1
|
Hsieh LTH, Hall BS, Newcombe J, Mendum TA, Varela SS, Umrania Y, Deery MJ, Shi WQ, Diaz-Delgado J, Salguero FJ, Simmonds RE. The Mycobacterium ulcerans toxin mycolactone causes destructive Sec61-dependent loss of the endothelial glycocalyx and vessel basement membrane to drive skin necrosis. eLife 2025; 12:RP86931. [PMID: 39913180 PMCID: PMC11801798 DOI: 10.7554/elife.86931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on human primary vascular endothelial cells in vitro. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo during M. ulcerans infection in the mouse model. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.
Collapse
Affiliation(s)
- Louise Tzung-Harn Hsieh
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Belinda S Hall
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Jane Newcombe
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Tom A Mendum
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Sonia Santana Varela
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, University of CambridgeCambridgeUnited Kingdom
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of CambridgeCambridgeUnited Kingdom
| | - Wei Q Shi
- Department of Chemistry, Ball State UniversityMuncieUnited States
| | - Josué Diaz-Delgado
- Texas A&M Veterinary Medical Diagnostic LaboratoryCollege StationUnited States
| | | | - Rachel E Simmonds
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| |
Collapse
|
2
|
Janečková E, Juarez-Balarezo J, Tucker AS, Matalová E, Holomková K, Gaete M. Metalloproteinases are involved in the regulation of prenatal tooth morphogenesis. Am J Physiol Cell Physiol 2025; 328:C323-C333. [PMID: 39510136 DOI: 10.1152/ajpcell.00656.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
During development, tooth germs undergo various morphological changes resulting from interactions between the oral epithelium and ectomesenchyme. These processes are influenced by the extracellular matrix, the composition of which, along with cell adhesion and signaling, is regulated by metalloproteinases. Notably, these include matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and a disintegrin and metalloproteinases with thrombospondin motifs (ADAMTSs). Our analysis of previously published scRNAseq datasets highlight that these metalloproteinases show dynamic expression patterns during tooth development, with expression in a wide range of cell types, suggesting multiple roles in tooth morphogenesis. To investigate this, Marimastat, a broad-spectrum inhibitor of MMPs, ADAMs, and ADAMTSs, was applied to ex vivo cultures of mouse molar tooth germs. The treated samples exhibited significant changes in tooth germ size and morphology, including an overall reduction in size and an inversion of the typical bell shape. The cervical loop failed to extend, and the central area of the inner enamel epithelium protruded. Marimastat treatment also disrupted proliferation, cell polarization, and organization compared with control tooth germs. In addition, a decrease in laminin expression was observed, leading to a disruption in continuity of the basement membrane at the epithelial-mesenchymal junction. Elevated hypoxia-inducible factor 1-alpha gene (Hif-1α) expression correlated with a disruption to blood vessel development around the tooth germs. These results reveal the crucial role of metalloproteinases in tooth growth, shape, cervical loop elongation, and the regulation of blood vessel formation during prenatal tooth development.NEW & NOTEWORTHY Inhibition of metalloproteinases during tooth development had a wide-ranging impact on molar growth affecting proliferation, cell migration, and vascularization, highlighting the diverse role of these proteins in controlling development.
Collapse
Affiliation(s)
- Eva Janečková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Division of Biology, Glendale Community College, Glendale, California, United States
| | - Jesus Juarez-Balarezo
- Department of Anatomy, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
- 1st Faculty of Medicine, Institute of Histology and Embryology, Charles University, Prague, Czech Republic
| | - Eva Matalová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Kateřina Holomková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Marcia Gaete
- Department of Anatomy, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Studies and Innovation in Dentistry, Faculty of Dentistry, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
3
|
Mills M, Emori C, Kumar P, Boucher Z, George J, Bolcun-Filas E. Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes. Dev Biol 2025; 517:55-72. [PMID: 39306223 DOI: 10.1016/j.ydbio.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response (DDR) in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53, and TAp63, regulate primordial follicle elimination in response to DNA damage. However, the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DDR in wild-type and Chek2-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces ovarian DDR that is solely dependent on CHEK2. DNA damage activates multiple response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pregranulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, therapeutic and environmental genotoxic exposures.
Collapse
Affiliation(s)
- Monique Mills
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA; The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871, Japan
| | - Parveen Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06110, USA
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06110, USA
| | | |
Collapse
|
4
|
Nappi F, Nassif A, Schoell T. External Scaffold for Strengthening the Pulmonary Autograft in the Ross Procedure. Biomimetics (Basel) 2024; 9:674. [PMID: 39590246 PMCID: PMC11591583 DOI: 10.3390/biomimetics9110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Despite offering several potential benefits over standard prosthetic aortic valve replacement, the use of the pulmonary autograft has been limited to date due to concerns over the risk of pulmonary autograft expansion and the need for reintervention. Several techniques using materials with biomimetic potential have been developed to reduce this complication. The incidence, risk factors, and pathophysiology of pulmonary autograft dilatation are discussed in this article. This seminar will provide an overview of the techniques of external pulmonary autograft support and their advantages and limitations. It also considers future directions for further investigation and future clinical applications of external pulmonary autograft support. Dilatation of the autograft is more likely to occur in patients with aortic regurgitation and a dilated aortic annulus. External scaffolding may prevent autograft stretching and expansion in these specific cases. However, from a biomimetic point of view, any permanent scaffold potentially restricts the movement of the autograft root. This reduces some of the benefits associated with the use of autologous tissue, which is the priority of the Ross procedure. To address this issue, several bioresorbable matrices could be used to support the root during its initial adaptive phase. Control of blood pressure with aggressive therapy is the first line to avoid this problem in the first year after pulmonary autograft implantation, together with support of the annular and sinotubular junction in some selected cases. This is the best way to maintain stable autograft root dimensions while preserving root dynamics. However, to determine the efficacy of this combined external support and best medical management, it is important to perform regular imaging and clinical follow-up.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.N.); (T.S.)
| | | | | |
Collapse
|
5
|
Hsieh LTH, Hall BS, Newcombe J, Mendum TA, Santana-Varela S, Umrania Y, Deery MJ, Shi WQ, Diaz-Delgado J, Salguero FJ, Simmonds RE. Mycolactone causes destructive Sec61-dependent loss of the endothelial glycocalyx and vessel basement membrane: a new indirect mechanism driving tissue necrosis in Mycobacterium ulcerans infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.21.529382. [PMID: 36865118 PMCID: PMC9980099 DOI: 10.1101/2023.02.21.529382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically-evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on primary vascular endothelial cells in vitro and in vivo. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.
Collapse
Affiliation(s)
| | - Belinda S Hall
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Jane Newcombe
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Tom A Mendum
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Sonia Santana-Varela
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Wei Q Shi
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Josué Diaz-Delgado
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, Texas, USA
| | | | - Rachel E Simmonds
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| |
Collapse
|
6
|
Yan Y, Quan H, Guo C, Qin Z, Quan T. Alterations of Matrisome Gene Expression in Naturally Aged and Photoaged Human Skin In Vivo. Biomolecules 2024; 14:900. [PMID: 39199288 PMCID: PMC11352887 DOI: 10.3390/biom14080900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
The main component of human skin is a collagen-rich extracellular matrix (ECM), known as the matrisome. The matrisome is essential for maintaining the structural integrity and mechanical properties of the skin. Recently, we reported notable decreases in matrisome proteins in natural aging and photoaging human skin. This study aims to investigate the mRNA expression of the core matrisome proteins in human skin, comparing young versus aged and sun-protected versus sun-exposed skin by quantitative real-time PCR and immunostaining. Our findings reveal a notable decrease in core matrisome transcription in aged skin. The mRNA expression of the core matrisome, such as collagen 1A1 (COL1A1), decorin, and dermatopontin, is significantly reduced in aged skin compared to its young skin. Yet, the majority of collagen mRNA expression levels of aged sun-exposed skin are similar to those found in young sun-exposed skin. This discrepancy is primarily attributable to a substantial decrease in collagen transcription in young sun-exposed skin, suggesting early molecular changes in matrisome transcription due to sun exposure, which preceded the emergence of clinical signs of photoaging. These findings shed light on the mRNA transcript profile of major matrisome proteins and their alterations in naturally aged and photoaged human skin, offering valuable insights into skin matrisome biology.
