1
|
Kawakami J, Brooks D, Zalmai R, Hartson SD, Bouyain S, Geisbrecht ER. Complex protein interactions mediate Drosophila Lar function in muscle tissue. PLoS One 2022; 17:e0269037. [PMID: 35622884 PMCID: PMC9140312 DOI: 10.1371/journal.pone.0269037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
The type IIa family of receptor protein tyrosine phosphatases (RPTPs), including Lar, RPTPσ and RPTPδ, are well-studied in coordinating actin cytoskeletal rearrangements during axon guidance and synaptogenesis. To determine whether this regulation is conserved in other tissues, interdisciplinary approaches were utilized to study Lar-RPTPs in the Drosophila musculature. Here we find that the single fly ortholog, Drosophila Lar (Dlar), is localized to the muscle costamere and that a decrease in Dlar causes aberrant sarcomeric patterning, deficits in larval locomotion, and integrin mislocalization. Sequence analysis uncovered an evolutionarily conserved Lys-Gly-Asp (KGD) signature in the extracellular region of Dlar. Since this tripeptide sequence is similar to the integrin-binding Arg-Gly-Asp (RGD) motif, we tested the hypothesis that Dlar directly interacts with integrin proteins. However, structural analyses of the fibronectin type III domains of Dlar and two vertebrate orthologs that include this conserved motif indicate that this KGD tripeptide is not accessible and thus unlikely to mediate physical interactions with integrins. These results, together with the proteomics identification of basement membrane (BM) proteins as potential ligands for type IIa RPTPs, suggest a complex network of protein interactions in the extracellular space that may mediate Lar function and/or signaling in muscle tissue.
Collapse
Affiliation(s)
- Jessica Kawakami
- Department of Cell and Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO, United States of America
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Rana Zalmai
- Department of Cell and Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO, United States of America
| | - Steven D. Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States of America
| | - Samuel Bouyain
- Department of Cell and Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO, United States of America
| | - Erika R. Geisbrecht
- Department of Cell and Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO, United States of America
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
2
|
Protein Tyrosine Phosphatases: Mechanisms in Cancer. Int J Mol Sci 2021; 22:ijms222312865. [PMID: 34884670 PMCID: PMC8657787 DOI: 10.3390/ijms222312865] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine kinases, especially receptor tyrosine kinases, have dominated the cancer therapeutics sphere as proteins that can be inhibited to selectively target cancer. However, protein tyrosine phosphatases (PTPs) are also an emerging target. Though historically known as negative regulators of the oncogenic tyrosine kinases, PTPs are now known to be both tumor-suppressive and oncogenic. This review will highlight key protein tyrosine phosphatases that have been thoroughly investigated in various cancers. Furthermore, the different mechanisms underlying pro-cancerous and anti-cancerous PTPs will also be explored.
Collapse
|
3
|
Wang X, Wu B, Yan Z, Wang G, Chen S, Zeng J, Tao F, Xu B, Ke H, Li M. Association of PTPRD/PTPRT Mutation With Better Clinical Outcomes in NSCLC Patients Treated With Immune Checkpoint Blockades. Front Oncol 2021; 11:650122. [PMID: 34123798 PMCID: PMC8192300 DOI: 10.3389/fonc.2021.650122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
The common gamma receptor–dependent cytokines and their JAK-STAT pathways play important roles in T cell immunity and have been demonstrated to be related with response to immune checkpoint blockades (ICBs). PTPRD and PTPRT are phosphatases involved in JAK-STAT pathway. However, their clinical significance for non-small cell lung cancer (NSCLC) treated with ICBs is still unclear. Genomic and survival data of NSCLC patients administrated with anti–PD-1/PD-L1 or anti–CTLA-4 antibodies (Rizvi2015; Hellmann2018; Rizvi2018 Samstein2019) were retrieved from publicly accessible data. Genomic, survival and mRNA data of 1007 patients with NSCLC were obtained from The Cancer Genome Atlas (TCGA). PTPRD/PTPRT mutation was significantly associated with better progression-free survival (PFS) in three independent Rizvi2015, Hellmann2018 and Rizvi2018 cohorts. The median PFS for PTPRD/PTPRT mutant-type vs. wild-type NSCLC patients were not reached vs. 6.3 months (Rizvi2015, HR = 0.16; 95% CI, 0.02-1.17; P=0.03), 24.0 vs. 5.4 months (Hellmann2018, HR, 0.49; 95% CI, 0.26-0.94; P=0.03), 5.6 vs. 3.0 months (Rizvi2018, HR = 0.64; 95% CI, 0.44-0.92; P=0.01) and 6.8 vs. 3.5 months (Pooled cohort, HR, 0.54; 95% CI, 0.39-0.73; P<0.0001) respectively. PTPRD/PTPRT mutation was an independent predictive factor for PFS in pooled cohort (P = 0.01). Additionally, PTPRD/PTPRT mutation associated with better overall survival (OS) in Samstein2019 cohort (19 vs. 10 months, P=0.03). While similar clinical benefits were not observed in patients without ICBs treatment (TCGA cohort, P=0.78). In the further exploratory analysis, PTPRD/PTPRT mutation was significantly associated with increased tumor mutation burden and higher mRNA expression of JAK1 and STAT1. Gene Set Enrichment Analysis revealed prominent enrichment of signatures related to antigen processing and presentation in patients with PTPRD/PTPRT mutation. This work suggested that PTPRD/PTPRT mutation might be a potential positive predictor for ICBs in NSCLC. These results need to be further confirmed in future.