1
|
Patntirapong S, Khankhow J, Julamorn S. Long-term passage impacts human dental pulp stem cell activities and cell response to drug addition in vitro. PeerJ 2024; 12:e17913. [PMID: 39193517 PMCID: PMC11348901 DOI: 10.7717/peerj.17913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Background Dental pulp stem cells (DPSCs) possess mesenchymal stem cell characteristics and have potential for cell-based therapy. Cell expansion is essential to achieve sufficient cell numbers. However, continuous cell replication causes cell aging in vitro, which usually accompanies and potentially affect DPSC characteristics and activities. Continuous passaging could alter susceptibility to external factors such as drug treatment. Therefore, this study sought to investigate potential outcome of in vitro passaging on DPSC morphology and activities in the absence or presence of external factor. Methods Human DPSCs were subcultured until reaching early passages (P5), extended passages (P10), and late passages (P15). Cells were evaluated and compared for cell and nuclear morphologies, cell adhesion, proliferative capacity, alkaline phosphatase (ALP) activity, and gene expressions in the absence or presence of external factor. Alendronate (ALN) drug treatment was used as an external factor. Results Continuous passaging of DPSCs gradually lost their normal spindle shape and increased in cell and nuclear sizes. DPSCs were vulnerable to ALN. The size and shape were altered, leading to morphological abnormality and inhomogeneity. Long-term culture and ALN interfered with cell adhesion. DPSCs were able to proliferate irrespective of cell passages but the rate of cell proliferation in late passages was slower. ALN at moderate dose inhibited cell growth. ALN caused reduction of ALP activity in early passage. In contrast, extended passage responded differently to ALN by increasing ALP activity. Late passage showed higher collagen but lower osteocalcin gene expressions compared with early passage in the presence of ALN. Conclusion An increase in passage number played critical role in cell morphology and activities as well as responses to the addition of an external factor. The effects of cell passage should be considered when used in basic science research and clinical applications.
Collapse
Affiliation(s)
- Somying Patntirapong
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Faculty of Dentistry, Thammasat University, Pathumthani, Thailand
| | | | - Sikarin Julamorn
- Faculty of Dentistry, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
2
|
Patntirapong S, Champakerdsap C, Mathaveechotikul P, Vatanasilp A. Improvement of osteoblast adhesion, viability, and mineralization by restoring the cell cytoskeleton after bisphosphonate discontinuation in vitro. J Appl Oral Sci 2024; 32:e20240034. [PMID: 39140581 PMCID: PMC11321799 DOI: 10.1590/1678-7757-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/22/2024] [Accepted: 06/21/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE Bisphosphonates are prescribed to treat excessive bone resorption in patients with osteoporosis. However, its use is associated with potential adverse effects such as medication-related osteonecrosis of the jaw, prompting the introduction of the drug holiday concept in patients prior to dentoalveolar surgery. Furthermore, bisphosphonate discontinuation has been studied in vivo, in humans, and in animal models. However, it is not known whether this approach could affect bone cells in vitro. Therefore, the objective of this study was to investigate the potential effects of bisphosphonate discontinuation on pre-osteoblast and osteoblast activities in vitro. METHODOLOGY Pre-osteoblasts (MC3T3) and osteoblasts were treated with bisphosphonate (alendronate) at concentrations of 1, 5, and 10 µM. Alendronate was then withdrawn at different time points. The negative control consisted of untreated cells (0 µM), while the positive control consisted of cells incubated with alendronate throughout the experiment. Cell viability, cell adhesion, cell cytoskeleton, mineralization, and gene expressions were investigated. RESULTS Pre-osteoblasts and osteoblasts showed a decrease in cell viability after treatment with 5-10 μM alendronate for 4 days or longer. Two days of alendronate discontinuation significantly increased cell viability compared with the positive control. However, these levels did not reach those of the negative control. Bone nodule formation was reduced by alendronate. Discontinuation of alendronate regained bone nodule formation. Longer periods of discontinuation were more effective in restoring nodule formation than shorter periods. Addition of alendronate resulted in an increase in the percentage of dead cells, which, in turn, decreased when alendronate was discontinued. Alendronate affected the cell cytoskeleton by disassembling actin stress fibers. Cell adhesion and cell morphological parameters were also affected by alendronate. Discontinuation of alendronate restored cell adhesion and these parameters. Overall, the highest improvement after alendronate discontinuation was seen at 10 µM. However, alendronate treatment and discontinuation did not affect osteoblast gene expression. CONCLUSION Discontinuation of alendronate helps to reverse the negative effects of the drug on cell viability, cell adhesion, and mineralization by restoring the cell cytoskeleton. Our data suggest the benefits of drug holiday and/or intermittent strategies for alendronate administration at the cellular level.
