1
|
Sun H, Du Z, Zhang X, Gao S, Ji Z, Luo G, Pan S. Neutrophil extracellular traps promote proliferation of pulmonary smooth muscle cells mediated by CCDC25 in pulmonary arterial hypertension. Respir Res 2024; 25:183. [PMID: 38664728 PMCID: PMC11046914 DOI: 10.1186/s12931-024-02813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Previous studies have indicated that neutrophil extracellular traps (NETs) play a pivotal role in pathogenesis of pulmonary arterial hypertension (PAH). However, the specific mechanism underlying the impact of NETs on pulmonary artery smooth muscle cells (PASMCs) has not been determined. The objective of this study was to elucidate underlying mechanisms through which NETs contribute to progression of PAH. METHODS Bioinformatics analysis was employed in this study to screen for potential molecules and mechanisms associated with occurrence and development of PAH. These findings were subsequently validated in human samples, coiled-coil domain containing 25 (CCDC25) knockdown PASMCs, as well as monocrotaline-induced PAH rat model. RESULTS NETs promoted proliferation of PASMCs, thereby facilitating pathogenesis of PAH. This phenomenon was mediated by the activation of transmembrane receptor CCDC25 on PASMCs, which subsequently activated ILK/β-parvin/RAC1 pathway. Consequently, cytoskeletal remodeling and phenotypic transformation occur in PASMCs. Furthermore, the level of NETs could serve as an indicator of PAH severity and as potential therapeutic target for alleviating PAH. CONCLUSION This study elucidated the involvement of NETs in pathogenesis of PAH through their influence on the function of PASMCs, thereby highlighting their potential as promising targets for the evaluation and treatment of PAH.
Collapse
Affiliation(s)
- Hongxiao Sun
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Zhanhui Du
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Xu Zhang
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Shuai Gao
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Zhixian Ji
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Gang Luo
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Silin Pan
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Ain U, Firdaus H. Parvin: A hub of intracellular signalling pathways regulating cellular behaviour and disease progression. Acta Histochem 2022; 124:151935. [PMID: 35932544 DOI: 10.1016/j.acthis.2022.151935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
α-actinin superfamily houses the family of parvins, comprising α, β and γ isoforms in the vertebrates and a single orthologue in the invertebrates. Parvin as an adaptor protein is a member of the ternary IPP-complex including Integrin Linked Kinase (ILK) and particularly-interesting-Cys-His-rich protein (PINCH). Each of the complex proteins showed a conserved lineage and was principally used by the evolutionarily primitive integrin-adhesome machinery to regulate cellular behaviour and signalling pathways. Parvin facilitated integrin mediated integration of the extracellular matrix with cytoskeletal framework culminating in regulation of cellular adhesion and spreading, cytoskeleton reorganisation and cell survival. Studies have established role of parvin in pregnancy, lactation, matrix degradation, blood vessel formation and in several diseases such as cancer, NAFLD and cardiac diseases etc. This review narrates the history of parvin discovery, its elaborate gene structure and conservation across phyla including cellular expression, localisation and interacting partners in vertebrates as well as invertebrates. The review further discusses how parvin acts as an epicentre of signalling pathways, its associated mutants and diseased conditions.
Collapse
Affiliation(s)
- Ushashi Ain
- Department of Life Sciences, Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Ranchi 835205, India
| | - Hena Firdaus
- Department of Life Sciences, Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Ranchi 835205, India.
