1
|
Chaudhari JK, Pant S, Jha R, Pathak RK, Singh DB. Biological big-data sources, problems of storage, computational issues, and applications: a comprehensive review. Knowl Inf Syst 2024; 66:3159-3209. [DOI: 10.1007/s10115-023-02049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2025]
|
2
|
Salem MG, Alqahtani AM, Mali SN, Alshwyeh HA, Jawarkar RD, Altamimi AS, Alshawwa SZ, Al-Olayan E, Saied EM, Youssef MF. Synthesis and antiproliferative evaluation of novel 3,5,8-trisubstituted coumarins against breast cancer. Future Med Chem 2024; 16:1053-1073. [PMID: 38708686 PMCID: PMC11216633 DOI: 10.4155/fmc-2023-0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/13/2024] [Indexed: 05/07/2024] Open
Abstract
Aim: This study focused on designing and synthesizing novel derivatives of 3,5,8-trisubstituted coumarin. Results: The synthesized compounds, particularly compound 5, exhibited significant cytotoxic effects on MCF-7 cells, surpassing staurosporine, and reduced toxicity toward MCF-10A cells, highlighting potential pharmacological advantages. Further, compound 5 altered the cell cycle and significantly increased apoptosis in MCF-7 cells, involving both early (41.7-fold) and late stages (33-fold), while moderately affecting necrotic signaling. The antitumor activity was linked to a notable reduction (4.78-fold) in topoisomerase IIβ expression. Molecular modeling indicated compound 5's strong affinity for EGFR, human EGF2 and topoisomerase II proteins. Conclusion: These findings highlight compound 5 as a multifaceted antitumor agent for breast cancer.
Collapse
Affiliation(s)
- Manar G Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Alaa M Alqahtani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Suraj N Mali
- School of Pharmacy, DY Patil Deemed to be University Sector 7, Nerul, Navi Mumbai, 400706, India
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, PO Box 1982, Dammam, 31441, Saudi Arabia
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry & Drug Discovery, Dr. Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati, 444603, India
| | - Abdulmalik S Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Alkharj, 11942, Saudi Arabia
| | - Samar Z Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Essa M Saied
- Chemistry Department (Biochemistry Division), Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
| | - Mohamed F Youssef
- Chemistry Department (Organic Chemistry Division), Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
3
|
Aslam S, Rehman HM, Sarwar MZ, Ahmad A, Ahmed N, Amirzada MI, Rehman HM, Yasmin H, Nadeem T, Bashir H. Computational Modeling, High-Level Soluble Expression and In Vitro Cytotoxicity Assessment of Recombinant Pseudomonas aeruginosa Azurin: A Promising Anti-Cancer Therapeutic Candidate. Pharmaceutics 2023; 15:1825. [PMID: 37514012 PMCID: PMC10383417 DOI: 10.3390/pharmaceutics15071825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Azurin is a natural protein produced by Pseudomonas aeruginosa that exhibits potential anti-tumor, anti-HIV, and anti-parasitic properties. The current study aimed to investigate the potential of azurin protein against breast cancer using both in silico and in vitro analyses. The amino acid sequence of Azurin was used to predict its secondary and tertiary structures, along with its physicochemical properties, using online software. The resulting structure was validated and confirmed using Ramachandran plots and ERRAT2. The mature azurin protein comprises 128 amino acids, and the top-ranked structure obtained from I-TASSER was shown to have a molecular weight of 14 kDa and a quality factor of 100% by ERRAT2, with 87.4% of residues in the favored region of the Ramachandran plot. Docking and simulation studies of azurin protein were conducted using HDOCK and Desmond servers, respectively. The resulting analysis revealed that Azurin docked against p53 and EphB2 receptors demonstrated maximum binding affinity, indicating its potential to cause apoptosis. The recombinant azurin gene was successfully cloned and expressed in a BL21 (DE3) strain using a pET20b expression vector under the control of the pelB ladder, followed by IPTG induction. The azurin protein was purified to high levels using affinity chromatography, yielding 70 mg/L. In vitro cytotoxicity assay was performed using MCF-7 cells, revealing the significant cytotoxicity of the azurin protein to be 105 µg/mL. These findings highlight the potential of azurin protein as an anticancer drug candidate.
Collapse
Affiliation(s)
- Shakira Aslam
- Centre for Applied Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
- Department of Human Genetics and Molecular Biology, University of Health Science, Lahore 54600, Pakistan
| | | | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54000, Pakistan
- International Center for Genetic Engineering and Biotechnology, Galleria Padriciano, 99, 34149 Trieste, TS, Italy
| | - Muhammad Imran Amirzada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214082, China
| | - Hafiz Muhammad Rehman
- Centre for Applied Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Humaira Yasmin
- Department of Infectious Diseases, Faculty of Medicine, South Kensington Campus, Imperial College, London W2 1NY, UK
- Department of Biosciences, COMSATS University Islamabad, Islamabad 54000, Pakistan
| | - Tariq Nadeem
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54000, Pakistan
| | - Hamid Bashir
- Centre for Applied Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
4
|
Shahbaz A, Mahmood T, Javed MU, Abbasi BH. Current advances in microbial-based cancer therapies. Med Oncol 2023; 40:207. [PMID: 37330997 DOI: 10.1007/s12032-023-02074-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Microbes have an immense metabolic capability and can adapt to a wide variety of environments; as a result, they share complicated relationships with cancer. The goal of microbial-based cancer therapy is to treat patients with cancers that are not easily treatable, by using tumor-specific infectious microorganisms. Nevertheless, a number of difficulties have been encountered as a result of the harmful effects of chemotherapy, radiotherapy, and alternative cancer therapies, such as the toxicity to non-cancerous cells, the inability of medicines to penetrate deep tumor tissue, and the ongoing problem of rising drug resistance in tumor cells. Due to these difficulties, there is now a larger need for designing alternative strategies that are more effective and selective when targeting tumor cells. The fight against cancer has advanced significantly owing to cancer immunotherapy. The researchers have greatly benefited from their understanding of tumor-invading immune cells as well as the immune responses that are specifically targeted against cancer. Application of bacterial and viral cancer therapeutics offers promising potential to be employed as cancer treatments among immunotherapies. As a novel therapeutic strategy, microbial targeting of tumors has been created to address the persisting hurdles of cancer treatment. This review outlines the mechanisms by which both bacteria and viruses target and inhibit the proliferation of tumor cells. Their ongoing clinical trials and possible modifications that can be made in the future have also been addressed in the following sections. These microbial-based cancer medicines have the ability to suppress cancer that builds up and multiplies in the tumor microenvironment and triggers antitumor immune responses, in contrast to other cancer medications.