Collapse
Affiliation(s)
- Somying Patntirapong
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Faculty of Dentistry, Thammasat University, Pathumthani, Thailand
| | | | | | | |
Collapse
|
3
|
Vela-Alcántara AM, Santiago-García J, Barragán-Palacios M, León-Chacón A, Domínguez-Pantoja M, Barceinas-Dávila I, Juárez-Aguilar E, Tamariz E. Differential modulation of cell morphology, migration, and Neuropilin-1 expression in cancer and non-cancer cell lines by substrate stiffness. Front Cell Dev Biol 2024; 12:1352233. [PMID: 38903533 PMCID: PMC11188430 DOI: 10.3389/fcell.2024.1352233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Physical changes in the tumor microenvironment, such as increased stiffness, regulate cancer hallmarks and play an essential role in gene expression, cell morphology, migration, and malignancy. However, the response of cancer cells to stiffness is not homogeneous and varies depending on the cell type and its mechanosensitivity. In this study, we investigated the differential responses of cervical (HeLa) and prostate (PC-3) cancer cell lines, as well as non-tumoral cell lines (HEK293 and HPrEC), to stiffness using polyacrylamide hydrogels mimicking normal and tumoral tissues. We analyzed cell morphology, migration, and the expression of neuropilin 1 (NRP1), a receptor involved in angiogenesis, cell migration, and extracellular matrix remodeling, known to be associated with cancer progression and poor prognosis. Our findings reveal that NRP1 expression increases on substrates mimicking the high stiffness characteristic of tumoral tissue in the non-tumoral cell lines HPrEC and HEK293. Conversely, in tumoral PC-3 cells, stiffness resembling normal prostate tissue induces an earlier and more sustained expression of NRP1. Furthermore, we observed that stiffness influences cell spreading, pseudopodia formation, and the mode of cell protrusion during migration. Soft substrates predominantly trigger bleb cell protrusion, while pseudopodia protrusions increase on substrates mimicking normal and tumor-like stiffnesses in HPrEC cells compared to PC-3 cells. Stiffer substrates also enhance the percentage of migratory cells, as well as their velocity and total displacement, in both non-tumoral and tumoral prostate cells. However, they only improve the persistence of migration in tumoral PC-3 cells. Moreover, we found that NRP1 co-localizes with actin, and its suppression impairs tumoral PC-3 spreading while decreasing pseudopodia protrusion mode. Our results suggest that the modulation of NRP1 expression by the stiffness can be a feedback loop to promote malignancy in non-tumoral and cancer cells, contingent upon the mechanosensitivity of the cells.
Collapse
Affiliation(s)
- Ana Monserrat Vela-Alcántara
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Laboratorio de Cultivo Celular, Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Juan Santiago-García
- Laboratorio de Biología Molecular, Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Mexico
| | - Madeleine Barragán-Palacios
- Laboratorio de Cultivo Celular, Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Aylin León-Chacón
- Laboratorio de Cultivo Celular, Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | | | - Irene Barceinas-Dávila
- Laboratorio de Cultivo Celular, Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Enrique Juárez-Aguilar
- Laboratorio de Cultivo Celular, Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Elisa Tamariz
- Laboratorio de Cultivo Celular, Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
4
|
Iovino L, VanderZwaag J, Kaur G, Khakpour M, Giusti V, Donadon M, Chiavegato A, Tenorio-Lopes L, Greggio E, Tremblay ME, Civiero L. Investigation of microglial diversity in a LRRK2 G2019S mouse model of Parkinson's disease. Neurobiol Dis 2024; 195:106481. [PMID: 38527708 DOI: 10.1016/j.nbd.2024.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/15/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Microglia contribute to the outcomes of various pathological conditions including Parkinson's disease (PD). Microglia are heterogenous, with a variety of states recently identified in aging and neurodegenerative disease models. Here, we delved into the diversity of microglia in a preclinical PD model featuring the G2019S mutation in LRRK2, a known pathological mutation associated with PD. Specifically, we investigated the 'dark microglia' (DM) and the 'disease-associated microglia' (DAM) which present a selective enrichment of CLEC7A expression. In the dorsal striatum - a region affected by PD pathology - extensive ultrastructural features of cellular stress as well as reduced direct cellular contacts, were observed for microglia from old LRRK2 G2019S mice versus controls. In addition, DM were more prevalent while CLEC7A-positive microglia had extensive phagocytic ultrastructural characteristics in the LRRK2 G2019S mice. Furthermore, our findings revealed a higher proportion of DM in LRRK2 G2019S mice, and an increased number of CLEC7A-positive cells with age, exacerbated by the pathological mutation. These CLEC7A-positive cells exhibited a selective enrichment of ameboid morphology and tended to cluster in the affected animals. In summary, we provide novel insights into the occurrence and features of recently defined microglial states, CLEC7A-positive cells and DM, in the context of LRRK2 G2019S PD pathology.
