46. [PMID: 26531241 DOI: 10.3892/or.2015.4373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/23/2015] [Indexed: 11/06/2022] Open
Abstract
The relationship between TACC3, a member of the transforming acidic coiled-coil proteins (TACCs) family, and lung carcinoma remains unclear. The present study was designed to explore the prognostic and clinical significance of TACC3 in non-small cell lung cancer (NSCLC). An immunohistochemistry (IHC) assay was performed to analyze the expression of TACC3 in 195 lung cancer cases. The mRNA and protein levels of TACC3 were examined by quantitative reverse transcription-PCR or western blotting. The correlation between TACC3 expression and clinicopathological factors was analyzed by χ2 analysis and Fisher's exact test. Kaplan-Meier analysis and the Cox proportional hazards model were used to examine the correlation of prognostic outcomes with TACC3. The results showed that the levels of TACC3 mRNA and total protein were higher in lung cancer lesions than paired non-cancerous tissues. IHC analysis revealed that TACC3 was highly expressed in 94 (48.2%) cases. The expression of TACC3 was strongly correlated with smoking status, histological classification, differentiation, cytokeratin 19 fragment levels, T stage and the clinical stage of NSCLC patients. Univariate and multivariate analyses demonstrated that TACC3 is a useful biomarker for NSCLC prognosis. The low TACC3 expression group exhibited better progression-free survival (PFS) among patients who received anti-microtubule chemotherapy. In conclusion, the results showed that a high level of TACC3 expression was correlated with advanced clinicopathological classifications, poor overall survival (OS) and poor recurrence-free survival (RFS) in NSCLC patients. Our findings indicate that TACC3 is a potential prognostic marker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Feng Jiang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Bohua Kuang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yi Que
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zhirui Lin
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Li Yuan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Wei Xiao
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ruiqing Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xiaoshi Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xing Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| |
Collapse
|
34
|
Nahm JH, Kim H, Lee H, Cho JY, Choi YR, Yoon YS, Han HS, Park YN. Transforming acidic coiled-coil-containing protein 3 (TACC3) overexpression in hepatocellular carcinomas is associated with “stemness” and epithelial-mesenchymal transition-related marker expression and a poor prognosis. Tumour Biol 2015. [DOI: 10.1007/s13277-015-3810-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Ohoka N, Nagai K, Hattori T, Okuhira K, Shibata N, Cho N, Naito M. Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis 2014; 5:e1513. [PMID: 25375378 PMCID: PMC4260729 DOI: 10.1038/cddis.2014.471] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/26/2022]
Abstract
The selective degradation of target proteins with small molecules is a novel approach to the treatment of various diseases, including cancer. We have developed a protein knockdown system with a series of hybrid small compounds that induce the selective degradation of target proteins via the ubiquitin–proteasome pathway. In this study, we designed and synthesized novel small molecules called SNIPER(TACC3)s, which target the spindle regulatory protein transforming acidic coiled-coil-3 (TACC3). SNIPER(TACC3)s induce poly-ubiquitylation and proteasomal degradation of TACC3 and reduce the TACC3 protein level in cells. Mechanistic analysis indicated that the ubiquitin ligase APC/CCDH1 mediates the SNIPER(TACC3)-induced degradation of TACC3. Intriguingly, SNIPER(TACC3) selectively induced cell death in cancer cells expressing a larger amount of TACC3 protein than normal cells. These results suggest that protein knockdown of TACC3 by SNIPER(TACC3) is a potential strategy for treating cancers overexpressing the TACC3 protein.
Collapse
Affiliation(s)
- N Ohoka
- Division of Biochemistry and Molecular Biology, National Institute of Health Science, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - K Nagai
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - T Hattori
- Division of Biochemistry and Molecular Biology, National Institute of Health Science, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - K Okuhira
- Division of Biochemistry and Molecular Biology, National Institute of Health Science, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - N Shibata
- Division of Biochemistry and Molecular Biology, National Institute of Health Science, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - N Cho
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - M Naito
- Division of Biochemistry and Molecular Biology, National Institute of Health Science, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
36
|
Thakur HC, Singh M, Nagel-Steger L, Kremer J, Prumbaum D, Fansa EK, Ezzahoini H, Nouri K, Gremer L, Abts A, Schmitt L, Raunser S, Ahmadian MR, Piekorz RP. The centrosomal adaptor TACC3 and the microtubule polymerase chTOG interact via defined C-terminal subdomains in an Aurora-A kinase-independent manner. J Biol Chem 2013; 289:74-88. [PMID: 24273164 DOI: 10.1074/jbc.m113.532333] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cancer-associated, centrosomal adaptor protein TACC3 (transforming acidic coiled-coil 3) and its direct effector, the microtubule polymerase chTOG (colonic and hepatic tumor overexpressed gene), play a crucial function in centrosome-driven mitotic spindle assembly. It is unclear how TACC3 interacts with chTOG. Here, we show that the C-terminal TACC domain of TACC3 and a C-terminal fragment adjacent to the TOG domains of chTOG mediate the interaction between these two proteins. Interestingly, the TACC domain consists of two functionally distinct subdomains, CC1 (amino acids (aa) 414-530) and CC2 (aa 530-630). Whereas CC1 is responsible for the interaction with chTOG, CC2 performs an intradomain interaction with the central repeat region of TACC3, thereby masking the TACC domain before effector binding. Contrary to previous findings, our data clearly demonstrate that Aurora-A kinase does not regulate TACC3-chTOG complex formation, indicating that Aurora-A solely functions as a recruitment factor for the TACC3-chTOG complex to centrosomes and proximal mitotic spindles. We identified with CC1 and CC2, two functionally diverse modules within the TACC domain of TACC3 that modulate and mediate, respectively, TACC3 interaction with chTOG required for spindle assembly and microtubule dynamics during mitotic cell division.