Collapse
Affiliation(s)
- Yan Yan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.Y.); (C.G.); (Z.Q.)
| | - Hehui Quan
- Lenox Hill Hospital, 100 E 77th St., New York, NY 10075, USA;
| | - Chunfang Guo
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.Y.); (C.G.); (Z.Q.)
| | - Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.Y.); (C.G.); (Z.Q.)
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.Y.); (C.G.); (Z.Q.)
| |
Collapse
|
7
|
Fu Z, Qi Y, Xue LF, Xu YX, Yue J, Zhao JZ, Li C, Xiao W. LAMA5: A new pathogenic gene for non-syndromic cleft lip with or without cleft palate. Biomed J 2024; 47:100627. [PMID: 37390938 PMCID: PMC10957387 DOI: 10.1016/j.bj.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/23/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effect of LAMA5 on palatal development in mice. METHODS The palatine process of C57BL/6 J fetal mice on the embryonic day 13.5 (E13.5) was cultured in vitro via the rotating culture method. The LAMA5-shRNA adenovirus vector was constructed, then transfected into the palatal process of E13.5 for 48 h in vitro. A fluorescence microscope was used to visualize the fusion of palates. The expression of LAMA5 was also detected. The expression of ki67, cyclin D1, caspase 3, E-cadherin, vimentin and SHH signaling pathway-related signaling factors in the blank control group, the negative control group, and the LAMA5 interference group were detected after virus transfection. RESULTS The bilateral palates in the LAMA5 interference group were not fused after virus transfection. PCR and WB showed that the mRNA and protein expressions of LAMA5 were decreased in the LAMA5 interference group. Furthermore, the mRNA and protein expressions of ki67, cyclin D1 and gli1 were decreased in the LAMA5 interference group, while the mRNA and protein expressions of caspase 3 were increased. However, the mRNA and protein expression of E-cadherin, vimentin, Shh and ptch1 did not significantly change in the LAMA5 interference group. CONCLUSIONS LAMA5 silencing causes cleft palate by inhibiting the proliferation of mouse palatal cells and promoting apoptosis, which may not be involved in EMT. LAMA5 silencing can also cause cleft palate by interfering with the SHH signaling pathway.
Collapse
Affiliation(s)
- Zhenzhen Fu
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Yan Qi
- Department of Stomatology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ling-Fa Xue
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Yao-Xiang Xu
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Jin Yue
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Jin-Ze Zhao
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Cong Li
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Wenlin Xiao
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Fiore APZP, Maity S, Jeffery L, An D, Rendleman J, Iannitelli D, Choi H, Mazzoni E, Vogel C. Identification of molecular signatures defines the differential proteostasis response in induced spinal and cranial motor neurons. Cell Rep 2024; 43:113885. [PMID: 38457337 PMCID: PMC11018139 DOI: 10.1016/j.celrep.2024.113885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/12/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Amyotrophic lateral sclerosis damages proteostasis, affecting spinal and upper motor neurons earlier than a subset of cranial motor neurons. To aid disease understanding, we exposed induced cranial and spinal motor neurons (iCrMNs and iSpMNs) to proteotoxic stress, under which iCrMNs showed superior survival, quantifying the transcriptome and proteome for >8,200 genes at 0, 12, and 36 h. Two-thirds of the proteome showed cell-type differences. iSpMN-enriched proteins related to DNA/RNA metabolism, and iCrMN-enriched proteins acted in the endoplasmic reticulum (ER)/ER chaperone complex, tRNA aminoacylation, mitochondria, and the plasma/synaptic membrane, suggesting that iCrMNs expressed higher levels of proteins supporting proteostasis and neuronal function. When investigating the increased proteasome levels in iCrMNs, we showed that the activity of the 26S proteasome, but not of the 20S proteasome, was higher in iCrMNs than in iSpMNs, even after a stress-induced decrease. We identified Ublcp1 as an iCrMN-specific regulator of the nuclear 26S activity.
Collapse
Affiliation(s)
| | - Shuvadeep Maity
- New York University, Department of Biology, New York, NY 10003, USA; Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Lauren Jeffery
- New York University, Department of Biology, New York, NY 10003, USA
| | - Disi An
- New York University, Department of Biology, New York, NY 10003, USA
| | - Justin Rendleman
- New York University, Department of Biology, New York, NY 10003, USA
| | - Dylan Iannitelli
- New York University, Department of Biology, New York, NY 10003, USA
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Esteban Mazzoni
- New York University, Department of Biology, New York, NY 10003, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christine Vogel
- New York University, Department of Biology, New York, NY 10003, USA.
| |
Collapse
|
9
|
Mills M, Emori C, Kumar P, Boucher Z, George J, Bolcun-Filas E. Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578648. [PMID: 38352597 PMCID: PMC10862846 DOI: 10.1101/2024.02.02.578648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53 and TAp63, regulate primordial follicle elimination in response to DNA damage, however the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DNA damage response in wildtype and Chek2-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces a DNA damage response in ovarian cells that is solely dependent on CHEK2. DNA damage activates multiple ovarian response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pre-granulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, as well as therapeutic and environmental genotoxic exposures.
Collapse
Affiliation(s)
- Monique Mills
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan
| | - Parveen Kumar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Joshy George
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
10
|
Toutouna L, Beck-Woedl S, Feige U, Glaeser B, Komlosi K, Eckenweiler M, Luetzen N, Haack TB, Fischer J, Bader I, Tzschach A. Novel homozygous LAMB1 in-frame deletion in a pediatric patient with brain anomalies and cerebrovascular event. Am J Med Genet A 2023; 191:2656-2663. [PMID: 37466007 DOI: 10.1002/ajmg.a.63349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
Biallelic pathogenic variants in LAMB1 have been associated with autosomal recessive lissencephaly 5 (OMIM 615191), which is characterized by brain malformations (cobblestone lissencephaly, hydrocephalus), developmental delay, and epilepsy. Pathogenic variants in LAMB1 are rare, with only 11 pathogenic variants and 11 patients reported to date. Here, we report on a 6-year-old patient from a consanguineous family with profound developmental delay, microcephaly, and a history of a perinatal cerebrovascular event. Brain magnetic resonance imaging (MRI) showed cerebellar cystic defects, signal intensity abnormalities, and a hypoplastic corpus callosum. Trio-exome analysis revealed a homozygous in-frame deletion of Exons 23 and 24 of LAMB1 affecting 104 amino acids including the epidermal growth factor (EGF)-like units 11 and 12 in Domain III. To our knowledge, this is the first reported in-frame deletion in LAMB1. Our findings broaden the clinical and molecular spectrum of LAMB1-associated syndromes.
Collapse
Affiliation(s)
- Louiza Toutouna
- Faculty of Medicine, Institute of Human Genetics, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Stefanie Beck-Woedl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ursula Feige
- Department of Neuroradiology, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Birgitta Glaeser
- Faculty of Medicine, Institute of Human Genetics, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Katalin Komlosi
- Faculty of Medicine, Institute of Human Genetics, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Niklas Luetzen
- Department of Neuroradiology, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Judith Fischer
- Faculty of Medicine, Institute of Human Genetics, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ingrid Bader
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Andreas Tzschach
- Faculty of Medicine, Institute of Human Genetics, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Xu Z, Wang Y, Sun M, Zhou Y, Cao J, Zhang H, Xuan X, Zhou J. Proteomic analysis of extracellular vesicles from tick hemolymph and uptake of extracellular vesicles by salivary glands and ovary cells. Parasit Vectors 2023; 16:125. [PMID: 37046327 PMCID: PMC10100430 DOI: 10.1186/s13071-023-05753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that are important mediators of intercellular communication. Arthropods transport nutrients, signaling molecules, waste and immune factors to all areas of the body via the hemolymph. Little is known about tick hemolymph EVs. METHODS Hemolymph was collected from partially fed Rhipicephalus haemaphysaloides and Hyalomma asiaticum ticks by making an incision with a sterile scalpel in the middle (between the femur and metatarsus) of the first pair of legs, which is known as leg amputation. EVs were isolated from hemolymph by differential centrifugation and characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Proteins extracted from the hemolymph EVs were analyzed by 4D label-free proteomics. The EVs were also examined by western blot and immuno-electron microscopy analysis. Intracellular incorporation of PHK26-labeled EVs was tested by adding labeled EVs to tick salivary glands and ovaries, followed by fluorescence microscopy. RESULTS In this study, 149 and 273 proteins were identified by 4D label-free proteomics in R. haemaphysaloides and H. asiaticum hemolymph EVs, respectively. TEM and NTA revealed that the sizes of the hemolymph EVs from R. haemaphysaloides and H. asiaticum were 133 and 138 nm, respectively. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses of identified proteins revealed pathways related to binding, catalytic and transporter activity, translation, transport and catabolism, signal transduction and cellular community. The key EV marker proteins RhCD9, RhTSG101, Rh14-3-3 and RhGAPDH were identified using proteomics and western blot. The presence of RhFerritin-2 in tick hemolymph EVs was confirmed by western blot and immuno-electron microscopy. We demonstrated that PKH26-labeled hemolymph EVs are internalized by tick salivary glands and ovary cells in vitro. CONCLUSIONS The results suggest that tick EVs are secreted into, and circulated by, the hemolymph. EVs may play roles in the regulation of tick development, metabolism and reproduction.