Collapse
Affiliation(s)
- L Iovino
- National Research Council (CNR), Institute of Neuroscience, Pisa, Italy; Stella Maris Foundation, IRCCS, Calambrone, Pisa, Italy
| | - J VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - G Kaur
- University of Padua, Department of Biology, Padova, Italy
| | - M Khakpour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - V Giusti
- University of Padua, Department of Biology, Padova, Italy; San Camillo Hospital srl Società unipersonale, IRCCS, Venice, Italy
| | - M Donadon
- University of Padua, Department of Biology, Padova, Italy
| | - A Chiavegato
- National Research Council (CNR), Neuroscience Institute, Section of Padova, Padova, Italy; Università degli Studi di Padova, Department of Biomedical Sciences, Padova, Italy
| | - L Tenorio-Lopes
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - E Greggio
- University of Padua, Department of Biology, Padova, Italy; University of Padova, Study Center for Neurodegeneration (CESNE), Padova, Italy
| | - M E Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Département de médecine moléculaire, Université Laval, Québec City, QC, Canada; Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada; Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - L Civiero
- University of Padua, Department of Biology, Padova, Italy; San Camillo Hospital srl Società unipersonale, IRCCS, Venice, Italy.
| |
Collapse
|
5
|
Park JY, Abekura F, Cho SH. GM1a ganglioside-binding domain peptide inhibits host adhesion and inflammatory response of enterotoxigenic Escherichia coli heat-labile enterotoxin-B in HCT-8 cells. Sci Rep 2023; 13:16835. [PMID: 37803175 PMCID: PMC10558473 DOI: 10.1038/s41598-023-44220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/05/2023] [Indexed: 10/08/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of illness and death but has no effective therapy. The heat-labile enterotoxin LT is a significant virulence factor produced by ETEC. The heat-labile enterotoxin-B (LT-B) subunit may enter host cells by binding to monosialotetrahexosylganglioside-a (GM1a), a monosialoganglioside found on the plasma membrane surface of animal epithelial cells. This research was conducted to develop conformationally comparable peptides to the carbohydrate epitope of GM1a for the treatment of ETEC. We used the LT-B subunit to select LT-B-binding peptides that structurally resemble GM1a. The ganglioside microarray and docking simulations were used to identify three GM1a ganglioside-binding domain (GBD) peptides based on LT-B recognition. Peptides had an inhibiting effect on the binding of LT-B to GM1a. The binding capacity, functional inhibitory activity, and in vitro effects of the GBD peptides were evaluated using HCT-8 cells, a human intestinal epithelial cell line, to evaluate the feasibility of deploying GBD peptides to combat bacterial infections. KILSYTESMAGKREMVIIT was the most efficient peptide in inhibiting cellular absorption of LT-B in cells. Our findings offer compelling evidence that GM1a GBD-like peptides might act as new therapeutics to inhibit LT-B binding to epithelial cells and avoid the subsequent physiological consequences of LT.
Collapse
Affiliation(s)
- Jun-Young Park
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Fukushi Abekura
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung-Hak Cho
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| |
Collapse
|
6
|
Grizzi F, Spadaccini M, Chiriva-Internati M, Hegazi MAAA, Bresalier RS, Hassan C, Repici A, Carrara S. Fractal nature of human gastrointestinal system: Exploring a new era. World J Gastroenterol 2023; 29:4036-4052. [PMID: 37476585 PMCID: PMC10354580 DOI: 10.3748/wjg.v29.i25.4036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
The morphological complexity of cells and tissues, whether normal or pathological, is characterized by two primary attributes: Irregularity and self-similarity across different scales. When an object exhibits self-similarity, its shape remains unchanged as the scales of measurement vary because any part of it resembles the whole. On the other hand, the size and geometric characteristics of an irregular object vary as the resolution increases, revealing more intricate details. Despite numerous attempts, a reliable and accurate method for quantifying the morphological features of gastrointestinal organs, tissues, cells, their dynamic changes, and pathological disorders has not yet been established. However, fractal geometry, which studies shapes and patterns that exhibit self-similarity, holds promise in providing a quantitative measure of the irregularly shaped morphologies and their underlying self-similar temporal behaviors. In this context, we explore the fractal nature of the gastrointestinal system and the potential of fractal geometry as a robust descriptor of its complex forms and functions. Additionally, we examine the practical applications of fractal geometry in clinical gastroenterology and hepatology practice.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
| | - Marco Spadaccini
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Maurizio Chiriva-Internati
- Departments of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Mohamed A A A Hegazi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Robert S Bresalier
- Departments of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Silvia Carrara
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| |