Collapse
Affiliation(s)
- Harish C Thakur
- From the Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Clathrin, a protein best known for its role in membrane trafficking, has been recognised for many years as localising to the spindle apparatus during mitosis, but its function at the spindle remained unclear. Recent work has better defined the role of clathrin in the function of the mitotic spindle and proposed that clathrin crosslinks the microtubules (MTs) comprising the kinetochore fibres (K-fibres) in the mitotic spindle. This mitotic function is unrelated to the role of clathrin in membrane trafficking and occurs in partnership with two other spindle proteins: transforming acidic coiled-coil protein 3 (TACC3) and colonic hepatic tumour overexpressed gene (ch-TOG; also known as cytoskeleton-associated protein 5, CKAP5). This review summarises the role of clathrin in mitotic spindle organisation with an emphasis on the recent discovery of the TACC3-ch-TOG-clathrin complex.
Collapse
Affiliation(s)
- Stephen J Royle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
38
|
Ha GH, Kim JL, Breuer EKY. Transforming acidic coiled-coil proteins (TACCs) in human cancer. Cancer Lett 2013; 336:24-33. [PMID: 23624299 DOI: 10.1016/j.canlet.2013.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
Fine-tuned regulation of the centrosome/microtubule dynamics during mitosis is essential for faithful cell division. Thus, it is not surprising that deregulations in this dynamic network can contribute to genomic instability and tumorigenesis. Indeed, centrosome loss or amplification, spindle multipolarity and aneuploidy are often found in a majority of human malignancies, suggesting that defects in centrosome and associated microtubules may be directly or indirectly linked to cancer. Therefore, future research to identify and characterize genes required for the normal centrosome function and microtubule dynamics may help us gain insight into the complexity of cancer, and further provide new avenues for prognostic, diagnostics and therapeutic interventions. Members of the transforming acidic coiled-coil proteins (TACCs) family are emerging as important players of centrosome and microtubule-associated functions. Growing evidence indicates that TACCs are involved in the progression of certain solid tumors. Here, we will discuss our current understanding of the biological function of TACCs, their relevance to human cancer and possible implications for cancer management.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
39
|
Repeats in Transforming Acidic Coiled-Coil (TACC) Genes. Biochem Genet 2013; 51:458-73. [DOI: 10.1007/s10528-013-9577-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 12/30/2012] [Indexed: 02/04/2023]
|
40
|
Gunning P. BioArchitecture: the organization and regulation of biological space. BIOARCHITECTURE 2012; 2:200-3. [PMID: 23267413 PMCID: PMC3527313 DOI: 10.4161/bioa.22726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BioArchitecture is a term used to describe the organization and regulation of biological space. It applies to the principles which govern the structure of molecules, polymers and mutiprotein complexes, organelles, membranes and their organization in the cytoplasm and the nucleus. It also covers the integration of cells into their three dimensional environment at the level of cell-matrix, cell-cell interactions, integration into tissue/organ structure and function and finally into the structure of the organism. This review will highlight studies at all these levels which are providing a new way to think about the relationship between the organization of biological space and the function of biological systems.
Collapse
Affiliation(s)
- Peter Gunning
- School of Medical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
41
|
Williams SV, Hurst CD, Knowles MA. Oncogenic FGFR3 gene fusions in bladder cancer. Hum Mol Genet 2012; 22:795-803. [PMID: 23175443 PMCID: PMC3554204 DOI: 10.1093/hmg/dds486] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
FGF receptor 3 (FGFR3) is activated by mutation or over-expression in many bladder cancers. Here, we identify an additional mechanism of activation via chromosomal re-arrangement to generate constitutively activated fusion genes. FGFR3–transforming acid coiled coil 3 (TACC3) fusions resulting from 4p16.3 re-arrangements and a t(4;7) that generates a FGFR3-BAI1-associated protein 2-like 1 (BAIAP2L1) fusion were identified in 4 of 43 bladder tumour cell lines and 2 of 32 selected tissue samples including the tumour from which one of the cell lines was derived. These are highly activated and transform NIH-3T3 cells. The FGFR3 component is identical in all cases and lacks the final exon that includes the phospholipase C gamma 1 (PLCγ1) binding site. Expression of the fusions in immortalized normal human urothelial cells (NHUC) induced activation of the mitogen-activated protein kinase pathway but not PLCγ1. A protein with loss of the terminal region alone was not as highly activated as the fusion proteins, indicating that the fusion partners are essential. The TACC3 fusions retain the TACC domain that mediates microtubule binding and the BAIAP2L1 fusion retains the IRSp53/MIM domain (IMD) that mediates actin binding and Rac interaction. As urothelial cell lines with FGFR3 fusions are extremely sensitive to FGFR-selective agents, the presence of a fusion gene may aid in selection of patients for FGFR-targeted therapy.