Collapse
Affiliation(s)
- Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Meng Sun
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
12
|
Fu Z, Yue J, Xue L, Xu Y, Ding Q, Xiao W. Using whole exome sequencing to identify susceptibility genes associated with nonsyndromic cleft lip with or without cleft palate. Mol Genet Genomics 2023; 298:107-118. [PMID: 36322204 DOI: 10.1007/s00438-022-01967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Cleft lip and palate is a common congenital birth defect in humans. Its incidence rate in China is as high as 1.82%, and is now a frequent deformity observed among the Chinese population; moreover, it varies across regions. Although the etiology of nonsyndromic cleft lip with or without cleft palate (NSCL/P) has been widely investigated, the results are inconsistent. The specific genes and mechanisms responsible for NSCL/P have not been fully understood. Whole exome sequencing (WES) is a new strategy for studying pathogenic genes. WES studies on NSCL/P have not been conducted in East China. Therefore, the aim of this study was to screen candidate genes of NSCL/P in East China using WES and analyze the temporal and spatial expressions of the candidate genes during embryonic palatal development. WES was performed in 30 children with NSCL/P from East China to screen candidate genes. A bioinformatics analysis was performed using commercially available software. Variants detected by WES were validated by immunohistochemistry and western blotting. After WES, 506,144 single-nucleotide variant sites were found. The results of database comparison, functional analysis, and mass spectrometry revealed that only the laminin alpha 5 (LAMA5) gene (site: rs145192286) was associated with NSCL/P. Immunohistochemistry results showed that LAMA5 expression in the medial edge epithelium changed with formation, lifting, and contact during palatogenesis. Almost no LAMA5 expression was detected in the palatal mesenchyme or after palatal fusion. Western blotting and immunohistochemistry results showed consistent trends. In conclusion, the WES results shows that the mutation at the site (rs145192286) of LAMA5 is associated with NSCL/P. The temporal and spatial expressions of LAMA5 during palatal development further demonstrate the involvement of this gene. Therefore, we speculate that LAMA5 is a new candidate pathogenic gene of NSCL/P. The identification of new pathogenic genes would help elucidate the pathogenesis of NSCL/P and provide a scientific basis for the prenatal diagnosis, prevention, and treatment of NSCL/P.
Collapse
Affiliation(s)
- Zhenzhen Fu
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Jin Yue
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Lingfa Xue
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yaoxiang Xu
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qian Ding
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Wenlin Xiao
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China. .,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China. .,Department of Stomatology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
13
|
Chavda ND, Sari B, Asiri FM, Hamill KJ. Laminin N-terminus (LaNt) proteins, laminins and basement membrane regulation. Biochem Soc Trans 2022; 50:1541-1553. [PMID: 36355367 PMCID: PMC9788559 DOI: 10.1042/bst20210240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/03/2023]
Abstract
Basement membranes (BMs) are structured regions of the extracellular matrix that provide multiple functions including physical support and acting as a barrier, as a repository for nutrients and growth factors, and as biophysical signalling hubs. At the core of all BMs is the laminin (LM) family of proteins. These large heterotrimeric glycoproteins are essential for tissue integrity, and differences between LM family members represent a key nexus in dictating context and tissue-specific functions. These variations reflect genetic diversity within the family, which allows for multiple structurally and functionally distinct heterotrimers to be produced, each with different architectures and affinities for other matrix proteins and cell surface receptors. The ratios of these LM isoforms also influence the biophysical properties of a BM owing to differences in their relative ability to form polymers or networks. Intriguingly, the LM superfamily is further diversified through the related netrin family of proteins and through alternative splicing leading to the generation of non-LM short proteins known as the laminin N-terminus (LaNt) domain proteins. Both the netrins and LaNt proteins contain structural domains involved in LM-to-LM interaction and network assembly. Emerging findings indicate that one netrin and at least one LaNt protein can potently influence the structure and function of BMs, disrupting the networks, changing physical properties, and thereby influencing tissue function. These findings are altering the way that we think about LM polymerisation and, in the case of the LaNt proteins, suggest a hitherto unappreciated form of LM self-regulation.
Collapse
Affiliation(s)
- Natasha D. Chavda
- Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby Street, Liverpool L78TX, U.K
| | - Bilge Sari
- Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby Street, Liverpool L78TX, U.K
| | - Fawziah M. Asiri
- Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby Street, Liverpool L78TX, U.K
| | - Kevin J. Hamill
- Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby Street, Liverpool L78TX, U.K
| |
Collapse
|
14
|
Kaimori JY, Kikkawa Y, Motooka D, Namba-Hamano T, Takuwa A, Okazaki A, Kobayashi K, Tanigawa A, Kotani Y, Uno Y, Yoshimi K, Hattori K, Asahina Y, Kajimoto S, Doi Y, Oka T, Sakaguchi Y, Mashimo T, Sekiguchi K, Nakaya A, Nomizu M, Isaka Y. A heterozygous LAMA5 variant may contribute to slowly progressive, vinculin-enhanced familial FSGS and pulmonary defects. JCI Insight 2022; 7:158378. [PMID: 36173685 PMCID: PMC9746903 DOI: 10.1172/jci.insight.158378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023] Open
Abstract
The LAMA5 gene encodes laminin α5, an indispensable component of glomerular basement membrane and other types of basement membrane. A homozygous pathological variant in LAMA5 is known to cause a systemic developmental syndrome including glomerulopathy. However, the roles of heterozygous LAMA5 gene variants in human renal and systemic diseases have remained unclear. We performed whole-exome sequencing analyses of a family with slowly progressive nephropathy associated with hereditary focal segmental glomerulosclerosis, and we identified what we believe to be a novel probable pathogenic variant of LAMA5, NP_005551.3:p.Val3687Met. In vitro analyses revealed cell type-dependent changes in secretion of variant laminin α5 laminin globular 4-5 (LG4-5) domain. Heterozygous and homozygous knockin mice with a corresponding variant of human LAMA5, p.Val3687Met, developed focal segmental glomerulosclerosis-like pathology with reduced laminin α5 and increased glomerular vinculin levels, which suggested that impaired cell adhesion may underlie this glomerulopathy. We also identified pulmonary defects such as bronchial deformity and alveolar dilation. Reexaminations of the family revealed phenotypes compatible with reduced laminin α5 and increased vinculin levels in affected tissues. Thus, the heterozygous p.Val3687Met variant may cause a new syndromic nephropathy with focal segmental glomerulosclerosis through possibly defective secretion of laminin α5. Enhanced vinculin may be a useful disease marker.