Collapse
|
7
|
Van Eyssen SR, Samarkina A, Isbilen O, Zeden MS, Volkan E. FimH and Type 1 Pili Mediated Tumor Cell Cytotoxicity by Uropathogenic Escherichia coli In Vitro. Pathogens 2023; 12:751. [PMID: 37375441 DOI: 10.3390/pathogens12060751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Uropathogenic Escherichia coli express hairlike proteinaceous surface projections, known as chaperone-usher pathway (CUP) pili. Type 1 pili are CUP pili with well-established pathogenic properties. The FimH adhesin subunit of type 1 pili plays a key role in the pathogenesis of urinary tract infections (UTIs) as it mediates the adhesion of the bacteria to urothelial cells of the bladder. In this study, two breast cancer cell lines, MDA-MB-231 and MCF-7, were used to demonstrate the cytotoxic activities of type 1 piliated uropathogenic E. coli UTI89 on breast cancer cells in a type 1 pili and FimH-mediated manner. E. coli were grown in static and shaking conditions to induce or inhibit optimal type 1 pili biogenesis, respectively. Deletion constructs of UTI89 ΔfimH and a complemented strain (UTI89 ΔfimH/pfimH) were further utilized to genetically assess the effect of type 1 pili and FimH on cancer cell viability. After incubation with the different strains, cytotoxicity was measured using trypan blue exclusion assays. UTI89 grown statically caused significant cytotoxicity in both breast cancer cell lines whereas cytotoxicity was reduced when the cells were incubated with bacteria grown under shaking conditions. The incubation of both MDA-MB-231 and MCF-7 with UTI89 Δfim operon or ΔfimH showed a significant reduction in cytotoxicity exerted by the bacterial strains, revealing that type 1 pili expression was necessary for cytotoxicity. Complementing the ΔfimH strain with pfimH reversed the phenotype, leading to a significant increase in cytotoxicity. Incubating type 1 pili expressing bacteria with the competitive FimH inhibitor D-mannose before cancer cell treatment also led to a significant reduction in cytotoxicity on both MDA-MB-231 and MCF-7 cancer cells, compared to vehicle control or D-mannose alone, indicating the requirement for functional FimH for cytotoxicity. Overall, our results reveal that, as opposed to UTI89 lacking type 1 pili, type 1 piliated UTI89 causes significant cancer cell mortality in a FimH-mediated manner, that is decreased with D-mannose.
Collapse
Affiliation(s)
- Shelly Roselyn Van Eyssen
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
| | - Anastasia Samarkina
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
| | - Ovgu Isbilen
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
| | - Merve Suzan Zeden
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
- Department of Microbiology, School of Biological and Chemical Sciences, University of Galway, H91TK33 Galway, Ireland
| | - Ender Volkan
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
| |
Collapse
|
8
|
Varankar SS, Hari K, Kartika S, Bapat SA, Jolly MK. Cell geometry distinguishes migration‐associated heterogeneity in two‐dimensional systems. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2022. [DOI: 10.1002/cso2.1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sagar S Varankar
- Centre for BioSystems Science and Engineering Indian Institute of Science Bangalore India
- National Centre for Cell Science Savitribai Phule Pune University Ganeshkhind Pune India
| | - Kishore Hari
- Centre for BioSystems Science and Engineering Indian Institute of Science Bangalore India
| | - Sharon Kartika
- Department of Biological Sciences Indian Institute of Science Education and Research Kolkata Mohanpur Nadia West Bengal India
| | - Sharmila A Bapat
- National Centre for Cell Science Savitribai Phule Pune University Ganeshkhind Pune India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering Indian Institute of Science Bangalore India
| |
Collapse
|
9
|
Khalil K, Eon A, Janody F. Cell Architecture-Dependent Constraints: Critical Safeguards to Carcinogenesis. Int J Mol Sci 2022; 23:8622. [PMID: 35955754 PMCID: PMC9369145 DOI: 10.3390/ijms23158622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Animal cells display great diversity in their shape. These morphological characteristics result from crosstalk between the plasma membrane and the force-generating capacities of the cytoskeleton macromolecules. Changes in cell shape are not merely byproducts of cell fate determinants, they also actively drive cell fate decisions, including proliferation and differentiation. Global and local changes in cell shape alter the transcriptional program by a multitude of mechanisms, including the regulation of physical links between the plasma membrane and the nuclear envelope and the mechanical modulation of cation channels and signalling molecules. It is therefore not surprising that anomalies in cell shape contribute to several diseases, including cancer. In this review, we discuss the possibility that the constraints imposed by cell shape determine the behaviour of normal and pro-tumour cells by organizing the whole interconnected regulatory network. In turn, cell behaviour might stabilize cells into discrete shapes. However, to progress towards a fully transformed phenotype and to acquire plasticity properties, pro-tumour cells might need to escape these cell shape restrictions. Thus, robust controls of the cell shape machinery may represent a critical safeguard against carcinogenesis.