Collapse
Affiliation(s)
- Areej Shahbaz
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medicine Goettingen, Göttingen, Germany
| | - Tehreem Mahmood
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Uzair Javed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
5
|
Torabiardekani N, Karami F, Khorram M, Zare A, Kamkar M, Zomorodian K, Zareshahrabadi Z. Encapsulation of Zataria multiflora essential oil in polyvinyl alcohol/chitosan/gelatin thermo-responsive hydrogel: Synthesis, physico-chemical properties, and biological investigations. Int J Biol Macromol 2023:125073. [PMID: 37245771 DOI: 10.1016/j.ijbiomac.2023.125073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Zataria multiflora essential oil is a natural volatile plant product whose therapeutic applications require a delivery platform. Biomaterial-based hydrogels have been extensively used in biomedical applications, and they are promising platforms to encapsulate essential oils. Among different hydrogels, intelligent hydrogels have recently attracted many interests because of their response to environmental stimuli such as temperature. Herein, Zataria multiflora essential oil is encapsulated in a polyvinyl alcohol/chitosan/gelatin hydrogel as a positive thermo-responsive and antifungal platform. According to the optical microscopic image, the encapsulated spherical essential oil droplets reveal a mean size of 1.10 ± 0.64 μm, which are in consistent with the SEM imaging results. Encapsulation efficacy and loading capacity are 98.66 % and 12.98 %, respectively. These results confirm the successful efficient encapsulation of the Zataria multiflora essential oil within the hydrogel. The chemical compositions of the Zataria multiflora essential oil and the fabricated hydrogel are analyzed by gas chromatography-mass spectroscopy (GC-MS) and Fourier transform infrared (FTIR) techniques. It is found that thymol (44.30 %) and γ-terpinene (22.62 %) are the main constituents of the Zataria multiflora essential oil. The produced hydrogel inhibits the metabolic activity of Candida albicans biofilms (~60-80 %), which can be related to the antifungal activity of the essential oil constituents and chitosan. Based on the rheological results, the produced thermo-responsive hydrogel shows a gel-sol viscoelastic transition at a temperature of 24.5 °C. This transition leads to a facile release of the loaded essential oil. The release test depicts that about 30 % of Zataria multiflora essential oil is released during the first 16 min. In addition, 2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay demonstrates that the designed thermo-sensitive formulation is biocompatible with high cell viability (over 96 %). The fabricated hydrogel can be deemed as a potential intelligent drug delivery platform for controlling cutaneous candidiasis due to antifungal effectiveness and less toxicity, which can be a promising alternative to traditional drug delivery systems.
Collapse
Affiliation(s)
| | - Forough Karami
- Central Research Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Chemistry Department, Yasouj University, Yasouj, Iran
| | - Mohammad Khorram
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Alireza Zare
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Milad Kamkar
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Kamiar Zomorodian
- Department of Medical Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Poormolaie N, Mohammadi M, Mir A, Asadi M, Kararoudi AN, Vahedian V, Maroufi NF, Rashidi M. Xanthomicrol: Effective therapy for cancer treatment. Toxicol Rep 2023; 10:436-440. [PMID: 37102154 PMCID: PMC10123071 DOI: 10.1016/j.toxrep.2023.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer treatment is one of the main challenges of global health. For decades, researchers have been trying to find anti-cancer compounds with minimal side effects. In recent years, flavonoids, as a group of polyphenolic compounds, have attracted the attention of researchers due to their beneficial effects on health. Xanthomicrol is one of the flavonoids that has the ability to inhibit growth, proliferation, survival and cell invasion and ultimately tumor progression. Xanthomicrol, as active anti-cancer compounds, can be effective in the prevention and treatment of cancer. Therefore, the use of flavonoids can be suggested as a treatment along with other medicinal agents. It is obvious that additional investigations in cellular levels and animal models are still needed. In this review article, the effects of xanthomicrol on various cancers have been reviewed.
Collapse
|
7
|
Kong LX, Wang Z, Shou YK, Zhou XD, Zong YW, Tong T, Liao M, Han Q, Li Y, Cheng L, Ren B. The FnBPA from methicillin-resistant Staphylococcus aureus promoted development of oral squamous cell carcinoma. J Oral Microbiol 2022; 14:2098644. [PMID: 35859766 PMCID: PMC9291692 DOI: 10.1080/20002297.2022.2098644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common tumor in the oral cavity. Methicillin-resistant Staphylococcus aureus (MRSA) were highly detected in OSCC patients; however, the interactions and mechanisms between drug-resistant bacteria (MRSA) and OSCC are not clear. Aim The aim of this study was to investigate the promotion of MRSA on the development of OSCC. Methods MRSA and MSSA (methicillin-susceptible) strains were employed to investigate the effect on the proliferation of OSCC in vitro and vivo. Results All of the MRSA strains significantly increased the proliferation of OSCC cells and MRSA arrested the cell cycles of OSCC cells in the S phase. MRSA activated the expression of TLR-4, NF-κB and c-fos in OSCC cells. MRSA also promoted the development of squamous cell carcinoma in vivo. The virulence factor fnbpA gene was significantly upregulated in all MRSA strains. By neutralizing FnBPA, the promotions of MRSA on OSCC cell proliferation and development of squamous cell carcinoma were significantly decreased. Meanwhile, the activation of c-fos and NF-κB by MRSA was also significantly decreased by FnBPA antibody. Conclusion MRSA promoted development of OSCC, and the FnBPA protein was the critical virulence factor. Targeting virulence factors is a new method to block the interaction between a drug-resistant pathogen and development of tumors.