Collapse
Affiliation(s)
- Jun-Ya Kaimori
- Department of Inter-Organ Communication Research in Kidney Diseases and,Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, and,Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayako Takuwa
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Atsuko Okazaki
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Osaka, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kaori Kobayashi
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Osaka, Japan.,Medical Solutions Division, NEC Corporation, Tokyo, Japan
| | | | - Yuko Kotani
- Institute of Experimental Animal Sciences and
| | | | - Kazuto Yoshimi
- Genome Editing Research and Development (R&D) Center, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Animal Genetics, Laboratory Animal Research Center, The Institute of Medical Science
| | - Koki Hattori
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuta Asahina
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sachio Kajimoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yohei Doi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsufumi Oka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Sakaguchi
- Department of Inter-Organ Communication Research in Kidney Diseases and,Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences and,Genome Editing Research and Development (R&D) Center, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Animal Genetics, Laboratory Animal Research Center, The Institute of Medical Science;,Division of Genome Engineering, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research; and
| | - Akihiro Nakaya
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Genome Data Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
15
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
16
|
Ibrutinib reverses IL-6-induced osimertinib resistance through inhibition of Laminin α5/FAK signaling. Commun Biol 2022; 5:155. [PMID: 35197546 PMCID: PMC8866396 DOI: 10.1038/s42003-022-03111-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Osimertinib, a 3rd generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is the first-line standard-of-care for EGFR-mutant non-small cell lung cancer (NSCLC) patients, while acquired drug resistance will inevitably occur. Interleukin-6 (IL-6) is a keystone cytokine in inflammation and cancer, while its role in osimertinib efficacy was unknown. Here we show that clinically, plasma IL-6 level predicts osimertinib efficacy in EGFR mutant NSCLC patients. Highly increased IL-6 levels are found in patients with acquired resistance to osimertinib. Addition of IL-6 or exogenous overexpression of IL-6 directly induces osimertinib resistance. Proteomics reveals LAMA5 (Laminin α5) and PTK2, protein tyrosine kinase 2, also called focal adhesion kinase (FAK), are activated in osimertinib-resistant cells, and siRNA knockdown of LAMA5 or PTK2 reverses IL-6-mediated osimertinib resistance. Next, using a large-scale compound screening, we identify ibrutinib as a potent inhibitor of IL-6 and Laminin α5/FAK signaling, which shows synergy with osimertinib in osimertinib-resistant cells with high IL-6 levels, but not in those with low IL-6 levels. In vivo, this combination inhibits tumor growth of xenografts bearing osimertinib-resistant tumors. Taken together, we conclude that Laminin α5/FAK signaling is responsible for IL-6-induced osimertinib resistance, which could be reversed by combination of ibrutinib and osimertinib. The resistance mechanism of osimertinib, a third-generation EGFR-TKI, is mediated by IL-6 and Laminin α5/FAK signaling. Ibrutinib combined with osimertinib is presented as a strategy for overcoming osimertinib acquired resistance in EGFR mutant NSCLC.
Collapse
|
17
|
Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions. Nat Commun 2021; 12:2577. [PMID: 33972551 PMCID: PMC8110968 DOI: 10.1038/s41467-021-22881-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Inter-tissue interaction is fundamental to multicellularity. Although the basement membrane (BM) is located at tissue interfaces, its mode of action in inter-tissue interactions remains poorly understood, mainly because the molecular and structural details of the BM at distinct inter-tissue interfaces remain unclear. By combining quantitative transcriptomics and immunohistochemistry, we systematically identify the cellular origin, molecular identity and tissue distribution of extracellular matrix molecules in mouse hair follicles, and reveal that BM composition and architecture are exquisitely specialized for distinct inter-tissue interactions, including epithelial–fibroblast, epithelial–muscle and epithelial–nerve interactions. The epithelial–fibroblast interface, namely, hair germ–dermal papilla interface, makes asymmetrically organized side-specific heterogeneity in the BM, defined by the newly characterized interface, hook and mesh BMs. One component of these BMs, laminin α5, is required for hair cycle regulation and hair germ–dermal papilla anchoring. Our study highlights the significance of BM heterogeneity in distinct inter-tissue interactions. The basement membrane is located at tissue interfaces, but how it mediates distinct inter-tissue interactions is unclear. Here, the authors systematically define the spatial heterogeneity of skin basement membrane composition and show its functional importance in inter-tissue interactions.
Collapse
|
18
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 439] [Impact Index Per Article: 109.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
19
|
Byrne AQ, Richards-Zawacki CL, Voyles J, Bi K, Ibáñez R, Rosenblum EB. Whole exome sequencing identifies the potential for genetic rescue in iconic and critically endangered Panamanian harlequin frogs. GLOBAL CHANGE BIOLOGY 2021; 27:50-70. [PMID: 33150627 DOI: 10.1111/gcb.15405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Avoiding extinction in a rapidly changing environment often relies on a species' ability to quickly adapt in the face of extreme selective pressures. In Panamá, two closely related harlequin frog species (Atelopus varius and Atelopus zeteki) are threatened with extinction due to the fungal pathogen Batrachochytrium dendrobatidis (Bd). Once thought to be nearly extirpated from Panamá, A. varius have recently been rediscovered in multiple localities across their historical range; however, A. zeteki are possibly extinct in the wild. By leveraging a unique collection of 186 Atelopus tissue samples collected before and after the Bd outbreak in Panama, we describe the genetics of persistence for these species on the brink of extinction. We sequenced the transcriptome and developed an exome-capture assay to sequence the coding regions of the Atelopus genome. Using these genetic data, we evaluate the population genetic structure of historical A. varius and A. zeteki populations, describe changes in genetic diversity over time, assess the relationship between contemporary and historical individuals, and test the hypothesis that some A. varius populations have rapidly evolved to resist or tolerate Bd infection. We found a significant decrease in genetic diversity in contemporary (compared to historical) A. varius populations. We did not find strong evidence of directional allele frequency change or selection for Bd resistance genes, but we uncovered a set of candidate genes that warrant further study. Additionally, we found preliminary evidence of recent migration and gene flow in one of the largest persisting A. varius populations in Panamá, suggesting the potential for genetic rescue in this system. Finally, we propose that previous conservation units should be modified, as clear genetic breaks do not exist beyond the local population level. Our data lay the groundwork for genetically informed conservation and advance our understanding of how imperiled species might be rescued from extinction.
Collapse
Affiliation(s)
- Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | | | - Jamie Voyles
- Department of Biology, University of Nevada Reno, Reno, NV, USA
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
- Sistema Nacional de Investigación, SENACYT, Clayton, Panamá, República de Panamá
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
20
|
Zbinden A, Urbanczyk M, Layland SL, Becker L, Marzi J, Bosch M, Loskill P, Duffy GP, Schenke-Layland K. Collagen and Endothelial Cell Coculture Improves β-Cell Functionality and Rescues Pancreatic Extracellular Matrix. Tissue Eng Part A 2020; 27:977-991. [PMID: 33023407 DOI: 10.1089/ten.tea.2020.0250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of biomaterials and biomaterial functionalization is a promising approach to support pancreatic islet viability posttransplantation in an effort to reduce insulin dependence for patients afflicted with diabetes mellitus type 1. Extracellular matrix (ECM) proteins are known to impact numerous reparative functions in the body. Assessing how endogenously expressed pancreatic ECM proteins are affected by posttransplant-like hypoxic conditions may provide significant insights toward the development of tissue-engineered therapeutic strategies to positively influence β-cell survival, proliferation, and functionality. Here, we investigated the expression of three relevant groups of pancreatic ECM proteins in human native tissue, including basement membrane (BM) proteins (collagen type 4 [COL4], laminins [LAM]), proteoglycans (decorin [DCN], nidogen-1 [NID1]), and fibril-forming proteins (fibronectin [FN], collagen type 1 [COL1]). In an in vitro hypoxia model, we identified that ECM proteins were differently affected by hypoxic conditions, contributing to an overall loss of β-cell functionality. The use of a COL1 hydrogel as carrier material demonstrated a protective effect on β-cells mitigating the effect of hypoxia on proteoglycans as well as fibril-forming protein expression, supporting β-cell functionality in hypoxia. We further showed that providing endothelial cells (ECs) into the COL1 hydrogel improves β-cell response as well as the expression of relevant BM proteins. Our data show that β-cells benefit from a microenvironment composed of structure-providing COL1 with the incorporation of ECs to withstand the harsh conditions of hypoxia. Such hydrogels support β-cell survival and can serve as an initial source of ECM proteins to allow cell engraftment while preserving cell functionality posttransplantation. Impact statement Expression analysis identifies hypoxia-induced pathological changes in extracellular matrix (ECM) homeostasis as potential targets to support β-cell transplants by encapsulation in biomaterials for the treatment of diabetes mellitus. A collagen-1 hydrogel is shown to attenuate the effect of hypoxia on β-cells and their ECM expression. The functionalization of the hydrogel with endothelial cells increases the β-cell response to glucose and rescues essential basement membrane proteins.