Collapse
Affiliation(s)
- Komal Khalil
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Master Programme in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Alice Eon
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Magistère Européen de Génétique, Université Paris Cité, 5 Rue Thomas Mann, 75013 Paris, France
| | - Florence Janody
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Ibrahim H, Thorpe SD, Paukshto M, Zaitseva TS, Moritz W, Rodriguez BJ. A Biomimetic High Throughput Model of Cancer Cell Spheroid Dissemination onto Aligned Fibrillar Collagen. SLAS Technol 2022; 27:267-275. [DOI: 10.1016/j.slast.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
|
11
|
Elbez R, Folz J, McLean A, Roca H, Labuz JM, Pienta KJ, Takayama S, Kopelman R. Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning. PLoS One 2021; 16:e0259462. [PMID: 34788313 PMCID: PMC8598033 DOI: 10.1371/journal.pone.0259462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/19/2021] [Indexed: 01/09/2023] Open
Abstract
We define cell morphodynamics as the cell's time dependent morphology. It could be called the cell's shape shifting ability. To measure it we use a biomarker free, dynamic histology method, which is based on multiplexed Cell Magneto-Rotation and Machine Learning. We note that standard studies looking at cells immobilized on microscope slides cannot reveal their shape shifting, no more than pinned butterfly collections can reveal their flight patterns. Using cell magnetorotation, with the aid of cell embedded magnetic nanoparticles, our method allows each cell to move freely in 3 dimensions, with a rapid following of cell deformations in all 3-dimensions, so as to identify and classify a cell by its dynamic morphology. Using object recognition and machine learning algorithms, we continuously measure the real-time shape dynamics of each cell, where from we successfully resolve the inherent broad heterogeneity of the morphological phenotypes found in a given cancer cell population. In three illustrative experiments we have achieved clustering, differentiation, and identification of cells from (A) two distinct cell lines, (B) cells having gone through the epithelial-to-mesenchymal transition, and (C) cells differing only by their motility. This microfluidic method may enable a fast screening and identification of invasive cells, e.g., metastatic cancer cells, even in the absence of biomarkers, thus providing a rapid diagnostics and assessment protocol for effective personalized cancer therapy.
Collapse
Affiliation(s)
- Remy Elbez
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jeff Folz
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alan McLean
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hernan Roca
- Department of Urology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Joseph M. Labuz
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kenneth J. Pienta
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Shuichi Takayama
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Raoul Kopelman
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
12
|
Majolée J, Podieh F, Hordijk PL, Kovačević I. The interplay of Rac1 activity, ubiquitination and GDI binding and its consequences for endothelial cell spreading. PLoS One 2021; 16:e0254386. [PMID: 34252134 PMCID: PMC8274835 DOI: 10.1371/journal.pone.0254386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022] Open
Abstract
Signaling by the Rho GTPase Rac1 is key to the regulation of cytoskeletal dynamics, cell spreading and adhesion. It is widely accepted that the inactive form of Rac1 is bound by Rho GDI, which prevents Rac1 activation and Rac1-effector interactions. In addition, GDI-bound Rac1 is protected from proteasomal degradation, in line with data showing that Rac1 ubiquitination occurs exclusively when Rac1 is activated. We set out to investigate how Rac1 activity, GDI binding and ubiquitination are linked. We introduced single amino acid mutations in Rac1 which differentially altered Rac1 activity, and compared whether the level of Rac1 activity relates to Rac1 ubiquitination and GDI binding. Results show that Rac1 ubiquitination and the active Rac1 morphology is proportionally increased with Rac1 activity. Similarly, we introduced lysine-to-arginine mutations in constitutively active Rac1 to inhibit site-specific ubiquitination and analyze this effect on Rac1 signaling output and ubiquitination. These data show that the K16R mutation inhibits GTP binding, and consequently Rac1 activation, signaling and-ubiquitination, while the K147R mutation does not block Rac1 signaling, but does inhibits its ubiquitination. In both sets of mutants, no direct correlation was observed between GDI binding and Rac1 activity or -ubiquitination. Taken together, our data show that a strong, positive correlation exists between Rac1 activity and its level of ubiquitination, but also that GDI dissociation does not predispose Rac1 to ubiquitination.