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Bingchen Wu
- Department of Oncology, Hospital of Chinese Medicine of Changxing County, Huzhou, China
| | - Zhengqing Yan
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Guoqiang Wang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Shiqing Chen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Jian Zeng
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, University of Chinese Academy of Sciences, Hangzhou, China
| | - Feng Tao
- Department of Respiratory Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Bichun Xu
- Department of Radiotherapy, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Honggang Ke
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Mei Li
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
4
|
First genome-wide association study of non-severe malaria in two birth cohorts in Benin. Hum Genet 2019; 138:1341-1357. [PMID: 31667592 DOI: 10.1007/s00439-019-02079-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022]
Abstract
Recent research efforts to identify genes involved in malaria susceptibility using genome-wide approaches have focused on severe malaria. Here, we present the first GWAS on non-severe malaria designed to identify genetic variants involved in innate immunity or innate resistance mechanisms. Our study was performed on two cohorts of infants from southern Benin (525 and 250 individuals used as discovery and replication cohorts, respectively) closely followed from birth to 18-24 months of age, with an assessment of a space- and time-dependent environmental risk of exposure. Both the recurrence of mild malaria attacks and the recurrence of malaria infections as a whole (symptomatic and asymptomatic) were considered. Post-GWAS functional analyses were performed using positional, eQTL, and chromatin interaction mapping to identify the genes underlying association signals. Our study highlights a role of PTPRT, a tyrosine phosphatase receptor involved in STAT3 pathway, in the protection against both mild malaria attacks and malaria infections (p = 9.70 × 10-8 and p = 1.78 × 10-7, respectively, in the discovery cohort). Strong statistical support was also found for a role of MYLK4 (meta-analysis, p = 5.29 × 10-8 with malaria attacks), and for several other genes, whose biological functions are relevant in malaria infection. Results shows that GWAS on non-severe malaria can successfully identify new candidate genes and inform physiological mechanisms underlying natural protection against malaria.
Collapse
|
5
|
Casar B, Badrock AP, Jiménez I, Arozarena I, Colón-Bolea P, Lorenzo-Martín LF, Barinaga-Rementería I, Barriuso J, Cappitelli V, Donoghue DJ, Bustelo XR, Hurlstone A, Crespo P. RAS at the Golgi antagonizes malignant transformation through PTPRκ-mediated inhibition of ERK activation. Nat Commun 2018; 9:3595. [PMID: 30185827 PMCID: PMC6125387 DOI: 10.1038/s41467-018-05941-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/02/2018] [Indexed: 11/12/2022] Open
Abstract
RAS GTPases are frequently mutated in human cancer. H- and NRAS isoforms are distributed over both plasma-membrane and endomembranes, including the Golgi complex, but how this organizational context contributes to cellular transformation is unknown. Here we show that RAS at the Golgi is selectively activated by apoptogenic stimuli and antagonizes cell survival by suppressing ERK activity through the induction of PTPRκ, which targets CRAF for dephosphorylation. Consistently, in contrast to what occurs at the plasma-membrane, RAS at the Golgi cannot induce melanoma in zebrafish. Inactivation of PTPRκ, which occurs frequently in human melanoma, often coincident with TP53 inactivation, accelerates RAS-ERK pathway-driven melanomagenesis in zebrafish. Likewise, tp53 disruption in zebrafish facilitates oncogenesis driven by RAS from the Golgi complex. Thus, RAS oncogenic potential is strictly dependent on its sublocalization, with Golgi complex-located RAS antagonizing tumor development. RAS isoforms are associated with the plasma membrane and endomembranes, but how their localization contributes to tumorigenesis is unclear. Here, the authors show that RAS signals from Golgi complex antagonize tumour formation by inducing apoptosis via ERK inhibition.