Collapse
Affiliation(s)
- Aline Zbinden
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Max Urbanczyk
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Shannon L Layland
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Lucas Becker
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julia Marzi
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Mariella Bosch
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Fraunhofer IGB, Stuttgart, Germany
| | - Garry P Duffy
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Katja Schenke-Layland
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.,Cardiovascular Research Laboratories, Department of Medicine/Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
21
|
Jones LK, Lam R, McKee KK, Aleksandrova M, Dowling J, Alexander SI, Mallawaarachchi A, Cottle DL, Short KM, Pais L, Miner JH, Mallett AJ, Simons C, McCarthy H, Yurchenco PD, Smyth IM. A mutation affecting laminin alpha 5 polymerisation gives rise to a syndromic developmental disorder. Development 2020; 147:dev189183. [PMID: 32439764 PMCID: PMC7540250 DOI: 10.1242/dev.189183] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
Laminin alpha 5 (LAMA5) is a member of a large family of proteins that trimerise and then polymerise to form a central component of all basement membranes. Consequently, the protein plays an instrumental role in shaping the normal development of the kidney, skin, neural tube, lung and limb, and many other organs and tissues. Pathogenic mutations in some laminins have been shown to cause a range of largely syndromic conditions affecting the competency of the basement membranes to which they contribute. We report the identification of a mutation in the polymerisation domain of LAMA5 in a patient with a complex syndromic disease characterised by defects in kidney, craniofacial and limb development, and by a range of other congenital defects. Using CRISPR-generated mouse models and biochemical assays, we demonstrate the pathogenicity of this variant, showing that the change results in a failure of the polymerisation of α/β/γ laminin trimers. Comparing these in vivo phenotypes with those apparent upon gene deletion in mice provides insights into the specific functional importance of laminin polymerisation during development and tissue homeostasis.
Collapse
Affiliation(s)
- Lynelle K Jones
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Rachel Lam
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Karen K McKee
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08901, USA
| | - Maya Aleksandrova
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08901, USA
| | | | - Stephen I Alexander
- Nephrology Department, Centre for Kidney Research, The Children's Hospital at Westmead, Sydney 2145, New South Wales, Australia
| | - Amali Mallawaarachchi
- Department of Medical Genomics, Royal Prince Alfred Hospital; Garvan Institute of Medical Research, Sydney 2010, New South Wales, Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Kieran M Short
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Lynn Pais
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffery H Miner
- Division of Nephrology, Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Andrew J Mallett
- Kidney Health Service, Royal Brisbane and Women's Hospital and the Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Cas Simons
- Murdoch Children's Research Institute, The Royal Children's Hospital Melbourne, Melbourne 3052, Victoria, Australia
| | - Hugh McCarthy
- The Sydney Children's Hospitals Network and the Children's Hospital Westmead Clinical School, University of Sydney, Sydney 2145, New South Wales, Australia
| | - Peter D Yurchenco
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08901, USA
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| |
Collapse
|
22
|
Zhang W, Zhang X, Zhang L, Xu D, Cheng N, Tang Y, Peng Y. Astrocytes increase exosomal secretion of oligodendrocyte precursor cells to promote their proliferation via integrin β4-mediated cell adhesion. Biochem Biophys Res Commun 2020; 526:341-348. [PMID: 32220495 DOI: 10.1016/j.bbrc.2020.03.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 01/04/2023]
Abstract
Many degenerative diseases of the central nervous system (CNS) are associated with demyelination. Oligodendrocyte precursor cells (OPCs) are potential stem cells that can differentiate into oligodendrocytes (OLs) and promote myelination. Promoting the proliferation of OPCs is key to stimulating remyelination and treating neurodegenerative diseases. Herein, we report that astrocytes (ASTs) could increase exosomal secretion of OPCs to promote their proliferation via ITGB4-mediated cell adhesion. Our results demonstrate that ASTs can regulate the proliferation of OPCs through ITGB4-mediated exosomal secretion. OPC proliferation is significantly increased after direct-contact culture with ASTs. Gene ontology (GO) and KEGG pathway analyses reveal that ITGB4/extracellular exosome are closely related to OPC proliferation. siRNA ITGB4 decreases exosomal secretion and OPC proliferation. ITGB4/exosomes remarkably promote OPC transition from G1 to S phase. Furthermore, exosomes can alleviate the inhibitory effect of ITGB4 knockdown on OPC proliferation. Collectively, ASTs regulate OPC exosomal secretion via ITGB4, which could be a valuable approach for promoting OPC proliferation. This strategy may represent a potential treatment for neurological diseases caused by demyelination.
Collapse
Affiliation(s)
- Wenjin Zhang
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaoyan Zhang
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lei Zhang
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Dan Xu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - NanNan Cheng
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yong Tang
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yan Peng
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
23
|
Liu P, Chen H, Yan L, Sun Y. Laminin α5 modulates fibroblast proliferation in epidural fibrosis through the PI3K/AKT/mTOR signaling pathway. Mol Med Rep 2020; 21:1491-1500. [PMID: 32016453 PMCID: PMC7003017 DOI: 10.3892/mmr.2020.10967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Lumbar laminectomy is commonly deemed as the most valid surgery for a series of lumbar illnesses, such as lumbar disc herniation, which could lead to spinal canal stenosis. However, epidural fibrosis is one of the most common complications that limits the application of lumbar laminectomy, which is mainly caused by proliferation of local fibroblasts. Laminins are glycoproteins that consist of α, β and γ chains, which serve a crucial role in biological cell behaviors, such as adhesion, differentiation, migration and proliferation, especially the isoform with the fifth α chain-laminin α5. The PI3K/AKT/mTOR signaling pathway was demonstrated to be associated with various biological functions in cells. The aim of the present study was to explore whether laminin α5 is an important factor in epidural fibrosis by modulating the proliferation of fibroblasts through the activation of PI3K/AKT/mTOR signaling pathway. In the animal model, the results of the hematoxylin-eosin staining, cell counting, Masson's trichrome staining and immunohistochemical staining showed laminin α5 to be positively associated with epidural fibrosis. Furthermore, to verify the assumption that laminin α5 could modulate fibroblast proliferation through the PI3K/AKT/mTOR signal pathway, fibroblasts were transfected with laminin α5-small interfering (si)RNA. The results of western blotting (proliferating cell nuclear antigen and cyclin D1), the Cell Counting Kit-8 and EdU incorporation assays indicated that the proliferative level of fibroblasts decreased, and the expression of phosphorylated (p)-focal adhesion kinase 1, p-AKT and p-mTOR was reduced. Subsequently, laminin α5 was overexpressed and the change in cell proliferation and expression of associated proteins contrasted with that observed in siRNA. The results demonstrated that laminin α5 could interfere the activation of the PI3K/AKT/mTOR signaling pathway. Finally, the inhibition of the PI3K/AKT/mTOR signaling pathway by LY294002 resulted in decreased fibroblast proliferation. In conclusion, laminin α5 could modulate fibroblast proliferation in epidural fibrosis through the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Pengran Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012, P.R. China
| | - Hui Chen
- Department of Orthopedics, Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Lianqi Yan
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Yu Sun
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
24
|
Hauer NN, Popp B, Taher L, Vogl C, Dhandapany PS, Büttner C, Uebe S, Sticht H, Ferrazzi F, Ekici AB, De Luca A, Klinger P, Kraus C, Zweier C, Wiesener A, Jamra RA, Kunstmann E, Rauch A, Wieczorek D, Jung AM, Rohrer TR, Zenker M, Doerr HG, Reis A, Thiel CT. Evolutionary conserved networks of human height identify multiple Mendelian causes of short stature. Eur J Hum Genet 2019; 27:1061-1071. [PMID: 30809043 PMCID: PMC6777496 DOI: 10.1038/s41431-019-0362-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/14/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Height is a heritable and highly heterogeneous trait. Short stature affects 3% of the population and in most cases is genetic in origin. After excluding known causes, 67% of affected individuals remain without diagnosis. To identify novel candidate genes for short stature, we performed exome sequencing in 254 unrelated families with short stature of unknown cause and identified variants in 63 candidate genes in 92 (36%) independent families. Based on systematic characterization of variants and functional analysis including expression in chondrocytes, we classified 13 genes as strong candidates. Whereas variants in at least two families were detected for all 13 candidates, two genes had variants in 6 (UBR4) and 8 (LAMA5) families, respectively. To facilitate their characterization, we established a clustered network of 1025 known growth and short stature genes, which yielded 29 significantly enriched clusters, including skeletal system development, appendage development, metabolic processes, and ciliopathy. Eleven of the candidate genes mapped to 21 of these clusters, including CPZ, EDEM3, FBRS, IFT81, KCND1, PLXNA3, RASA3, SLC7A8, UBR4, USP45, and ZFHX3. Fifty additional growth-related candidates we identified await confirmation in other affected families. Our study identifies Mendelian forms of growth retardation as an important component of idiopathic short stature.