Collapse
Affiliation(s)
- Li-Xin Kong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Ke Shou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Wen Zong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ting Tong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Min Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qi Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Diwan D, Cheng L, Usmani Z, Sharma M, Holden N, Willoughby N, Sangwan N, Baadhe RR, Liu C, Gupta VK. Microbial cancer therapeutics: A promising approach. Semin Cancer Biol 2022; 86:931-950. [PMID: 33979677 DOI: 10.1016/j.semcancer.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The success of conventional cancer therapeutics is hindered by associated dreadful side-effects of antibiotic resistance and the dearth of antitumor drugs' selectivity and specificity. Hence, the conceptual evolution of anti-cancerous therapeutic agents that selectively target cancer cells without impacting the healthy cells or tissues, has led to a new wave of scientific interest in microbial-derived bioactive molecules. Such strategic solutions may pave the way to surmount the shortcomings of conventional therapies and raise the potential and hope for the cure of wide range of cancer in a selective manner. This review aims to provide a comprehensive summary of anti-carcinogenic properties and underlying mechanisms of bioactive molecules of microbial origin, and discuss the current challenges and effective therapeutic application of combinatorial strategies to attain minimal systemic side-effects.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO, USA
| | - Lei Cheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 230032, China
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | - Nicola Holden
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Neelam Sangwan
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
9
|
Chifiriuc MC, Filip R, Constantin M, Pircalabioru GG, Bleotu C, Burlibasa L, Ionica E, Corcionivoschi N, Mihaescu G. Common themes in antimicrobial and anticancer drug resistance. Front Microbiol 2022; 13:960693. [PMID: 36003940 PMCID: PMC9393787 DOI: 10.3389/fmicb.2022.960693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial and anticancer drug resistance represent two of the main global challenges for the public health, requiring immediate practical solutions. In line with this, we need a better understanding of the origins of drug resistance in prokaryotic and eukaryotic cells and the evolutionary processes leading to the occurrence of adaptive phenotypes in response to the selective pressure of therapeutic agents. The purpose of this paper is to present some of the analogies between the antimicrobial and anticancer drug resistance. Antimicrobial and anticancer drugs share common targets and mechanisms of action as well as similar mechanisms of resistance (e.g., increased drug efflux, drug inactivation, target alteration, persister cells’ selection, protection of bacterial communities/malignant tissue by an extracellular matrix, etc.). Both individual and collective stress responses triggered by the chemotherapeutic agent involving complex intercellular communication processes, as well as with the surrounding microenvironment, will be considered. The common themes in antimicrobial and anticancer drug resistance recommend the utility of bacterial experimental models for unraveling the mechanisms that facilitate the evolution and adaptation of malignant cells to antineoplastic drugs.
Collapse
Affiliation(s)
- Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Suceava Emergency County Hospital, Suceava, Romania
| | | | - Gratiela Gradisteanu Pircalabioru
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- *Correspondence: Gratiela Gradisteanu Pircalabioru,
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
- Romanian Academy of Scientists, Bucharest, Romania
- Coralia Bleotu, ;
| | | | - Elena Ionica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine—King Michael I of Romania, Timisoara, Romania
| | | |
Collapse
|
10
|
Liu J, Lin X, Bai C, Soteyome T, Bai X, Wang J, Ye C, Fan X, Liu J, Huang Y, Liu L, Xu Z, Yu G, Kjellerup BV. Verification and application of a modified carbapenem inactivation method (mCIM) on Pseudomonas aeruginosa: a potential screening methodology on carbapenemases phenotype in Bacillus cereus. Bioengineered 2022; 13:12088-12098. [PMID: 35577356 PMCID: PMC9275876 DOI: 10.1080/21655979.2022.2072601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial resistance (AMR) has been a leading issue for human health globally threatening the achievement of several of the Sustainable Development Goals (SDGs). Originated from Bacillus cereus, carbapenemases phenotype has been considered to be a major concern in AMR. In this study, the AMR identification rate of P. aeruginosa isolates and infections in FAHJU showed an obvious upward trend from 2012 to 2016. All 88 carbapenem-resistant P. aeruginosa strains were screened for carbapenemase phenotype by modified Carbapenem Inactivation Method (mCIM), and these results of mCIM were compared with traditional PCR results. The isolates of P. aeruginosa and infected patients showed obvious upward trend from 2012 to 2016. The drug resistance to common clinical antibiotics was serious that the clinical rational use of antibiotics should be strengthened, which is in accordance with the Global Antimicrobial Resistance and Use Surveillance System (GLASS) report. In comparison, the results of mCIM showed that 18 out of 88 CRPA strains were carbapenemase positive, which were completely consistent with the results yielded by PCR method. Therefore, it is convinced that this mCIM methodology is a simple and quick method for detected carbapenemases producing P. aeruginosa and has a potential capability in carbapenemases phenotype of pathogen like B. cereus, which will undoubtedly aid in the AMR therapy.
Collapse
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.,Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Xin Lin
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Xiaoxi Bai
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China
| | - Juexin Wang
- Ganzhou Center for Disease Control and Prevention, Ganzhou, PR China
| | - Congxiu Ye
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Xiaoyi Fan
- Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Juzhen Liu
- Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Yunzu Huang
- Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Liyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China.,Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand.,Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong, China
| | - Guangchao Yu
- Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Birthe V Kjellerup
- Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Yakimova L, Kunafina A, Nugmanova A, Padnya P, Voloshina A, Petrov K, Stoikov I. Structure-Activity Relationship of the Thiacalix[4]arenes Family with Sulfobetaine Fragments: Self-Assembly and Cytotoxic Effect against Cancer Cell Lines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041364. [PMID: 35209152 PMCID: PMC8879733 DOI: 10.3390/molecules27041364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
Regulating the structure of macrocyclic host molecules and supramolecular assemblies is crucial because the structure-activity relationship often plays a role in governing the properties of these systems. Herein, we propose and develop an approach to the synthesis of the family of sulfobetaine functionalized thiacalix[4]arenes with regulation of the self-assembly and cytotoxic effect against cancer cell lines. The dynamic light scattering method showed that the synthesized macrocycles in cone, partial cone and 1,3-alternate conformations form submicron-sized particles with Ag+ in water, but the particle size and polydispersity of the systems studied depend on the macrocycle conformation. Based on the results obtained by 1H and 1H-1H NOESY NMR spectroscopy and transmission electron microscopy for the macrocycles and their aggregates with Ag+, a coordination scheme for the Ag+ and different conformations of p-tert-butylthiacalix[4]arene functionalized with sulfobetaine fragments was proposed. The type of coordination determines the different shapes of the associates. Cytotoxic properties are shown to be controlled by the shape of associates, with the highest activity demonstrated by thiacalix[4]arenes in partial cone conformation. This complex partial cone/Ag+ is two times higher than the reference drug imatinib mesylate. High selectivity against cervical carcinoma cell line indicates the prospect of their using as components of new anticancer system.