Collapse
Affiliation(s)
- Jisca Majolée
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Fabienne Podieh
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Peter L. Hordijk
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Igor Kovačević
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Gene Regulation, Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| |
Collapse
|
13
|
Castillo-Badillo JA, Gautam N. An optogenetic model reveals cell shape regulation through FAK and fascin. J Cell Sci 2021; 134:269115. [PMID: 34114634 DOI: 10.1242/jcs.258321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
Cell shape regulation is important, but the mechanisms that govern shape are not fully understood, in part due to limited experimental models in which cell shape changes and underlying molecular processes can be rapidly and non-invasively monitored in real time. Here, we used an optogenetic tool to activate RhoA in the middle of mononucleated macrophages to induce contraction, resulting in a side with the nucleus that retained its shape and a non-nucleated side that was unable to maintain its shape and collapsed. In cells overexpressing focal adhesion kinase (FAK; also known as PTK2), the non-nucleated side exhibited a wide flat morphology and was similar in adhesion area to the nucleated side. In cells overexpressing fascin, an actin-bundling protein, the non-nucleated side assumed a spherical shape and was similar in height to the nucleated side. This effect of fascin was also observed in fibroblasts even without inducing furrow formation. Based on these results, we conclude that FAK and fascin work together to maintain cell shape by regulating adhesion area and height, respectively, in different cell types. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jean A Castillo-Badillo
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA.,Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
14
|
Alizadeh E, Castle J, Quirk A, Taylor CDL, Xu W, Prasad A. Cellular morphological features are predictive markers of cancer cell state. Comput Biol Med 2020; 126:104044. [PMID: 33049477 DOI: 10.1016/j.compbiomed.2020.104044] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 11/24/2022]
Abstract
Even genetically identical cells have heterogeneous properties because of stochasticity in gene or protein expression. Single cell techniques that assay heterogeneous properties would be valuable for basic science and diseases like cancer, where accurate estimates of tumor properties is critical for accurate diagnosis and grading. Cell morphology is an emergent outcome of many cellular processes, potentially carrying information about cell properties at the single cell level. Here we study whether morphological parameters are sufficient for classification of single cells, using a set of 15 cell lines, representing three processes: (i) the transformation of normal cells using specific genetic mutations; (ii) metastasis in breast cancer and (iii) metastasis in osteosarcomas. Cellular morphology is defined as quantitative measures of the shape of the cell and the structure of the actin. We use a toolbox that calculates quantitative morphological parameters of cell images and apply it to hundreds of images of cells belonging to different cell lines. Using a combination of dimensional reduction and machine learning, we test whether these different processes have specific morphological signatures and whether single cells can be classified based on morphology alone. Using morphological parameters we could accurately classify cells as belonging to the correct class with high accuracy. Morphological signatures could distinguish between cells that were different only because of a different mutation on a parental line. Furthermore, both oncogenesis and metastasis appear to be characterized by stereotypical morphology changes. Thus, cellular morphology is a signature of cell phenotype, or state, at the single cell level.
Collapse
Affiliation(s)
| | | | - Analia Quirk
- Department of Chemical and Biological Engineering, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Cameron D L Taylor
- Department of Chemical and Biological Engineering, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Wenlong Xu
- Department of Chemical and Biological Engineering, USA
| | - Ashok Prasad
- Department of Chemical and Biological Engineering, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
15
|
Mat Afandi MA, Maarof M, Chowdhury SR, Bt Hj Idrus R. Synergistic Effect of Laminin and Epidermal Growth Factor on Biological and Morphological Properties of Co-Cultured Myoblasts and Fibroblasts. Tissue Eng Regen Med 2020; 17:835-845. [PMID: 32767029 DOI: 10.1007/s13770-020-00283-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND One of the long-standing problems of myoblasts in vitro expansion is slow cell migration and this causes fibroblast population to exceed myoblasts. In this study, we investigated the synergistic effect of laminin and epidermal growth factor (EGF) on co-cultured myoblasts and fibroblasts for cell attachment, proliferation and migration. METHODS Skeletal human muscle cells were cultured in four different conditions; control, EGF, laminin (Lam) and laminin EGF (Lam + EGF). Using live imaging system, their cellular properties; attachment, migration and growth were exposed to Rho kinase inhibitor, Y-27632, and EGF-receptor (EGF-R) inhibitor, gefitinib were measured. RESULTS Myoblast migration and proliferation was enhanced significantly by synergistic stimulation of laminin and EGF (0.61 ± 0.14 µm/min, 0.008 ± 0.001 h-1) compare to that by EGF alone (0.26 ± 0.13 µm/min, 0.004 ± 0.0009 h-1). However, no changes in proliferation and migration were observed for fibroblasts among the culture conditions. Inhibition of Rho kinase resulted in the increase of the myoblast migration on the laminin-coated surface with EGF condition (0.64 ± 0.18 µm/min). Compared to the untreated conditions, myoblasts cultured on the laminin-coated surface and EGF demonstrated elongated morphology, and average cell length increase significantly. In contrast, inhibition of EGF-R resulted in the decrease of myoblast migration on the laminin coated surface with EGF supplemented condition (0.43 ± 0.05 µm/min) in comparison to the untreated control (0.53 ± 0.05 µm/min). CONCLUSION Laminin and EGF preferentially enhance the proliferation and migration of myoblasts, and Rho kinase and EGF-R play a role in this synergistic effect. These results will be beneficial for the propagation of skeletal muscle cells for clinical applications.