Collapse
Affiliation(s)
- Nadine N Hauer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Leila Taher
- Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carina Vogl
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India.,The Knight Cardiovascular Institute, Departments of Medicine, Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Alessandro De Luca
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Patrizia Klinger
- Department of Orthopedic Rheumatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Erdmute Kunstmann
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Dagmar Wieczorek
- Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany.,Institute of Human-Genetics, Medical Faculty of University Düsseldorf, Düsseldorf, Germany
| | - Anna-Marie Jung
- Division of Pediatric Endocrinology, Department of General Pediatrics and Neonatology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Tilman R Rohrer
- Division of Pediatric Endocrinology, Department of General Pediatrics and Neonatology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Helmuth-Guenther Doerr
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Christian T Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany.
| |
Collapse
|
25
|
Qi H, Yu L, Zhou X, Wynn J, Zhao H, Guo Y, Zhu N, Kitaygorodsky A, Hernan R, Aspelund G, Lim FY, Crombleholme T, Cusick R, Azarow K, Danko ME, Chung D, Warner BW, Mychaliska GB, Potoka D, Wagner AJ, ElFiky M, Wilson JM, Nickerson D, Bamshad M, High FA, Longoni M, Donahoe PK, Chung WK, Shen Y. De novo variants in congenital diaphragmatic hernia identify MYRF as a new syndrome and reveal genetic overlaps with other developmental disorders. PLoS Genet 2018; 14:e1007822. [PMID: 30532227 PMCID: PMC6301721 DOI: 10.1371/journal.pgen.1007822] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/20/2018] [Accepted: 11/08/2018] [Indexed: 12/24/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect that is often accompanied by other congenital anomalies. Previous exome sequencing studies for CDH have supported a role of de novo damaging variants but did not identify any recurrently mutated genes. To investigate further the genetics of CDH, we analyzed de novo coding variants in 362 proband-parent trios including 271 new trios reported in this study. We identified four unrelated individuals with damaging de novo variants in MYRF (P = 5.3x10(-8)), including one likely gene-disrupting (LGD) and three deleterious missense (D-mis) variants. Eight additional individuals with de novo LGD or missense variants were identified from our other genetic studies or from the literature. Common phenotypes of MYRF de novo variant carriers include CDH, congenital heart disease and genitourinary abnormalities, suggesting that it represents a novel syndrome. MYRF is a membrane associated transcriptional factor highly expressed in developing diaphragm and is depleted of LGD variants in the general population. All de novo missense variants aggregated in two functional protein domains. Analyzing the transcriptome of patient-derived diaphragm fibroblast cells suggest that disease associated variants abolish the transcription factor activity. Furthermore, we showed that the remaining genes with damaging variants in CDH significantly overlap with genes implicated in other developmental disorders. Gene expression patterns and patient phenotypes support pleiotropic effects of damaging variants in these genes on CDH and other developmental disorders. Finally, functional enrichment analysis implicates the disruption of regulation of gene expression, kinase activities, intra-cellular signaling, and cytoskeleton organization as pathogenic mechanisms in CDH.
Collapse
Affiliation(s)
- Hongjian Qi
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Applied Mathematics and Applied Physics, Columbia University, New York, New York, United States of America
| | - Lan Yu
- Department of Pediatrics Medical Center, Columbia University, New York, New York, United States of America
| | - Xueya Zhou
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Pediatrics Medical Center, Columbia University, New York, New York, United States of America
| | - Julia Wynn
- Department of Pediatrics Medical Center, Columbia University, New York, New York, United States of America
| | - Haoquan Zhao
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York, United States of America
| | - Yicheng Guo
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Na Zhu
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Pediatrics Medical Center, Columbia University, New York, New York, United States of America
| | - Alexander Kitaygorodsky
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York, United States of America
| | - Rebecca Hernan
- Department of Pediatrics Medical Center, Columbia University, New York, New York, United States of America
| | - Gudrun Aspelund
- Department of Surgery, Columbia University Medical Center, New York, New York, United States of America
| | - Foong-Yen Lim
- Cincinnati Children's Hospital, Cincinnati, Ohio, United States of America
| | | | - Robert Cusick
- Children's Hospital & Medical Center of Omaha, University of Nebraska College of Medicine, Omaha, Nebraska, United States of America
| | - Kenneth Azarow
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Melissa E Danko
- Monroe Carell Jr. Children's Hospital, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dai Chung
- Monroe Carell Jr. Children's Hospital, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Brad W Warner
- Washington University, St. Louis Children's Hospital, St. Louis, Missouri, United States of America
| | - George B Mychaliska
- University of Michigan, CS Mott Children's Hospital, Ann Arbor, Michigan, United States of America
| | - Douglas Potoka
- Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amy J Wagner
- Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mahmoud ElFiky
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Jay M Wilson
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Debbie Nickerson
- University of Washington, Seattle, Washington, United States of America
| | - Michael Bamshad
- University of Washington, Seattle, Washington, United States of America
| | - Frances A High
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Mauro Longoni
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Patricia K Donahoe
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Wendy K Chung
- Department of Pediatrics Medical Center, Columbia University, New York, New York, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York, United States of America
- JP Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
26
|
Azuma M, Tsukada T, Inagaki T, Casmad F, Jindatip D, Tofrizal A, Maliza R, Batchuluun K, Syaidah R, Ohno N, Fujiwara K, Kikuchi M, Yashiro T. Immunohistochemical Study of the Laminin α5 Chain and Its Specific Receptor, Basal Cell Adhesion Molecule (BCAM), in both Fetal and Adult Rat Pituitary Glands. Acta Histochem Cytochem 2018; 51:145-152. [PMID: 30510328 PMCID: PMC6261841 DOI: 10.1267/ahc.18014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023] Open
Abstract
Laminin, a major basement membrane protein, comprises three subunit chains: α, β, and γ chains. Among these chains, only the laminin α chain is capable of signaling via laminin receptors. Although laminin isoforms containing the α5 chain were reported to be the first laminin produced during rat anterior pituitary gland development, the functions of these isoforms are unknown. We used immunohistochemical techniques to localize the laminin α5 chain and its specific receptor, basal cell adhesion molecule (BCAM), in fetal and adult pituitary gland. Laminin α5 chain immunoreactivity was observed in the basement membrane of the primordial adenohypophysis at embryonic days 12.5 to 19.5. Double immunostaining showed that BCAM was present and co-localized with the laminin α5 chain in the tissue. Quantitative analysis showed that the laminin α5 chain and BCAM were expressed in the anterior pituitary gland during postnatal development and in adulthood (postnatal day 60). In the adult gland, co-localization of the laminin α5 chain and BCAM was observed, and BCAM was detected in both the folliculo-stellate cells and endothelial cells. These results suggest that laminin α5 chain signaling via BCAM occurs in both the fetal adenohypophysis and adult anterior pituitary gland.