Collapse
Affiliation(s)
- Luidmila Yakimova
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.K.); (A.N.); (P.P.)
- Correspondence: (L.Y.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| | - Aisylu Kunafina
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.K.); (A.N.); (P.P.)
| | - Aigul Nugmanova
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.K.); (A.N.); (P.P.)
| | - Pavel Padnya
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.K.); (A.N.); (P.P.)
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (A.V.); (K.P.)
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (A.V.); (K.P.)
| | - Ivan Stoikov
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.K.); (A.N.); (P.P.)
- Correspondence: (L.Y.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| |
Collapse
|
12
|
Chojnacka K, Skrzypczak D, Izydorczyk G, Mikula K, Szopa D, Moustakas K, Witek-Krowiak A. Biodegradation of pharmaceuticals in photobioreactors - a systematic literature review. Bioengineered 2022; 13:4537-4556. [PMID: 35132911 PMCID: PMC8973657 DOI: 10.1080/21655979.2022.2036906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work is a systematic review that reports state-of-the-art in removal of pharmaceuticals from water and wastewater by photosynthetic organisms in photobioreactors. The PRISMA protocol-based review of the most recent literature data from the last 10 years (2011–2021) was reported. Articles were searched by the combination of the following keywords: photobioreactor, pharmaceuticals, drugs, hormones, antibiotics, biodegradation, removal, wastewater treatment. The review focuses on original research papers (not reviews), collected in 3 scientific databases: Scopus, Web of Knowledge, PubMed. The review considered the following factors: type of microorganisms, type of micropollutants removed, degradation efficiency and associated products, types of photosynthetic organisms and photobioreactor types. The conclusion from the systematic review is that the main factors that limit widespread pharmaceuticals removal in photobioreactors are high costs and the problem of low efficiency related with low concentrations of pharmaceuticals. The review indicated a need for further research in this area due to increasing amounts of metabolites in the food chain, such as p-aminophenol and estrone, which can cause harm to people and ichthyofauna. Pharmaceuticals removal can be improved by adapting the type of microorganism used to the type of contamination and implementing photoperiods, which increase the removal efficiency of e.g. sulfamethazine by up to 28%. In the future, it is necessary to search for new solutions in terms of the construction of photobioreactors, as well as for more effective species in terms of pharmaceuticals biodegradation that can survive the competition with other strains during water and wastewater treatment.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Daniel Szopa
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | | | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
13
|
Yang Q, Gao Y, Ke J, Show PL, Ge Y, Liu Y, Guo R, Chen J. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered 2021; 12:7376-7416. [PMID: 34612807 PMCID: PMC8806427 DOI: 10.1080/21655979.2021.1974657] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antibiotics, as antimicrobial drugs, have been widely applied as human and veterinary medicines. Recently, many antibiotics have been detected in the environments due to their mass production, widespread use, but a lack of adequate treatment processes. The environmental occurrence of antibiotics has received worldwide attention due to their potential harm to the ecosystem and human health. Research status of antibiotics in the environment field is presented by bibliometrics. Herein, we provided a comprehensive overview on the following important issues: (1) occurrence of antibiotics in different environmental compartments, such as wastewater, surface water, and soil; (2) toxicity of antibiotics toward non-target organisms, including aquatic and terrestrial organisms; (3) current treatment technologies for the degradation and removal of antibiotics, including adsorption, hydrolysis, photodegradation and oxidation, and biodegradation. It was found that macrolides, fluoroquinolones, tetracyclines, and sulfonamides were most frequently detected in the environment. Compared to surface and groundwaters, wastewater contained a high concentration of antibiotic residues. Both antibiotics and their metabolites exhibited toxicity to non-target organisms, especially aquatic organisms (e.g., algae and fish). Fluoroquinolones, tetracyclines, and sulfonamides can be removed through abiotic process, such as adsorption, photodegradation, and oxidation. Fluoroquinolones and sulfonamides can directly undergo biodegradation. Further studies on the chronic effects of antibiotics at environmentally relevant concentrations on the ecosystem were urgently needed to fully understand the hazards of antibiotics and help the government to establish the permissible limits. Biodegradation is a promising technology; it has numerous advantages such as cost-effectiveness and environmental friendliness.
Collapse
Affiliation(s)
- Qiulian Yang
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan Gao
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jian Ke
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan, 43500, Malaysia
| | - Yuhui Ge
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
14
|
Samba N, Aitfella-Lahlou R, Nelo M, Silva L, Coca. R, Rocha P, López Rodilla JM. Chemical Composition and Antibacterial Activity of Lippia multiflora Moldenke Essential Oil from Different Regions of Angola. Molecules 2020; 26:molecules26010155. [PMID: 33396345 PMCID: PMC7795161 DOI: 10.3390/molecules26010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
The purpose of the study was to determine the chemical composition and antibacterial activity of Lippia multiflora Moldenke essential oils (EOs) collected in different regions of Angola. Antibacterial activity was evaluated using the agar wells technique and vapour phase test. Analysis of the oils by GC/MS identified thirty-five components representing 67.5 to 100% of the total oils. Monoterpene hydrocarbons were the most prevalent compounds, followed by oxygenated monoterpenes. The content of the compounds varied according to the samples. The main components were Limonene, Piperitenone, Neral, Citral, Elemol, p-cymene, Transtagetone, and Artemisia ketone. Only one of the eleven samples contained Verbenone as the majority compound. In the vapour phase test, a single oil was the most effective against all the pathogens studied. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) of components of the selected EOs and inhibition zone diameter values of agar wells technique allowed us to identify a variability between the plants from the two provinces, but also intraspecific variability between sub-groups within a population. Each group of essential oils constituted a chemotype responsible for their bacterial inhibition capacity. The results presented here suggest that Angolan Lippia multiflora Moldenke has antibacterial properties and could be a potential source of antimicrobial agents for the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Nsevolo Samba
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Department of Clinical Analysis and Public Health, University Kimpa Vita, Uige 77, Angola
- Correspondence: (N.S.); (J.M.L.R.); Tel.: +351-926-687-782 (N.S.); +351-275-319-765 (J.M.L.R.)
| | - Radhia Aitfella-Lahlou
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Laboratory of Valorisation and Conservation of Biological Resources, Biology Department, Faculty of Sciences, University M’Hamed Bougara, 35000 Boumerdes, Algeria
| | - Mpazu Nelo
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Lucia Silva
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Rui Coca.