| |
Collapse
|
4
|
Draicchio F, van Vliet S, Ancu O, Paluska SA, Wilund KR, Mickute M, Sathyapalan T, Renshaw D, Watt P, Sylow L, Burd NA, Mackenzie RW. Integrin-associated ILK and PINCH1 protein content are reduced in skeletal muscle of maintenance haemodialysis patients. J Physiol 2020; 598:5701-5716. [PMID: 32969494 DOI: 10.1113/jp280441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Patients with renal failure undergoing maintenance haemodialysis are associated with insulin resistance and protein metabolism dysfunction. Novel research suggests that disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in haemodialysis. ILK, PINCH1 and pFAKTyr397 were significantly decreased in haemodialysis compared to controls, whereas Rac1 and Akt2 showed no different between groups. Rac1 deletion in the Rac1 knockout model did not alter the expression of integrin-associated proteins. Phenylalanine kinetics were reduced in the haemodialysis group at 30 and 60 min post meal ingestion compared to controls; both groups showed similar levels of insulin sensitivity and β-cell function. Key proteins in the integrin-cytoskeleton linkage are reduced in haemodialysis patients, suggesting for the first time that integrin-associated proteins dysfunction may contribute to reduced phenylalanine flux without affecting insulin resistance in haemodialysis patients. ABSTRACT Muscle atrophy, insulin resistance and reduced muscle phosphoinositide 3-kinase-Akt signalling are common characteristics of patients undergoing maintenance haemodialysis (MHD). Disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in MHD patients. Eight MHD patients (age: 56 ± 5 years: body mass index: 32 ± 2 kg m-2 ) and non-diseased controls (age: 50 ± 2 years: body mass index: 31 ± 1 kg m-2 ) received primed continuous l-[ring-2 H5 ]phenylalanine before consuming a mixed meal. Phenylalanine metabolism was determined using two-compartment modelling. Muscle biopsies were collected prior to the meal and at 300 min postprandially. In a separate experiment, skeletal muscle tissue from muscle-specific Rac1 knockout (Rac1 mKO) was harvested to investigate whether Rac1 depletion disrupted the cytoskeleton-integrin linkage, allowing for cross-model examination of proteins of interest. ILK, PINCH1 and pFAKTyr397 were significantly lower in MHD (P < 0.01). Rac1 and Akt showed no difference between groups for the human trial. Rac1 deletion in the Rac1 mKO model did not alter the expression of integrin-associated proteins. Phenylalanine rates of appearance and disappearance, as well as metabolic clearance rates, were lower in the MHD group at 30 and 60 min post meal ingestion compared to controls (P < 0.05). Both groups showed similar levels of insulin sensitivity and β-cell function. Key proteins in the integrin-cytoskeleton linkage are reduced in MHD patients, suggesting for the first time that integrin-associated proteins dysfunction may contribute to reduced phenylalanine flux without affecting insulin resistance in haemodialysis patients.
Collapse
Affiliation(s)
- Fulvia Draicchio
- Department of Life Sciences, Sport and Exercise Science Research Center, University of Roehampton, London, UK
| | - Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Oana Ancu
- Department of Life Sciences, Sport and Exercise Science Research Center, University of Roehampton, London, UK
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kenneth R Wilund
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Monika Mickute
- Leicester Diabetes Center, Leicester General Hospital, Leicester, UK
| | | | - Derek Renshaw
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Peter Watt
- Sport and Exercise Science and Sports Medicine research and enterprise group, Welkin Laboratories, University of Brighton, Eastbourne, UK
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sport, August Krogh Bygningen, University of Copenhagen, Denmark
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Richard Wa Mackenzie
- Department of Life Sciences, Sport and Exercise Science Research Center, University of Roehampton, London, UK
| |
Collapse
|
5
|
Chardon JW, Smith A, Woulfe J, Pena E, Rakhra K, Dennie C, Beaulieu C, Huang L, Schwartzentruber J, Hawkins C, Harms M, Dojeiji S, Zhang M, Majewski J, Bulman D, Boycott K, Dyment D. LIMS2 mutations are associated with a novel muscular dystrophy, severe cardiomyopathy and triangular tongues. Clin Genet 2015; 88:558-64. [DOI: 10.1111/cge.12561] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Jodi Warman Chardon
- Department of Genetics; Children's Hospital of Eastern Ontario; Ottawa Ontario Canada
- Ottawa Hospital Research Institute; Ottawa Ontario Canada
| | - A.C. Smith
- Children's Hospital of Eastern Ontario Research Institute; University of Ottawa; Ottawa Ontario Canada
| | - J. Woulfe
- Department of Pathology; The Ottawa Hospital; Ottawa Ontario Canada
- Ottawa Hospital Research Institute; Ottawa Ontario Canada
| | - E. Pena
- Department of Medical Imaging; The Ottawa Hospital; Ottawa Ontario Canada
| | - K. Rakhra
- Ottawa Hospital Research Institute; Ottawa Ontario Canada
- Department of Medical Imaging; The Ottawa Hospital; Ottawa Ontario Canada
| | - C. Dennie
- Ottawa Hospital Research Institute; Ottawa Ontario Canada
- Department of Medical Imaging; The Ottawa Hospital; Ottawa Ontario Canada