Collapse
Affiliation(s)
- Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, 39011, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Andrew P Badrock
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Iñaki Jiménez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, 39011, Spain
| | - Imanol Arozarena
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, 39011, Spain.,Navarrabiomed-FMS IDISNA, Pamplona, Navarra, 31008, Spain
| | - Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, 39011, Spain
| | - L Francisco Lorenzo-Martín
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, 28029, Spain.,Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain
| | - Irene Barinaga-Rementería
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Jorge Barriuso
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Vincenzo Cappitelli
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, 39011, Spain
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093, USA
| | - Xosé R Bustelo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, 28029, Spain.,Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain
| | - Adam Hurlstone
- Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK.
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, 39011, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
6
|
Moon SC, Choi HJ, Chung TW, Lee JH, Lee SO, Jung MH, Kim BJ, Choi JY, Ha KT. Sorbus commixta water extract induces apoptotic cell death via a ROS-dependent pathway. Oncol Lett 2018; 16:4193-4200. [PMID: 30197667 PMCID: PMC6126344 DOI: 10.3892/ol.2018.9217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
The stembark of Sorbus commixta Hedl. has been used for treating asthma, bronchitis, gastritis and edema. However, the anticancer and proapoptotic effects of the water extract of the stembark of S. commixta (SCE) remain unknown. In the present study, it was shown that SCE inhibited the cell viability of the hepatocellular carcinoma cell lines Hep3B and HepG2, and of the colon carcinoma cell line HCT116. DNA content analysis indicated that SCE increased the sub-G1 population of HCT116 cells. In addition, degradation of nuclear DNA and levels of proapoptotic cascade components, including caspase-9, caspase-3 and poly ADP-ribose polymerase, were augmented by SCE treatment. Mitochondrial membrane potential and the ratio of B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X protein (Bax) were also reduced. Furthermore, SCE increased the expression of proapoptotic proteins, including p21, p27 and p53. Mouse double minute 2 homology, a negative regulator of p53, was cleaved by SCE treatment. Intracellular reactive oxygen species (ROS) production was also increased by SCE treatment. However, the SCE-induced cytotoxic effects and the increased expression of proapoptotic proteins, including p53 and p21, and reduced Bcl-2/Bax ratio, could be attenuated by N-acetyl cysteine, an ROS inhibitor. Taken together, these results indicate that SCE is a potent proapoptotic herbal medicine, which exerts its effects via the ROS-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Seong-Cheol Moon
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Hee-Jung Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Tae-Wook Chung
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Jung-Hee Lee
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Myeong Ho Jung
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Byung Joo Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Jun-Yong Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Korean Medical Clinical Research Center, Pusan National University Hospital, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.,Korean Medical Clinical Research Center, Pusan National University Hospital, Yangsan, Gyeongnam 50612, Republic of Korea
| |
Collapse
|
7
|
Structural basis of SALM5-induced PTPδ dimerization for synaptic differentiation. Nat Commun 2018; 9:268. [PMID: 29348579 PMCID: PMC5773555 DOI: 10.1038/s41467-017-02414-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/29/2017] [Indexed: 12/29/2022] Open
Abstract
SALM5, a synaptic adhesion molecule implicated in autism, induces presynaptic differentiation through binding to the LAR family receptor protein tyrosine phosphatases (LAR-RPTPs) that have been highlighted as presynaptic hubs for synapse formation. The mechanisms underlying SALM5/LAR-RPTP interaction remain unsolved. Here we report crystal structures of human SALM5 LRR-Ig alone and in complex with human PTPδ Ig1–3 (MeA−). Distinct from other LAR-RPTP ligands, SALM5 mainly exists as a dimer with LRR domains from two protomers packed in an antiparallel fashion. In the 2:2 heterotetrameric SALM5/PTPδ complex, a SALM5 dimer bridges two separate PTPδ molecules. Structure-guided mutations and heterologous synapse formation assays demonstrate that dimerization of SALM5 is prerequisite for its functionality in inducing synaptic differentiation. This study presents a structural template for the SALM family and reveals a mechanism for how a synaptic adhesion molecule directly induces cis-dimerization of LAR-RPTPs into higher-order signaling assembly. Synaptic adhesion molecules mediate synaptic differentiation and formation. Here the authors present the structures of the synaptic adhesion molecule SALM5 alone and in complex with the LAR family receptor protein tyrosine phosphatase (LAR-RPTP) PTPδ, which reveals how SALM5 dimerization facilitates higher-order signaling assembly of LAR-RPTPs.