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Pedro Rocha
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Jesus Miguel López Rodilla
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
- Correspondence: (N.S.); (J.M.L.R.); Tel.: +351-926-687-782 (N.S.); +351-275-319-765 (J.M.L.R.)
| |
Collapse
|
15
|
Vaezi Z, Bortolotti A, Luca V, Perilli G, Mangoni ML, Khosravi-Far R, Bobone S, Stella L. Aggregation determines the selectivity of membrane-active anticancer and antimicrobial peptides: The case of killerFLIP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183107. [PMID: 31678022 DOI: 10.1016/j.bbamem.2019.183107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/19/2019] [Accepted: 09/19/2019] [Indexed: 01/02/2023]
Abstract
Host defense peptides selectively kill bacterial and cancer cells (including those that are drug-resistant) by perturbing the permeability of their membranes, without being significantly toxic to the host. Coulombic interactions between these cationic and amphipathic peptides and the negatively charged membranes of pathogenic cells contribute to the selective toxicity. However, a positive charge is not sufficient for selectivity, which can be achieved only by a finely tuned balance of electrostatic and hydrophobic driving forces. A common property of amphipathic peptides is the formation of aggregated structures in solution, but the role of this phenomenon in peptide activity and selectivity has received limited attention. Our data on the anticancer peptide killerFLIP demonstrate that aggregation strongly increases peptide selectivity, by reducing the effective peptide hydrophobicity and thus the affinity towards membranes composed of neutral lipids (like the outer layer of healthy eukaryotic cell membranes). Aggregation is therefore a useful tool to modulate the selectivity of membrane active peptides and peptidomimetics.
Collapse
Affiliation(s)
- Zahra Vaezi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Bortolotti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Luca
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Giulia Perilli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Roya Khosravi-Far
- BiomaRx Inc, Cambridge, MA, USA; Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
16
|
Dar PA, Mir SA, Bhat JA, Hamid A, Singh LR, Malik F, Dar TA. An anti-cancerous protein fraction from Withania somnifera induces ROS-dependent mitochondria-mediated apoptosis in human MDA-MB-231 breast cancer cells. Int J Biol Macromol 2019; 135:77-87. [PMID: 31121227 DOI: 10.1016/j.ijbiomac.2019.05.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
Withania somnifera exhibits different pharmacological activities which mainly stem from its broad range of bioactive molecules. Majority of these bioactive molecules, fall into the groupings of alkaloids, steroidal lactones, phenolic compounds and glycoproteins. In this study, we evaluated a novel protein fraction, named here as WSPF, isolated from Withania somnifera roots for its cytotoxic properties against various human cancer cell lines. WSPF exhibited apoptotic activity for each cancer cell line tested, demonstrating significant activity against MDA-MB-231 human breast cancer cells with an IC50 value of 92 μg/mL. WSPF induced mitochondrial-mediated apoptosis of MDA-MB-231 cells via extensive reactive oxygen species generation, dysregulation of Bax/Bcl-2, loss of mitochondrial membrane potential and caspase-3 activation. Additionally, we observed G2/M-phase cell cycle arrest, cleavage of nuclear lamin A/C proteins, and nuclear morphological changes. The present results highlight the anti-cancer properties of WSPF, indicating that the proteins in this fraction can be potential therapeutic agents for triple negative breast cancer treatment.
Collapse
Affiliation(s)
- Parvaiz A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sameer A Mir
- Cancer Pharmacology Division, CSIR-IIIM, Jammu, Jammu and Kashmir, India
| | - Javeed A Bhat
- Cancer Pharmacology Division, CSIR-IIIM, Jammu, Jammu and Kashmir, India
| | - Abid Hamid
- Department of Biotechnology, Central University of Kashmir, Jammu and Kashmir, India
| | - Laishram R Singh
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Fayaz Malik
- Cancer Pharmacology Division, CSIR-IIIM, Jammu, Jammu and Kashmir, India.
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
17
|
Malik SS, Masood N, Fatima I, Kazmi Z. Microbial-Based Cancer Therapy: Diagnostic Tools and Therapeutic Strategies. MICROORGANISMS FOR SUSTAINABILITY 2019:53-82. [DOI: 10.1007/978-981-13-8844-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Plasticity of the MFS1 Promoter Leads to Multidrug Resistance in the Wheat Pathogen Zymoseptoria tritici. mSphere 2017; 2:mSphere00393-17. [PMID: 29085913 PMCID: PMC5656749 DOI: 10.1128/msphere.00393-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022] Open
Abstract
The ascomycete Zymoseptoria tritici is the causal agent of Septoria leaf blotch on wheat. Disease control relies mainly on resistant wheat cultivars and on fungicide applications. The fungus displays a high potential to circumvent both methods. Resistance against all unisite fungicides has been observed over decades. A different type of resistance has emerged among wild populations with multidrug-resistant (MDR) strains. Active fungicide efflux through overexpression of the major facilitator gene MFS1 explains this emerging resistance mechanism. Applying a bulk-progeny sequencing approach, we identified in this study a 519-bp long terminal repeat (LTR) insert in the MFS1 promoter, a relic of a retrotransposon cosegregating with the MDR phenotype. Through gene replacement, we show the insert as a mutation responsible for MFS1 overexpression and the MDR phenotype. Besides this type I insert, we found two different types of promoter inserts in more recent MDR strains. Type I and type II inserts harbor potential transcription factor binding sites, but not the type III insert. Interestingly, all three inserts correspond to repeated elements present at different genomic locations in either IPO323 or other Z. tritici strains. These results underline the plasticity of repeated elements leading to fungicide resistance in Z. tritici and which contribute to its adaptive potential. IMPORTANCE Disease control through fungicides remains an important means to protect crops from fungal diseases and to secure the harvest. Plant-pathogenic fungi, especially Zymoseptoria tritici, have developed resistance against most currently used active ingredients, reducing or abolishing their efficacy. While target site modification is the most common resistance mechanism against single modes of action, active efflux of multiple drugs is an emerging phenomenon in fungal populations reducing additionally fungicides' efficacy in multidrug-resistant strains. We have investigated the mutations responsible for increased drug efflux in Z. tritici field strains. Our study reveals that three different insertions of repeated elements in the same promoter lead to multidrug resistance in Z. tritici. The target gene encodes the membrane transporter MFS1 responsible for drug efflux, with the promoter inserts inducing its overexpression. These results underline the plasticity of repeated elements leading to fungicide resistance in Z. tritici.