- University of Ottawa Heart Institute; Ottawa Ontario Canada
| | - C. Beaulieu
- Children's Hospital of Eastern Ontario Research Institute; University of Ottawa; Ottawa Ontario Canada
| | - Lijia Huang
- Children's Hospital of Eastern Ontario Research Institute; University of Ottawa; Ottawa Ontario Canada
| | - J. Schwartzentruber
- McGill University and Genome Quebec Innovation Center; Montreal Quebec Canada
| | - C. Hawkins
- Department of Laboratory Medicine & Pathobiology; The Hospital for Sick Children; Toronto Ontario Canada
| | - M.B. Harms
- Department of Neurology and Hope Center for Neurological Disorders; Washington University; Saint Louis MO USA
| | - S. Dojeiji
- The Ottawa Hospital Rehabilitation Center; Ottawa Ontario Canada
| | - M. Zhang
- Ottawa Hospital Research Institute; Ottawa Ontario Canada
| | - J. Majewski
- Department of Human Genetics; McGill University; Montreal Quebec Canada
| | - D.E. Bulman
- Children's Hospital of Eastern Ontario Research Institute; University of Ottawa; Ottawa Ontario Canada
- Department of Pediatrics; Children's Hospital of Eastern Ontario; Ottawa Ontario Canada
| | - K.M. Boycott
- Department of Genetics; Children's Hospital of Eastern Ontario; Ottawa Ontario Canada
- Children's Hospital of Eastern Ontario Research Institute; University of Ottawa; Ottawa Ontario Canada
| | - D.A. Dyment
- Department of Genetics; Children's Hospital of Eastern Ontario; Ottawa Ontario Canada
- Children's Hospital of Eastern Ontario Research Institute; University of Ottawa; Ottawa Ontario Canada
| | | |
Collapse
|
6
|
Liu ZC, Odell N, Geisbrecht ER. Drosophila importin-7 functions upstream of the Elmo signaling module to mediate the formation and stability of muscle attachments. J Cell Sci 2013; 126:5210-23. [PMID: 24046451 DOI: 10.1242/jcs.132241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Establishment and maintenance of stable muscle attachments is essential for coordinated body movement. Studies in Drosophila have pioneered a molecular understanding of the morphological events in the conserved process of muscle attachment formation, including myofiber migration, muscle-tendon signaling, and stable junctional adhesion between muscle cells and their corresponding target insertion sites. In both Drosophila and vertebrate models, integrin complexes play a key role in the biogenesis and stability of muscle attachments through the interactions of integrins with extracellular matrix (ECM) ligands. We show that Drosophila importin-7 (Dim7) is an upstream regulator of the conserved Elmo-Mbc→Rac signaling pathway in the formation of embryonic muscle attachment sites (MASs). Dim7 is encoded by the moleskin (msk) locus and was identified as an Elmo-interacting protein. Both Dim7 and Elmo localize to the ends of myofibers coincident with the timing of muscle-tendon attachment in late myogenesis. Phenotypic analysis of elmo mutants reveal muscle attachment defects similar to those previously described for integrin mutants. Furthermore, Elmo and Dim7 interact both biochemically and genetically in the developing musculature. The muscle detachment phenotype resulting from mutations in the msk locus can be rescued by components in the Elmo signaling pathway, including the Elmo-Mbc complex, an activated Elmo variant, or a constitutively active form of Rac. In larval muscles, the localization of Dim7 and activated Elmo to the sites of muscle attachment is attenuated upon RNAi knockdown of integrin heterodimer complex components. Our results show that integrins function as upstream signals to mediate Dim7-Elmo enrichment to the MASs.
Collapse
Affiliation(s)
- Ze Cindy Liu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
7
|
Elad N, Volberg T, Patla I, Hirschfeld-Warneken V, Grashoff C, Spatz JP, Fässler R, Geiger B, Medalia O. The role of integrin-linked kinase in the molecular architecture of focal adhesions. J Cell Sci 2013; 126:4099-107. [PMID: 23843624 DOI: 10.1242/jcs.120295] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Integrin-mediated focal adhesions (FAs) are large, multi-protein complexes that link the actin cytoskeleton to the extracellular matrix and take part in adhesion-mediated signaling. These adhesions are highly complex and diverse at the molecular level; thus, assigning particular structural or signaling functions to specific components is highly challenging. Here, we combined functional, structural and biophysical approaches to assess the role of a major FA component, namely, integrin-linked kinase (ILK), in adhesion formation. We show here that ILK plays a key role in the formation of focal complexes, early forms of integrin adhesions, and confirm its involvement in the assembly of fibronectin-bound fibrillar adhesions. Examination of ILK-null fibroblasts by cryo-electron tomography pointed to major structural changes in their FAs, manifested as disarray of the associated actin filaments and an increase in the packing density of FA-related particles. Interestingly, adhesion of the mutant cells to the substrate required a higher ligand density than in control cells. These data indicate that ILK has a key role in integrin adhesion assembly and sub-structure, and in the regulation of the FA-associated cytoskeleton.
Collapse
Affiliation(s)
- Nadav Elad
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer-Sheva 84120, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|