Collapse
|
8
|
Bujko M, Kober P, Statkiewicz M, Mikula M, Grecka E, Rusetska N, Ligaj M, Ostrowski J, Siedlecki JA. Downregulation of PTPRH (Sap-1) in colorectal tumors. Int J Oncol 2017; 51:841-850. [PMID: 28713969 DOI: 10.3892/ijo.2017.4068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/13/2017] [Indexed: 11/05/2022] Open
Abstract
Tyrosine phosphorylation is one of the basic mechanisms for signal transduction in the cell. Receptors exhibiting tyrosine kinase activity are widely involved in carcinogenesis and are negatively regulated by receptor protein tyrosine phosphatases (RPTP). Genes encoding different RPTPs are affected by aberrant epigenetic regulation in cancer. PTPRH (SAP-1) has been previously described to be overexpressed in colorectal cancer (CRC) and classified as an oncogenic factor. Previous microarray-based mRNA expression comparison of colorectal adenomas (AD), CRC and normal mucosa samples (NM) demonstrated that PTPRH tumor expression is the most reduced of all RPTP genes. qRT-PCR validation revealed gene downregulation for CRC (7.6-fold-change; P<0.0001) and AD (3.4-fold-change; P<0.0001) compared to NM. This was confirmed by immunohistochemical staining of tumor and NM sections as pronounced decrease of protein expression was observed in CRCs compared to the corresponding normal tissue. DNA methylation of two PTPRH promoter fragments was analyzed by pyrosequencing in a group of CRC, and AD patients as well as NM samples and CRC cell lines. The mean DNA methylation levels of these two regions were significantly higher in CRC than in NM. Both regions were highly methylated in SW480 and HCT116 cell lines contrary to unmethylated HT29 and COLO205. Cell lines with highly methylated promoters notably showed lower PTPRH expression levels, lower RNA II polymerase concentrations and higher levels of H3K27 trimethylation in the promoter and gene body, measured by chromatin immunoprecipitation. Cells were cultured with 5-aza-deoxycitidine and an increase in PTPRH expression was observed in SW480 and HCT116, whereas this was unchanged in the unmethylated cell lines. The results indicate that PTPRH is downregulated in colorectal tumors and its expression is epigenetically regulated via DNA methylation and chromatin modifications.
Collapse
Affiliation(s)
- Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Małgorzata Statkiewicz
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Emilia Grecka
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Nataliia Rusetska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Marcin Ligaj
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Janusz Aleksander Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| |
Collapse
|
9
|
Park H, Park H, Chung TW, Choi HJ, Jung YS, Lee SO, Ha KT. Effect of Sorbus commixta on the invasion and migration of human hepatocellular carcinoma Hep3B cells. Int J Mol Med 2017; 40:483-490. [PMID: 28586002 DOI: 10.3892/ijmm.2017.3010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/18/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor metastasis is a main cause of cancer-related morbidity and mortality. Thus, a number of medicinal herbs and phytochemicals have been investigated as possible candidates for the inhibition of cancer metastasis. Sorbus commixta Hedl. (SC) is a traditional medicinal plant used in the treatment of inflammatory diseases, as it has antioxidant, anti-inflammatory, anti-atherosclerotic and anti-hepatotoxic activities. In this study, we demonstrate that the water extract of SC exerts inhibitory effect on the invasion and migration of hepatocellular carcinoma Hep3B cells. The activity and expression of matrix metalloproteinase (MMP)-9, which is responsible for the invasion of cancer cells, was decreased by SC treatment. The invasive and migratory potentials of the Hep3B cells were also decreased, as evidence by in vitro assay using the Boyden chamber system. In addition, the expression of the chemokine receptors, C-X-C chemokine receptor type 4 (CXCR)4 and C-X-C chemokine receptor type 6 (CXCR6), were inhibited by SC in Hep3B cells. Furthermore, actin fiber organization was markedly suppressed by SC treatment. Taken together, the findings of this study suggest for the first time, to the best of our knowledge, that SC suppresses the invasion and migration of highly metastatic Hep3B cells.