Collapse
Affiliation(s)
- Mohd Asyraf Mat Afandi
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Manira Maarof
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - S R Chowdhury
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Ruszymah Bt Hj Idrus
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia.
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Jangam D, Sridhar K, Butzmann A, Samghabadi P, Plowey ED, Ohgami RS. TBL1XR1 Mutations in Primary Marginal Zone Lymphomas of Ocular Adnexa are Associated with Unique Morphometric Phenotypes. Curr Eye Res 2020; 45:1583-1589. [PMID: 32339039 DOI: 10.1080/02713683.2020.1762228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Extranodal marginal zone B-cell lymphoma (EMZL) of mucosa-associated lymphoid tissue (MALT) that affects the ocular adnexa, also known as ocular adnexal MALT lymphomas (OAML), are low-grade lymphomas that mostly affect elderly individuals. This study was conducted to explore the genetic and microbial drivers of OMAL, and unique morphometric phenotypes associated with these mutations and infections. MATERIALS AND METHODS In this study, we performed targeted deep sequencing of 8 OAML cases to identify its potential genetic and microbial drivers. We additionally performed computational digital image analysis of cases to determine if morphologic features corresponded to genetic mutations and disease biology. RESULTS We identified TBL1XR1 as recurrently mutated in OAML (4/8), and mutations in several other oncogenes, tumor suppressors, transcription regulators, and chromatin remodeling genes. Morphologically, OAML cases with mutations in TBL1XR1 showed lymphoma cells with significantly lower circularity and solidity by computational digital image analysis (p-value <0.0001). Additionally, cases of OAML with mutations in TBL1XR1 showed equivalent or increased vascular density compared to cases without mutations in TBL1XR1. Finally, we did not find any infectious microbial organisms associated with OAML. CONCLUSIONS Our study showed recurrent mutations in TBL1XR1 are associated with unique morphometric phenotypes in OMAL cases. Additionally, mutations in genes associated with the methylation status of histone 3, nuclear factor (NF)-κB pathway, and NOTCH pathway were enriched in OMAL cases. Our findings have biologic and clinical implications as mutations in TBL1XR1 and other genes have the potential to be used as markers for the diagnosis of OAML, and also demonstrate a specific biologic phenotypic manifestation of TBL1XR1 mutations.
Collapse
Affiliation(s)
- Diwash Jangam
- Department of Pathology, Stanford University , Stanford, CA, USA
| | - Kaushik Sridhar
- Department of Pathology, University of California , San Francisco, CA, USA
| | - Alexandra Butzmann
- Department of Pathology, Stanford University , Stanford, CA, USA.,Department of Pathology, University of California , San Francisco, CA, USA
| | | | - Edward D Plowey
- Department of Pathology, Stanford University , Stanford, CA, USA
| | - Robert S Ohgami
- Department of Pathology, Stanford University , Stanford, CA, USA.,Department of Pathology, University of California , San Francisco, CA, USA
| |
Collapse
|
17
|
Lakra R, Kiran MS, Korrapati PS. Electrospun gelatin-polyethylenimine blend nanofibrous scaffold for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:129. [PMID: 31776679 DOI: 10.1007/s10856-019-6336-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
In this study, gelatin-polyethylenimine blend nanofibers (GEL/PEI) were fabricated via electrospinning with different ratios (9:1, 6:1, 3:1) to integrate the properties of both the polymers for evaluating its biomedical application. From scanning electron microscopy, the average diameter of blend nanofibers (265 ± 0.074 nm to 340 ± 0.088 nm) was observed to be less than GEL nanofibers (403 ± 0.08 nm). The incorporation of PEI with gelatin resulted in improved thermal stability of nanofibers whereas the Young's modulus was observed to be higher at 9:1 ratio when compared with other ratios. The in vitro studies showed that the GEL/PEI nanofibers with 9:1 ratio promoted better cell adhesion and viability. GEL/PEI nanofibers with 9:1 and 6:1 showed hemolysis within the permissible limits. From the results, it could be interpreted that GEL/PEI nanofibers with 9:1 ratio proved to be a better scaffold thereby making them a potential candidate for tissue engineering applications.