Collapse
Affiliation(s)
- Sarah V Williams
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St James’s University Hospital, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
42
|
Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, Liu EM, Reichel J, Porrati P, Pellegatta S, Qiu K, Gao Z, Ceccarelli M, Riccardi R, Brat DJ, Guha A, Aldape K, Golfinos JG, Zagzag D, Mikkelsen T, Finocchiaro G, Lasorella A, Rabadan R, Iavarone A. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 2012; 337:1231-5. [PMID: 22837387 PMCID: PMC3677224 DOI: 10.1126/science.1220834] [Citation(s) in RCA: 598] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The brain tumor glioblastoma multiforme (GBM) is among the most lethal forms of human cancer. Here, we report that a small subset of GBMs (3.1%; 3 of 97 tumors examined) harbors oncogenic chromosomal translocations that fuse in-frame the tyrosine kinase coding domains of fibroblast growth factor receptor (FGFR) genes (FGFR1 or FGFR3) to the transforming acidic coiled-coil (TACC) coding domains of TACC1 or TACC3, respectively. The FGFR-TACC fusion protein displays oncogenic activity when introduced into astrocytes or stereotactically transduced in the mouse brain. The fusion protein, which localizes to mitotic spindle poles, has constitutive kinase activity and induces mitotic and chromosomal segregation defects and triggers aneuploidy. Inhibition of FGFR kinase corrects the aneuploidy, and oral administration of an FGFR inhibitor prolongs survival of mice harboring intracranial FGFR3-TACC3-initiated glioma. FGFR-TACC fusions could potentially identify a subset of GBM patients who would benefit from targeted FGFR kinase inhibition.
Collapse
MESH Headings
- Aneuploidy
- Animals
- Antineoplastic Agents/pharmacology
- Benzamides/pharmacology
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Cell Transformation, Neoplastic
- Chromosomal Instability
- Enzyme Inhibitors/pharmacology
- Fetal Proteins/chemistry
- Fetal Proteins/genetics
- Fetal Proteins/metabolism
- Glioblastoma/genetics
- Glioblastoma/metabolism
- Humans
- Mice
- Microtubule-Associated Proteins/chemistry
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Mitosis
- Neoplasm Transplantation
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Fusion
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Piperazines/pharmacology
- Protein Structure, Tertiary
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/chemistry
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 3/chemistry
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Spindle Apparatus/metabolism
- Translocation, Genetic
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Devendra Singh
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Joseph Minhow Chan
- Department of Biomedical Informatics and Center for Computational Biology and Bioinformatics, Columbia University Medical Center, New York, NY, USA
| | - Pietro Zoppoli
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Francesco Niola
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Ryan Sullivan
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Angelica Castano
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Eric Minwei Liu
- Department of Biomedical Informatics and Center for Computational Biology and Bioinformatics, Columbia University Medical Center, New York, NY, USA
| | - Jonathan Reichel
- Department of Biomedical Informatics and Center for Computational Biology and Bioinformatics, Columbia University Medical Center, New York, NY, USA
- Tri-Institutional Program in Computational Biology and Medicine, Cornell University and Weill Cornell Medical College, New York, NY, USA
| | - Paola Porrati
- Fondazione Istituto Ricovero e Cura a Carattere Scientifico Istituto Neurologico C. Besta, Milan, Italy
| | - Serena Pellegatta
- Fondazione Istituto Ricovero e Cura a Carattere Scientifico Istituto Neurologico C. Besta, Milan, Italy
| | - Kunlong Qiu
- Bioinformatics Center, Beijing Genome Institute, Shenzhen, China
| | - Zhibo Gao
- Bioinformatics Center, Beijing Genome Institute, Shenzhen, China
| | - Michele Ceccarelli
- Istituto di Ricerche Genetiche Gaetano Salvatore, Biogem, Ariano Irpino (AV) and Dipartimento di Scienze Biologiche ed Ambientali, Università del Sannio, Benevento, Italy
| | | | - Daniel J. Brat
- Departments of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Abhijit Guha
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Canada
| | - Ken Aldape
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - John G. Golfinos
- Department of Neurosurgery, New York University Langone Medical Center, New York, NY, USA
| | - David Zagzag
- Department of Neurosurgery, New York University Langone Medical Center, New York, NY, USA
- Department of Neuropathology, New York University Langone Medical Center, New York, NY, USA
| | - Tom Mikkelsen
- Departments of Neurology and Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Gaetano Finocchiaro
- Fondazione Istituto Ricovero e Cura a Carattere Scientifico Istituto Neurologico C. Besta, Milan, Italy
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Columbia University Medical Center, New York, NY, USA
| | - Raul Rabadan
- Department of Biomedical Informatics and Center for Computational Biology and Bioinformatics, Columbia University Medical Center, New York, NY, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|