Collapse
|
19
|
Yan Q. Toward dynamical systems medicine: personalized and preventive strategies. Per Med 2017; 14:551-554. [DOI: 10.2217/pme-2017-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Qing Yan
- PharmTao, Santa Clara, CA 95056-5672, USA
| |
Collapse
|
20
|
Ling Y, Feng J, Luo L, Guo J, Peng Y, Wang T, Ge X, Xu Q, Wang X, Dai H, Zhang Y. Design and Synthesis of C3-Substituted β-Carboline-Based Histone Deacetylase Inhibitors with Potent Antitumor Activities. ChemMedChem 2017; 12:646-651. [PMID: 28425177 DOI: 10.1002/cmdc.201700133] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/04/2017] [Indexed: 12/11/2022]
Abstract
A series of hydroxamic acid histone deacetylase (HDAC) inhibitors in which the β-carboline motif has been incorporated were designed and synthesized. The effect of substitution at the C3 amide on HDAC inhibition and antiproliferative activities was investigated. Most of these compounds were found to display significant HDAC inhibitory effects and good antiproliferative activity, with IC50 values in the low-micromolar range. In particular, the HDAC inhibition IC50 value of N-(2-(dimethylamino)ethyl)-N-(4-(hydroxylcarbamoyl)benzyl)-1-(4-methoxyphenyl)-9H-pyrido[3,4-b]indole-3-carboxamide (9 h) is five-fold lower than that of suberoylanilide hydroxamic acid (SAHA, vorinostat). Furthermore, 9 h was found to increase the acetylation of histone H3 and α-tubulin, and to induce DNA damage as evidenced by hypochromism and enhanced phosphorylation of histone H2AX. Compound 9 h inhibits Stat3, Akt, and ERK signaling, important cell-growth-promoting pathways that are aberrantly activated in most cancers. Finally, 9 h showed reasonable solubility and permeability in Caco-2 cells. Our findings suggest that these novel β-carboline-based HDAC inhibitors may hold great promise as therapeutic agents for the treatment of human cancers.
Collapse
Affiliation(s)
- Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Jiao Feng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Lin Luo
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Jing Guo
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Yanfu Peng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Tingting Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Xiang Ge
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Qibing Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Xinyang Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Hong Dai
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China.,College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226001, P.R. China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| |
Collapse
|
21
|
Bakal SN, Bereswill S, Heimesaat MM. Finding Novel Antibiotic Substances from Medicinal Plants - Antimicrobial Properties of Nigella Sativa Directed against Multidrug-resistant Bacteria. Eur J Microbiol Immunol (Bp) 2017; 7:92-98. [PMID: 28386474 PMCID: PMC5372484 DOI: 10.1556/1886.2017.00001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/05/2017] [Indexed: 12/12/2022] Open
Abstract
The progressive rise in multidrug-resistant (MDR) bacterial strains poses serious problems in the treatment of infectious diseases. While the number of newly developed antimicrobial compounds has greatly fallen, the resistance of pathogens against commonly prescribed drugs is further increasing. This rise in resistance illustrates the need for developing novel therapeutic and preventive antimicrobial options. The medicinal herb Nigella sativa and its derivatives constitute promising candidates. In a comprehensive literature survey (using the PubMed data base), we searched for publications on the antimicrobial effects of N. sativa particularly directed against MDR bacterial strains. In vitro studies published between 2000 and 2015 revealed that N. sativa exerted potent antibacterial effects against both Gram-positive and Gram-negative species including resistant strains. For instance, N. sativa inhibited the growth of bacteria causing significant gastrointestinal morbidity such as Salmonella, Helicobacter pylori, and Escherichia coli. However, Listeria monocytogenes and Pseudomonas aeruginosa displayed resistance against black cumin seed extracts. In conclusion, our literature survey revealed potent antimicrobial properties of N. sativa against MDR strains in vitro that should be further investigated in order to develop novel therapeutic perspectives for combating infectious diseases particularly caused by MDR strains.
Collapse
Affiliation(s)
- Seher Nancy Bakal
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
22
|
Discovery of Azurin-Like Anticancer Bacteriocins from Human Gut Microbiome through Homology Modeling and Molecular Docking against the Tumor Suppressor p53. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8490482. [PMID: 27239476 PMCID: PMC4867070 DOI: 10.1155/2016/8490482] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/31/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
Azurin from Pseudomonas aeruginosa is known anticancer bacteriocin, which can specifically penetrate human cancer cells and induce apoptosis. We hypothesized that pathogenic and commensal bacteria with long term residence in human body can produce azurin-like bacteriocins as a weapon against the invasion of cancers. In our previous work, putative bacteriocins have been screened from complete genomes of 66 dominant bacteria species in human gut microbiota and subsequently characterized by subjecting them as functional annotation algorithms with azurin as control. We have qualitatively predicted 14 putative bacteriocins that possessed functional properties very similar to those of azurin. In this work, we perform a number of quantitative and structure-based analyses including hydrophobic percentage calculation, structural modeling, and molecular docking study of bacteriocins of interest against protein p53, a cancer target. Finally, we have identified 8 putative bacteriocins that bind p53 in a same manner as p28-azurin and azurin, in which 3 peptides (p1seq16, p2seq20, and p3seq24) shared with our previous study and 5 novel ones (p1seq09, p2seq05, p2seq08, p3seq02, and p3seq17) discovered in the first time. These bacteriocins are suggested for further in vitro tests in different neoplastic line cells.