Collapse
Affiliation(s)
- Hyerin Park
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| | - Hyunwook Park
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Tae-Wook Chung
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| | - Hee-Jung Choi
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| | - Yeon-Seop Jung
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Ki-Tae Ha
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| |
Collapse
|
10
|
Sun PH, Chen G, Mason M, Jiang WG, Ye L. Dual roles of protein tyrosine phosphatase kappa in coordinating angiogenesis induced by pro-angiogenic factors. Int J Oncol 2017; 50:1127-1135. [PMID: 28259897 PMCID: PMC5363875 DOI: 10.3892/ijo.2017.3884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/18/2017] [Indexed: 11/09/2022] Open
Abstract
A potential role may be played by receptor-type protein tyrosine phosphatase kappa (PTPRK) in angiogenesis due to its critical function in coordinating intracellular signal transduction from various receptors reliant on tyrosine phosphorylation. In the present study, we investigated the involvement of PTPRK in the cellular functions of vascular endothelial cells (HECV) and its role in angiogenesis using in vitro assays and a PTPRK knockdown vascular endothelial cell model. PTPRK knockdown in HECV cells (HECVPTPRKkd) resulted in a decrease of cell proliferation and cell-matrix adhesion; however, increased cell spreading and motility were seen. Reduced focal adhesion kinase (FAK) and paxillin protein levels were seen in the PTPRK knockdown cells which may contribute to the inhibitory effect on adhesion. HECVPTPRKkd cells were more responsive to the treatment of fibroblast growth factor (FGF) in their migration compared with the untreated control and cells treated with VEGF. Moreover, elevated c-Src and Akt1 were seen in the PTPRK knockdown cells. The FGF-promoted cell migration was remarkably suppressed by an addition of PLCγ inhibitor compared with other small inhibitors. Knockdown of PTPRK suppressed the ability of HECV cells to form tubules and also impaired the tubule formation that was induced by FGF and conditioned medium of cancer cells. Taken together, it suggests that PTPRK plays dual roles in coordinating angiogenesis. It plays a positive role in cell proliferation, adhesion and tubule formation, but suppresses cell migration, in particular, the FGF-promoted migration. PTPRK bears potential to be targeted for the prevention of tumour associated angiogenesis.
Collapse
Affiliation(s)
- Ping-Hui Sun
- Cardiff China Medical Research Collaborative Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Gang Chen
- Cardiff China Medical Research Collaborative Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Malcolm Mason
- Cardiff China Medical Research Collaborative Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| |
Collapse
|
11
|
Miura T, Nagamune T, Kawahara M. Ligand-inducible dimeric antibody for selecting antibodies against a membrane protein based on mammalian cell proliferation. Biotechnol Bioeng 2015; 113:1113-23. [DOI: 10.1002/bit.25858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/23/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Tomohiro Miura
- Department of Bioengineering; Graduate School of Engineering, The University of Tokyo; Tokyo Japan
| | - Teruyuki Nagamune
- Department of Bioengineering; Graduate School of Engineering, The University of Tokyo; Tokyo Japan
- Department of Chemistry and Biotechnology; Graduate School of Engineering, The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku; Tokyo 113-8656 Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology; Graduate School of Engineering, The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku; Tokyo 113-8656 Japan
| |
Collapse
|
12
|
Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37:98-107. [PMID: 25234613 PMCID: PMC4765084 DOI: 10.1016/j.semcdb.2014.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
13
|
Veliz I, Loo Y, Castillo O, Karachaliou N, Nigro O, Rosell R. Advances and challenges in the molecular biology and treatment of glioblastoma-is there any hope for the future? ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:7. [PMID: 25705639 PMCID: PMC4293478 DOI: 10.3978/j.issn.2305-5839.2014.10.06] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 11/14/2022]
Abstract
Malignant gliomas, such as glioblastoma multiforme (GBM), present some of the greatest challenges in the management of cancer patients worldwide. Even with aggressive surgical resections and recent advances in radiotherapy and chemotherapy, the prognosis for GBM patients remains dismal and quality of life is poor. Although new molecular pathways crucial to the biology and invasive ability of GBM are coming to light, translation of basic science achievements into clinical practice is slow. Optimal management requires a multidisciplinary approach and knowledge of potential complications arising from both disease and treatment. To help illustrate "where we are going" with GBM, we here include a detailed depiction of the molecular alterations underlying this fatal disease, as well as intensive research over the past two decades that has led to considerable advances in the understanding of basic GBM biology, pathogenesis and therapeutic approaches.