Collapse
Affiliation(s)
- Morio Azuma
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Takehiro Tsukada
- Department of Biomolecular Science, Faculty of Science, Toho University
| | - Takeshi Inagaki
- Division of Forensic Medicine, Department of Anatomy, Jichi Medical University School of Medicine
| | - Fujianti Casmad
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Depicha Jindatip
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University
| | - Alimuddin Tofrizal
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Rita Maliza
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Khongorzul Batchuluun
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Rahimi Syaidah
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Ken Fujiwara
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Motoshi Kikuchi
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
- Laboratory of Natural History, Jichi Medical University School of Medicine
| | - Takashi Yashiro
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| |
Collapse
|
27
|
Zhang X, Li Q, Jiang W, Xiong X, Li H, Zhao J, Qi H. LAMA5 promotes human umbilical vein endothelial cells migration, proliferation, and angiogenesis and is decreased in preeclampsia. J Matern Fetal Neonatal Med 2018; 33:1114-1124. [PMID: 30200802 DOI: 10.1080/14767058.2018.1514597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objective: Preeclampsia (PE) is currently thought to associated with oxidative stress and vascular endothelial dysfunction. LAMA5 is associated with the cell migration, proliferation, and vascular endothelial function. The aims of this study are to investigate the expression patterns of LAMA5 in normal and PE pregnancies, as well as evaluating the effects of LAMA5 on human umbilical vein endothelial cells (HUVECs) function.Methods: LAMA5 expression levels were examined by reverse-transcriptase polymerase chain reaction (RT-PCR) and further confirmed by western blot and immunofluorescence. Cell proliferation and apoptosis were measured by CCK-8 assay and flow cytometry respectively. Cell migration was assessed by transwell migration assay.Results: LAMA5 expression levels of vascular endothelial cells in PE placentas was significantly decreased than that in normal placentas. LAMA5 small-interfering RNA (siRNA) transfection and hypoxia/reoxygenation (H/R) treatments resulted in decreased proliferation, migration, and vascular formation ability of HUVECs but increased HUVECs apoptosis. Down-regulated LAMA5 could inhibit the protein expression of the PI3K downstream p-AKT and p-MTOR.Conclusions: Down-regulated LAMA5 is associated with PE placenta and restrained HUVECs proliferation, migration, and angiogenesis through PI3K-AKT-MTOR signaling pathways.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Qin Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Wei Jiang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Xiong
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Haiying Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Jianlin Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| |
Collapse
|
28
|
Gritsenko PG, Friedl P. Adaptive adhesion systems mediate glioma cell invasion in complex environments. J Cell Sci 2018; 131:jcs216382. [PMID: 29991514 PMCID: PMC6104823 DOI: 10.1242/jcs.216382] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022] Open
Abstract
Diffuse brain invasion by glioma cells prevents effective surgical or molecular-targeted therapy and underlies a detrimental outcome. Migrating glioma cells are guided by complex anatomical brain structures but the exact mechanisms remain poorly defined. To identify adhesion receptor systems and matrix structures supporting glioma cell invasion into brain-like environments we used 2D and 3D organotypic invasion assays in combination with antibody-, peptide- and RNA-based interference. Combined interference with β1 and αV integrins abolished the migration of U-251 and E-98 glioma cells on reconstituted basement membrane; however, invasion into primary brain slices or 3D astrocyte-based scaffolds and migration on astrocyte-deposited matrix was only partly inhibited. Any residual invasion was supported by vascular structures, as well as laminin 511, a central constituent of basement membrane of brain blood vessels. Multi-targeted interference against β1, αV and α6 integrins expressed by U-251 and E-98 cells proved insufficient to achieve complete migration arrest. These data suggest that mechanocoupling by integrins is relatively resistant to antibody- or peptide-based targeting, and cooperates with additional, as yet unidentified adhesion systems in mediating glioma cell invasion in complex brain stroma.
Collapse
Affiliation(s)
- Pavlo G Gritsenko
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, 77030 Texas, USA
- Cancer Genomics Centre (CGC.nl), 3584 Utrecht, The Netherlands
| |
Collapse
|
29
|
Hupe M, Li MX, Kneitz S, Davydova D, Yokota C, Kele J, Hot B, Stenman JM, Gessler M. Gene expression profiles of brain endothelial cells during embryonic development at bulk and single-cell levels. Sci Signal 2017; 10:10/487/eaag2476. [PMID: 28698213 DOI: 10.1126/scisignal.aag2476] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The blood-brain barrier is a dynamic interface that separates the brain from the circulatory system, and it is formed by highly specialized endothelial cells. To explore the molecular mechanisms defining the unique nature of vascular development and differentiation in the brain, we generated high-resolution gene expression profiles of mouse embryonic brain endothelial cells using translating ribosome affinity purification and single-cell RNA sequencing. We compared the brain vascular translatome with the vascular translatomes of other organs and analyzed the vascular translatomes of the brain at different time points during embryonic development. Because canonical Wnt signaling is implicated in the formation of the blood-brain barrier, we also compared the brain endothelial translatome of wild-type mice with that of mice lacking the transcriptional cofactor β-catenin (Ctnnb1). Our analysis revealed extensive molecular changes during the embryonic development of the brain endothelium. We identified genes encoding brain endothelium-specific transcription factors (Foxf2, Foxl2, Foxq1, Lef1, Ppard, Zfp551, and Zic3) that are associated with maturation of the blood-brain barrier and act downstream of the Wnt-β-catenin signaling pathway. Profiling of individual brain endothelial cells revealed substantial heterogeneity in the population. Nevertheless, the high abundance of Foxf2, Foxq1, Ppard, or Zic3 transcripts correlated with the increased expression of genes encoding markers of brain endothelial cell differentiation. Expression of Foxf2 and Zic3 in human umbilical vein endothelial cells induced the production of blood-brain barrier differentiation markers. This comprehensive data set may help to improve the engineering of in vitro blood-brain barrier models.
Collapse
Affiliation(s)
- Mike Hupe
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden. .,Developmental Biochemistry, Theodor Boveri Institute (Biocenter), University of Wuerzburg, Wuerzburg D-97074, Germany
| | - Minerva Xueting Li
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Susanne Kneitz
- Physiological Chemistry, Theodor Boveri Institute (Biocenter), University of Wuerzburg, Wuerzburg D-97074, Germany
| | - Daria Davydova
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg D-97078, Germany
| | - Chika Yokota
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden
| | - Julianna Kele
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden
| | - Belma Hot
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden
| | - Jan M Stenman
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden
| | - Manfred Gessler
- Developmental Biochemistry, Theodor Boveri Institute (Biocenter), University of Wuerzburg, Wuerzburg D-97074, Germany.,Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg D-97074, Germany
| |
Collapse
|
30
|
Requirement for basement membrane laminin α5 during urethral and external genital development. Mech Dev 2016; 141:62-69. [PMID: 27208857 DOI: 10.1016/j.mod.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022]
Abstract
Hypospadias, a congenital malformation of the penis characteristic of an abnormal urethral orifice, affects 1 in every 125 boys, and its incidence is rising. Herein we test the hypothesis that the basement membrane protein laminin α5 (LAMA5) plays a key role in the development of the mouse genital tubercle, the embryonic anlage of the external genitalia. Using standard histological analyses and electron microscopy, we characterized the morphology of the external genitalia in Lama5 knockout (LAMA5-KO) mouse embryos during both androgen-independent genital tubercle development and androgen-mediated sexual differentiation. We compared regulatory gene expression between control and LAMA5-KO by in situ hybridization. We also examined the epithelial structure of the mutant genital tubercle using immunofluorescence staining and histological analyses of semi-thin sections. We found that Lama5 was expressed in both ectodermal and endodermal epithelia of the cloaca. The LAMA5-KO displayed a profound external genital malformation in which the genital tubercle was underdeveloped with a large ectopic orifice at the proximal end. In older embryos, the urethra failed to form a tubular structure and was left completely exposed. These defects were not associated with a significant alteration in regulatory gene expression, but rather with a defective ectodermal epithelium and an abnormal disintegration of the cloacal membrane. We conclude that LAMA5 is required in the basement membrane to maintain normal architecture of the ventral ectoderm during genital tubercle development, which is essential for the formation of a tubular urethra. Perturbation of LAMA5, and possibly other basement membrane components, may cause hypospadias in humans.