Collapse
|
23
|
Mil-Homens D, Ferreira-Dias S, Fialho AM. Fish oils against Burkholderia and Pseudomonas aeruginosa: in vitro efficacy and their therapeutic and prophylactic effects on infected Galleria mellonella larvae. J Appl Microbiol 2016; 120:1509-19. [PMID: 27012860 DOI: 10.1111/jam.13145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/17/2016] [Accepted: 03/22/2016] [Indexed: 11/28/2022]
Abstract
AIM This study investigates the antimicrobial effects of fish oil-based formulas rich in omega-3 fatty acids (free fatty acids, ethyl esters or triacylglycerols), against cystic fibrosis (CF) pathogens (Burkholderia cenocepacia K56-2 and Pseudomonas aeruginosa PAO1), often resistant to multiple antibiotics. METHODS AND RESULTS The fish oils have shown antibacterial efficacy, although activity was highest for the one containing the fatty acid EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) in their free form (MIC value is 1·87% v/v for both pathogens). To test whether the fish oils could have a therapeutic and prophylactic potential in vivo, we assessed its efficacy using a Galleria mellonella caterpillar model of infection. The treatment of infected larvae with a single dose (7 h post infection) enhances the survival of larvae, being more pronounced with the free fatty acid form (EPAX 6000 FA). Moreover, we observed that the prophylactic food provision of the fish oil EPAX 6000 FA during 12 days prior to bacterial infection extended the life of the infected larvae. CONCLUSION The fish oils, particularly in the free fatty acid form, are active in killing Burkholderia and Ps. aeruginosa. SIGNIFICANCE AND IMPACT OF THE STUDY The possibility of using fish oils for the treatment of bacterial infections in CF patients.
Collapse
Affiliation(s)
- D Mil-Homens
- iBB-Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - S Ferreira-Dias
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - A M Fialho
- iBB-Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
24
|
Oh CK, Lee SJ, Park SH, Moon Y. Acquisition of Chemoresistance and Other Malignancy-related Features of Colorectal Cancer Cells Are Incremented by Ribosome-inactivating Stress. J Biol Chem 2016; 291:10173-83. [PMID: 26961878 DOI: 10.1074/jbc.m115.696609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) as an environmental disease is largely influenced by accumulated epithelial stress from diverse environmental causes. We are exposed to ribosome-related insults, including ribosome-inactivating stress (RIS), from the environment, dietary factors, and medicines, but their physiological impacts on the chemotherapy of CRC are not yet understood. Here we revealed the effects of RIS on chemosensitivity and other malignancy-related properties of CRC cells. First, RIS led to bidirectional inhibition of p53-macrophage inhibitory cytokine 1 (MIC-1)-mediated death responses in response to anticancer drugs by either enhancing ATF3-linked antiapoptotic signaling or intrinsically inhibiting MIC-1 and p53 expression, regardless of ATF3. Second, RIS enhanced the epithelial-mesenchymal transition and biogenesis of cancer stem-like cells in an ATF3-dependent manner. These findings indicate that gastrointestinal exposure to RIS interferes with the efficacy of chemotherapeutics, mechanistically implying that ATF3-linked malignancy and chemoresistance can be novel therapeutic targets for the treatment of environmentally aggravated cancers.
Collapse
Affiliation(s)
- Chang-Kyu Oh
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, South Korea
| | - Seung Joon Lee
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, South Korea
| | - Seong-Hwan Park
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, South Korea
| | - Yuseok Moon
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, South Korea
| |
Collapse
|
25
|
Yang XY, Miyamoto C, Akasaka T, Izukuri K, Maehata Y, Ikoma T, Ozawa S, Hata RI. Chemokine CXCL14 is a multistep tumor suppressor. J Oral Biosci 2016. [DOI: 10.1016/j.job.2015.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Monteiro C, Pinheiro M, Fernandes M, Maia S, Seabra CL, Ferreira-da-Silva F, Reis S, Gomes P, Martins MCL. A 17-mer Membrane-Active MSI-78 Derivative with Improved Selectivity toward Bacterial Cells. Mol Pharm 2015; 12:2904-11. [PMID: 26066462 DOI: 10.1021/acs.molpharmaceut.5b00113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Monteiro
- I3S, Instituto de Investigação
e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Marina Pinheiro
- UCIBIO-REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Mariana Fernandes
- I3S, Instituto de Investigação
e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Sílvia Maia
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica,
Faculdade de Ciências, Universidade do Porto, Rua do Campo
Alegre 687, 4169-007 Porto, Portugal
| | - Catarina L. Seabra
- I3S, Instituto de Investigação
e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- ICBAS, Instituto de Ciências
Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge
Viterbo Ferreira 228, 4050-313 Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Frederico Ferreira-da-Silva
- I3S, Instituto de Investigação
e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Unidade
de Produção e Purificação de Proteínas, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Salette Reis
- UCIBIO-REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paula Gomes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica,
Faculdade de Ciências, Universidade do Porto, Rua do Campo
Alegre 687, 4169-007 Porto, Portugal
| | - M. Cristina L. Martins
- I3S, Instituto de Investigação
e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- ICBAS, Instituto de Ciências
Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge
Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
27
|
Duy Nguyen V, Nguyen HHC. Molecular Screening of Azurin-Like Anticancer Bacteriocins from Human Gut Microflora Using Bioinformatics. ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING 2015. [DOI: 10.1007/978-3-319-17996-4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Prabhu S, Dennison SR, Mura M, Lea RW, Snape TJ, Harris F. Cn
-AMP2 from green coconut water is an anionic anticancer peptide. J Pept Sci 2014; 20:909-15. [DOI: 10.1002/psc.2684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/07/2014] [Accepted: 07/27/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Saurabh Prabhu
- School of Pharmacy and Biomedical Sciences; University of Central Lancashire; Preston PR1 2HE UK
| | - Sarah R. Dennison
- School of Pharmacy and Biomedical Sciences; University of Central Lancashire; Preston PR1 2HE UK
| | - Manuela Mura
- School of Computing Engineering and Physical Science; University of Central Lancashire; Preston PR1 2HE UK
| | - Robert W. Lea
- School of Pharmacy and Biomedical Sciences; University of Central Lancashire; Preston PR1 2HE UK
| | - Timothy J. Snape
- School of Pharmacy and Biomedical Sciences; University of Central Lancashire; Preston PR1 2HE UK
| | - Frederick Harris
- School of Forensic and Investigative Science; University of Central Lancashire; Preston PR1 2HE UK
| |
Collapse
|
29
|
Chakrabarty AM, Bernardes N, Fialho AM. Bacterial proteins and peptides in cancer therapy: today and tomorrow. Bioengineered 2014; 5:234-42. [PMID: 24875003 PMCID: PMC4140868 DOI: 10.4161/bioe.29266] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the most deadly diseases worldwide. In the last three decades many efforts have been made focused on understanding how cancer grows and responds to drugs. The dominant drug-development paradigm has been the "one drug, one target." Based on that, the two main targeted therapies developed to combat cancer include the use of tyrosine kinase inhibitors and monoclonal antibodies. Development of drug resistance and side effects represent the major limiting factors for their use in cancer treatment. Nowadays, a new paradigm for cancer drug discovery is emerging wherein multi-targeted approaches gain ground in cancer therapy. Therefore, to overcome resistance to therapy, it is clear that a new generation of drugs is urgently needed. Here, regarding the concept of multi-targeted therapy, we discuss the challenges of using bacterial proteins and peptides as a new generation of effective anti-cancer drugs.