Collapse
|
14
|
Lee H, Yi JS, Lawan A, Min K, Bennett AM. Mining the function of protein tyrosine phosphatases in health and disease. Semin Cell Dev Biol 2014; 37:66-72. [PMID: 25263013 DOI: 10.1016/j.semcdb.2014.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 09/21/2014] [Indexed: 12/31/2022]
Abstract
Protein tyrosine phosphatases (PTPs) play a crucial role in the regulation of human health and it is now clear that PTP dysfunction is causal to a variety of human diseases. Research in the PTP field has accelerated dramatically over the last decade fueled by cutting-edge technologies in genomic and proteomic techniques. This system-wide non-biased approach when applied to the discovery of PTP function has led to the elucidation of new and unanticipated roles for the PTPs. These discoveries, driven by genomic and proteomic approaches, have uncovered novel PTP findings that range from those that describe fundamental cell signaling mechanisms to implications for PTPs as novel therapeutic targets for the treatment of human disease. This review will discuss how new PTP functions have been uncovered through studies that have utilized genomic and proteomic technologies and strategies.
Collapse
Affiliation(s)
- Hojin Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Jae-Sung Yi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Ahmed Lawan
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Kisuk Min
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Liu Y, Zhu Z, Xiong Z, Zheng J, Hu Z, Qiu J. Knockdown of protein tyrosine phosphatase receptor U inhibits growth and motility of gastric cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5750-61. [PMID: 25337216 PMCID: PMC4203187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/23/2014] [Indexed: 06/04/2023]
Abstract
Protein tyrosine phosphatase receptor U (PTPRU) has been shown to be a tumor suppressor in colon cancer by dephosphorylating β-catenin and reducing the activation of β-catenin signaling. Here, we investigate the expression of PTPRU protein in gastric cancer cell lines, gastric cancer tissues and respective adjacent non-cancer tissues and find that the 130 kDa nuclear-localized PTPRU fragment is the main PTPRU isoform in gastric cancer cells, whereas the full-length PTPRU is relatively lowly expressed. The level of the 130 kDa PTPRU is higher in gastric cancer tissues than in adjacent non-cancer tissues. Knockdown of endogenous PTPRU in gastric cancer cells using lentivirus-delivered specific shRNA results in the attenuation of cell growth, migration, invasion and adhesion. Knockdown of PTPRU also inhibits tyrosine phosphorylation and transcriptional activity of β-catenin as well as levels of focal adhesion proteins and lysine methylation of histone H3. These results indicate that PTPRU is required for gastric cancer progression and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Yongjie Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai 200237, P. R. China
| | - Zhichuan Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai 200237, P. R. China
| | - Zhiqi Xiong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai 200237, P. R. China
| | - Jing Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai 200237, P. R. China
| | - Zelan Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai 200237, P. R. China
| | - Jiangfeng Qiu
- Department of Gastrointestinal Surgery, Ningbo First HospitalNingbo 315010, P. R. China
| |
Collapse
|
16
|
Zhu Z, Liu Y, Li K, Liu J, Wang H, Sun B, Xiong Z, Jiang H, Zheng J, Hu Z. Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility. Carcinogenesis 2014; 35:1901-10. [PMID: 24876153 DOI: 10.1093/carcin/bgu123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The membrane protein tyrosine phosphatase receptor U (PTPRU) has been shown to function as a negative regulator of adhesion and proliferation in certain cancer cell types, primarily through its dephosphorylation of β-catenin and inhibition of subsequent downstream signaling. In the present study, we set out to characterize the role of PTPRU in glioma and found that, while the expression of full-length PTPRU protein is low in these tumors, a number of non-full-length PTPRU isoforms are highly expressed. Among these isoforms, one in particular is localized to the nucleus, and its expression is increased in glioma tissues in a manner that positively correlates with malignancy grade. Short hairpin RNA knockdown of endogenous PTPRU in human and rat glioma cell lines suppressed proliferation, survival, invasion, migration, adhesion and vasculogenic tube formation in vitro, as well as intracranial tumor progression in vivo. In addition, knocking down PTPRU reduced tyrosine phosphorylation (pY) and transcriptional activity of β-catenin, and we were able to specifically rescue the cell migration defect by expressing a LEF1-β-catenin fusion protein in PTPRU-depleted cells. PTPRU knockdown also led to increased tyrosine pY of the E3 ubiquitin ligase c-Cbl and to the destabilization of several focal adhesion proteins. Taken together, our findings demonstrate that endogenous PTPRU promote glioma progression through their effect on β-catenin and focal adhesion signaling.