Collapse
|
31
|
De Luca M, Crocco P, De Rango F, Passarino G, Rose G. Association of the Laminin, Alpha 5 (LAMA5) rs4925386 with height and longevity in an elderly population from Southern Italy. Mech Ageing Dev 2016; 155:55-9. [PMID: 26968355 DOI: 10.1016/j.mad.2016.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Studies in animal models and humans suggest that reduced growth and adult stature are associated with lifespan extension. Moreover, epidemiological studies reported a positive association between adult height and risk of multiple cancers. Yet, it is unclear which factors mediate these relationships. Laminins are major components of the basement membranes and cooperate with growth factors and matrix-dependent receptors in cell proliferation and differentiation. Previously, we reported the association of rs659822-C/T in LAMA5, encoding the laminin-α5 chain, with weight and height in a cohort of healthy 64-107 aged Italian individuals. Notably, two independent meta-analyses of genome-wide association studies found the C-allele of LAMA5 rs4925386-C/T correlated with the risk of colorectal cancer. We tested additional SNPs within the LAMA5 gene for association with anthropometric traits and longevity in our cohort of elderly subjects (N=624). Under an additive model, the rs2427283-C allele (P=0.02) and the rs4925386-T allele (P=0.01) were associated with shorter stature. Age-stratified analyses showed that the rs4925386-T allele was also positively associated with longevity (P=0.001). The association of LAMA5 rs4925386 alleles with both inter-individual differences in height and in longevity suggests that laminins may be among the factors linking stature and cancer susceptibility.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Paolina Crocco
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy.
| |
Collapse
|
32
|
Patel TR, Nikodemus D, Besong TM, Reuten R, Meier M, Harding SE, Winzor DJ, Koch M, Stetefeld J. Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction. Matrix Biol 2016. [DOI: 10.1016/j.matbio.2015.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Lohmer LL, Kelley LC, Hagedorn EJ, Sherwood DR. Invadopodia and basement membrane invasion in vivo. Cell Adh Migr 2015; 8:246-55. [PMID: 24717190 DOI: 10.4161/cam.28406] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over 20 years ago, protrusive, F-actin-based membrane structures, termed invadopodia, were identified in highly metastatic cancer cell lines. Invadopodia penetrate artificial or explanted extracellular matrices in 2D culture conditions and have been hypothesized to facilitate the migration of cancer cells through basement membrane, a thin, dense, barrier-like matrix surrounding most tissues. Despite intensive study, the identification of invadopodia in vivo has remained elusive and until now their possible roles during invasion or even existence have remained unclear. Studies in remarkably different cellular contexts-mouse tumor models, zebrafish intestinal epithelia, and C. elegans organogenesis-have recently identified invadopodia structures associated with basement membrane invasion. These studies are providing the first in vivo insight into the regulation, function, and role of these fascinating subcellular devices with critical importance to both development and human disease.
Collapse
|
34
|
Identifying a molecular and cellular phenotype of mesenchymal stem cells mobilized from substance P in the peripheral blood. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0105-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
35
|
Ramadhani D, Tsukada T, Fujiwara K, Azuma M, Kikuchi M, Yashiro T. Changes in laminin chain expression in pre- and postnatal rat pituitary gland. Acta Histochem Cytochem 2014; 47:231-7. [PMID: 25861129 PMCID: PMC4387244 DOI: 10.1267/ahc.14031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/26/2014] [Indexed: 12/13/2022] Open
Abstract
Cell–matrix interaction is required for tissue development. Laminin, a major constituent of the basement membrane, is important for structural support and as a ligand in tissue development. Laminin has 19 isoforms, which are determined by combinational assembly of five α, three β, and three γ chains (eg, laminin 121 is α1, β2, and γ1). However, no report has identified the laminin isoforms expressed during pituitary development. We used in situ hybridization to investigate all laminin chains expressed during rat anterior pituitary development. The α5 chain was expressed during early pituitary development (embryonic day 12.5–15.5). Expression of α1 and α4 chains was noted in vasculature cells at embryonic day 19.5, but later diminished. The α1 chain was re-expressed in parenchymal cells of anterior lobe from postnatal day 10 (P10), while the α4 chain was present in vasculature cells from P30. The α2 and α3 chains were transiently expressed in vasculature cells and anterior lobe, respectively, only at P30. Widespread distribution of β and γ chains was also observed during development. These findings suggest that numerous laminin isoforms are involved in anterior pituitary gland development and that alteration of the expression pattern is required for proper development of the gland.
Collapse
Affiliation(s)
- Dini Ramadhani
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Takehiro Tsukada
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Ken Fujiwara
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Morio Azuma
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Motoshi Kikuchi
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
- Laboratory of Natural History, Jichi Medical University School of Medicine
| | - Takashi Yashiro
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| |
Collapse
|
36
|
Rodriguez-Fraticelli AE, Martin-Belmonte F. Picking up the threads: extracellular matrix signals in epithelial morphogenesis. Curr Opin Cell Biol 2014; 30:83-90. [DOI: 10.1016/j.ceb.2014.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 01/30/2023]
|
37
|
Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res 2014; 355:687-99. [PMID: 24590145 PMCID: PMC3972432 DOI: 10.1007/s00441-014-1811-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/13/2014] [Indexed: 01/20/2023]
Abstract
The blood-brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β-catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.
Collapse
Affiliation(s)
- Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt/Main, Germany
| |
Collapse
|
38
|
Kikkawa Y, Ogawa T, Sudo R, Yamada Y, Katagiri F, Hozumi K, Nomizu M, Miner JH. The lutheran/basal cell adhesion molecule promotes tumor cell migration by modulating integrin-mediated cell attachment to laminin-511 protein. J Biol Chem 2013; 288:30990-1001. [PMID: 24036115 DOI: 10.1074/jbc.m113.486456] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors.
Collapse
Affiliation(s)
- Yamato Kikkawa
- From the Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Orlando G, Booth C, Wang Z, Totonelli G, Ross CL, Moran E, Salvatori M, Maghsoudlou P, Turmaine M, Delario G, Al-Shraideh Y, Farooq U, Farney AC, Rogers J, Iskandar SS, Burns A, Marini FC, De Coppi P, Stratta RJ, Soker S. Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials 2013; 34:5915-25. [PMID: 23680364 DOI: 10.1016/j.biomaterials.2013.04.033] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/16/2013] [Indexed: 11/25/2022]
Abstract
In the United States, more than 2600 kidneys are discarded annually, from the total number of kidneys procured for transplant. We hypothesized that this organ pool may be used as a platform for renal bioengineering and regeneration research. We previously showed that decellularization of porcine kidneys yields renal extracellular matrix (ECM) scaffolds that maintain their basic components, support cell growth and welfare in vitro and in vivo, and show an intact vasculature that, when such scaffolds are implanted in vivo, is able to sustain physiological blood pressure. The purpose of the current study was to test if the same strategy can be applied to discarded human kidneys in order to obtain human renal ECM scaffolds. The results show that the sodium dodecylsulfate-based decellularization protocol completely cleared the cellular compartment in these kidneys, while the innate ECM framework retained its architecture and biochemical properties. Samples of human renal ECM scaffolds stimulated angiogenesis in a chick chorioallantoic membrane assay. Importantly, the innate vascular network in the human renal ECM scaffolds retained its compliance. Collectively, these results indicate that discarded human kidneys are a suitable source of renal scaffolds and their use for tissue engineering applications may be more clinically applicable than kidneys derived from animals.
Collapse
Affiliation(s)
- Giuseppe Orlando
- Department of General Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Breitkreutz D, Koxholt I, Thiemann K, Nischt R. Skin basement membrane: the foundation of epidermal integrity--BM functions and diverse roles of bridging molecules nidogen and perlecan. BIOMED RESEARCH INTERNATIONAL 2013; 2013:179784. [PMID: 23586018 PMCID: PMC3618921 DOI: 10.1155/2013/179784] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/18/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
The epidermis functions in skin as first defense line or barrier against environmental impacts, resting on extracellular matrix (ECM) of the dermis underneath. Both compartments are connected by the basement membrane (BM), composed of a set of distinct glycoproteins and proteoglycans. Herein we are reviewing molecular aspects of BM structure, composition, and function regarding not only (i) the dermoepidermal interface but also (ii) the resident microvasculature, primarily focusing on the per se nonscaffold forming components perlecan and nidogen-1 and nidogen-2. Depletion or functional deficiencies of any BM component are lethal at some stage of development or around birth, though BM defects vary between organs and tissues. Lethality problems were overcome by developmental stage- and skin-specific gene targeting or by cell grafting and organotypic (3D) cocultures of normal or defective cells, which allows recapitulating BM formation de novo. Thus, evidence is accumulating that BM assembly and turnover rely on mechanical properties and composition of the adjacent ECM and the dynamics of molecular assembly, including further "minor" local components, nidogens largely functioning as catalysts or molecular adaptors and perlecan as bridging stabilizer. Collectively, orchestration of BM assembly, remodeling, and the role of individual players herein are determined by the developmental, tissue-specific, or functional context.
Collapse
Affiliation(s)
- Dirk Breitkreutz
- Department of Dermatology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | | | | | | |
Collapse
|
41
|
Simon-Assmann P. The laminin family: founding members of the basement membrane. Cell Adh Migr 2012; 7:44-7. [PMID: 23263635 DOI: 10.4161/cam.23276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|