Collapse
Affiliation(s)
- Ananda M Chakrabarty
- Department of Microbiology & Immunology; University of Illinois College of Medicine; Chicago, IL USA
| | - Nuno Bernardes
- Institute for Biotechnology & Bioengineering; Department of Bioengineering; Instituto Superior Técnico; Universidade de Lisboa; Lisbon, Portugal
| | - Arsenio M Fialho
- Institute for Biotechnology & Bioengineering; Department of Bioengineering; Instituto Superior Técnico; Universidade de Lisboa; Lisbon, Portugal
| |
Collapse
|
30
|
Abstract
We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaV5A 1S6
| | - Kevin Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Francisco Úbeda
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
31
|
Hong L, Han Y, Zhang H, Zhao Q, Wu K, Fan D. Drug resistance-related miRNAs in hepatocellular cancer. Expert Rev Gastroenterol Hepatol 2014; 8:283-8. [PMID: 24502538 DOI: 10.1586/17474124.2014.881713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hepatocellular cancer is a hypervascular cancer characterized by rapid progression as well as resistance to chemotherapy. Drug resistance arises from the alteration of many molecules, including oncogenes, tumor suppressor genes and miRNAs. This review evaluates the advances of drug resistance-related miRNAs in hepatocellular cancer, and analyzes the value of them as prognostic biomarkers and therapeutic targets. This review also discusses the limitations of miRNA-based therapy, and envisages future developments toward the clinical applications of drug resistance-related miRNAs.
Collapse
Affiliation(s)
- Liu Hong
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
32
|
Strino F, Parisi F, Micsinai M, Kluger Y. TrAp: a tree approach for fingerprinting subclonal tumor composition. Nucleic Acids Res 2013; 41:e165. [PMID: 23892400 PMCID: PMC3783191 DOI: 10.1093/nar/gkt641] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Revealing the clonal composition of a single tumor is essential for identifying cell subpopulations with metastatic potential in primary tumors or with resistance to therapies in metastatic tumors. Sequencing technologies provide only an overview of the aggregate of numerous cells. Computational approaches to de-mix a collective signal composed of the aberrations of a mixed cell population of a tumor sample into its individual components are not available. We propose an evolutionary framework for deconvolving data from a single genome-wide experiment to infer the composition, abundance and evolutionary paths of the underlying cell subpopulations of a tumor. We have developed an algorithm (TrAp) for solving this mixture problem. In silico analyses show that TrAp correctly deconvolves mixed subpopulations when the number of subpopulations and the measurement errors are moderate. We demonstrate the applicability of the method using tumor karyotypes and somatic hypermutation data sets. We applied TrAp to Exome-Seq experiment of a renal cell carcinoma tumor sample and compared the mutational profile of the inferred subpopulations to the mutational profiles of single cells of the same tumor. Finally, we deconvolve sequencing data from eight acute myeloid leukemia patients and three distinct metastases of one melanoma patient to exhibit the evolutionary relationships of their subpopulations.
Collapse
Affiliation(s)
- Francesco Strino
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA, NYU Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, 227 East 30th Street, New York, NY 10016, USA and Yale Cancer Center, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
33
|
Bernardes N, Chakrabarty AM, Fialho AM. Engineering of bacterial strains and their products for cancer therapy. Appl Microbiol Biotechnol 2013; 97:5189-99. [PMID: 23644748 DOI: 10.1007/s00253-013-4926-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 01/20/2023]
|
34
|
Fialho AM, Chakrabarty AM. Patent controversies and court cases: cancer diagnosis, therapy and prevention. Cancer Biol Ther 2012; 13:1229-34. [PMID: 22954683 DOI: 10.4161/cbt.21958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patents are issued essentially by all countries on inventions that are deemed novel, non-obvious, clearly described and of significant utility or industrial application. The only exceptions to patenting an invention are abstract ideas, laws of nature and natural phenomena, although the exceptions vary depending on countries where moral, public order or human rights considerations are also taken into account. Although patent laws are updated over decades, the rapid progress of science creates situations that the patent laws on the book cannot address, leading to contentious legal issues. This is often true for life saving drugs, particularly drugs for cancers or HIV/AIDS, which are expensive and beyond the reach of poor people because of the proprietary positions of these patented drugs. Another contentious issue is the patent eligibility of human genes and mutations that are often thought of nature's contribution to human health and propagation and should be beyond the reach of patentability. In this review, we address some of these current legal issues and their implications for the development of diagnostic methods, therapeutic interventions and even prevention for cancer, a scourge of mankind.
Collapse
Affiliation(s)
- Arsenio M Fialho
- Department of Bioengineering, Institute for Biotechnology & Bioengineering, Instituto Superior Tecnico, Lisbon, Portugal
| | | |
Collapse
|