Collapse
Affiliation(s)
- Zhichuan Zhu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yongjie Liu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kui Li
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiwei Liu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongtao Wang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Sun
- Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and
| | - Zhiqi Xiong
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hualiang Jiang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Zheng
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zelan Hu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
17
|
Yi JH, Katagiri Y, Yu P, Lourie J, Bangayan NJ, Symes AJ, Geller HM. Receptor protein tyrosine phosphatase σ binds to neurons in the adult mouse brain. Exp Neurol 2014; 255:12-8. [PMID: 24530640 DOI: 10.1016/j.expneurol.2014.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/17/2014] [Accepted: 02/07/2014] [Indexed: 01/26/2023]
Abstract
The role of type IIA receptor protein tyrosine phosphatases (RPTPs), which includes LAR, RPTPσ and RPTPδ, in the nervous system is becoming increasingly recognized. Evidence supports a significant role for these RPTPs during the development of the nervous system as well as after injury, and mutations in RPTPs are associated with human disease. However, a major open question is the nature of the ligands that interact with type IIA RPTPs in the adult brain. Candidates include several different proteins as well as the glycosaminoglycan chains of proteoglycans. In order to investigate this problem, we used a receptor affinity probe assay with RPTPσ-AP fusion proteins on sections of adult mouse brain and to cultured neurons. Our results demonstrate that the major binding sites for RPTPσ in adult mouse brain are on neurons and are not proteoglycan GAG chains, as RPTPσ binding overlaps with the neuronal marker NeuN and was not significantly altered by treatments which eliminate chondroitin sulfate, heparan sulfate, or both. We also demonstrate no overlap of binding of RPTPσ with perineuronal nets, and a unique modulation of RPTPσ binding to brain by divalent cations. Our data therefore point to neuronal proteins, rather than CSPGs, as being the ligands for RPTPσ in the adult, uninjured brain.
Collapse
Affiliation(s)
- Jae-Hyuk Yi
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yasuhiro Katagiri
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Panpan Yu
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacob Lourie
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathanael J Bangayan
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aviva J Symes
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Herbert M Geller
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Brady-Kalnay SM. Molecular mechanisms of cancer cell-cell interactions: cell-cell adhesion-dependent signaling in the tumor microenvironment. Cell Adh Migr 2012; 6:344-5. [PMID: 22983192 DOI: 10.4161/cam.21489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Kiefel H, Bondong S, Hazin J, Ridinger J, Schirmer U, Riedle S, Altevogt P. L1CAM: a major driver for tumor cell invasion and motility. Cell Adh Migr 2012; 6:374-84. [PMID: 22796939 DOI: 10.4161/cam.20832] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The L1 cell adhesion molecule (L1CAM) plays a major role in the development of the nervous system and in the malignancy of human tumors. In terms of biological function, L1CAM comes along in two different flavors: (1) a static function as a cell adhesion molecule that acts as a glue between cells; (2) a motility promoting function that drives cell migration during neural development and supports metastasis of human cancers. Important factors that contribute to the switch in the functional mode of L1CAM are: (1) the cleavage from the cell surface by membrane proximal proteolysis and (2) the ability to change binding partners and engage in L1CAM-integrin binding. Recent studies have shown that the cleavage of L1CAM by metalloproteinases and the binding of L1CAM to integrins via its RGD-motif in the sixth Ig-domain activate signaling pathways distinct from the ones elicited by homophilic binding. Here we highlight important features of L1CAM proteolysis and the signaling of L1CAM via integrin engagement. The novel insights into L1CAM downstream signaling and its regulation during tumor progression and epithelial-mesenchymal transition (EMT) will lead to a better understanding of the dualistic role of L1CAM as a cell adhesion and/or motility promoting cell surface molecule.
Collapse
Affiliation(s)
- Helena Kiefel
- Translational Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|