Collapse
Affiliation(s)
- Rachita Lakra
- Biological Materials Laboratory, Council of Scientific and Industrial Research, Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, Council of Scientific and Industrial Research, Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Purna Sai Korrapati
- Biological Materials Laboratory, Council of Scientific and Industrial Research, Central Leather Research Institute, Adyar, Chennai, 600020, India.
| |
Collapse
|
18
|
Alizadeh E, Xu W, Castle J, Foss J, Prasad A. TISMorph: A tool to quantify texture, irregularity and spreading of single cells. PLoS One 2019; 14:e0217346. [PMID: 31158241 PMCID: PMC6546208 DOI: 10.1371/journal.pone.0217346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/09/2019] [Indexed: 12/26/2022] Open
Abstract
A number of recent studies have shown that cell shape and cytoskeletal texture can be used as sensitive readouts of the physiological state of the cell. However, utilization of this information requires the development of quantitative measures that can describe relevant aspects of cell shape. In this paper we develop a toolbox, TISMorph, that calculates a set of quantitative measures to address this need. Some of the measures introduced here have been used previously, while others are new and have desirable properties for shape and texture quantification of cells. These measures, broadly classifiable into the categories of textural, irregularity and spreading measures, are tested by using them to discriminate between osteosarcoma cell lines treated with different cytoskeletal drugs. We find that even though specific classification tasks often rely on a few measures, these are not the same between all classification tasks, thus requiring the use of the entire suite of measures for classification and discrimination. We provide detailed descriptions of the measures, as well as the TISMorph package to implement them. Quantitative morphological measures that capture different aspects of cell morphology will help enhance large-scale image-based quantitative analysis, which is emerging as a new field of biological data.
Collapse
Affiliation(s)
- Elaheh Alizadeh
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, United States of America
| | - Wenlong Xu
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jordan Castle
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jacqueline Foss
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ashok Prasad
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, United States of America
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
19
|
Prasad A, Alizadeh E. Cell Form and Function: Interpreting and Controlling the Shape of Adherent Cells. Trends Biotechnol 2019; 37:347-357. [DOI: 10.1016/j.tibtech.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
20
|
Barry S, Carlsen E, Marques P, Stiles CE, Gadaleta E, Berney DM, Roncaroli F, Chelala C, Solomou A, Herincs M, Caimari F, Grossman AB, Crnogorac-Jurcevic T, Haworth O, Gaston-Massuet C, Korbonits M. Tumor microenvironment defines the invasive phenotype of AIP-mutation-positive pituitary tumors. Oncogene 2019; 38:5381-5395. [PMID: 30867568 PMCID: PMC6755983 DOI: 10.1038/s41388-019-0779-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/07/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms leading to aryl hydrocarbon receptor interacting protein (AIP) mutation-induced aggressive, young-onset growth hormone-secreting pituitary tumors are not fully understood. In this study, we have identified that AIP-mutation-positive tumors are infiltrated by a large number of macrophages compared to sporadic tumors. Tissue from pituitary-specific Aip-knockout (AipFlox/Flox;Hesx1Cre/+) mice recapitulated this phenotype. Our human pituitary tumor transcriptome data revealed the "epithelial-to-mesenchymal transition (EMT) pathway" as one of the most significantly altered pathways in AIPpos tumors. Our in vitro data suggest that bone marrow-derived macrophage-conditioned media induces more prominent EMT-like phenotype and enhanced migratory and invasive properties in Aip-knockdown somatomammotroph cells compared to non-targeting controls. We identified that tumor-derived cytokine CCL5 is upregulated in AIP-mutation-positive human adenomas. Aip-knockdown GH3 cell-conditioned media increases macrophage migration, which is inhibited by the CCL5/CCR5 antagonist maraviroc. Our results suggest that a crosstalk between the tumor and its microenvironment plays a key role in the invasive nature of AIP-mutation-positive tumors and the CCL5/CCR5 pathway is a novel potential therapeutic target.
Collapse
Affiliation(s)
- Sayka Barry
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | | | - Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Craig E Stiles
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Emanuela Gadaleta
- Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Dan M Berney
- Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Federico Roncaroli
- Division of Neuroscience & Experimental Psychology, University of Manchester, Manchester, M13 9PL, UK
| | - Claude Chelala
- Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Antonia Solomou
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Maria Herincs
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Francisca Caimari
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Tatjana Crnogorac-Jurcevic
- Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Oliver Haworth
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
21
|
Lauria I, Kutz TN, Böke F, Rütten S, Zander D, Fischer H. Influence of nanoporous titanium niobium alloy surfaces produced via hydrogen peroxide oxidative etching on the osteogenic differentiation of human mesenchymal stromal cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:635-648. [PMID: 30813067 DOI: 10.1016/j.msec.2019.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
Titanium niobium alloys exhibit a lower stiffness compared to Ti6Al4V, the 'gold standard' for load-bearing bone implants. Thus, the critical mismatch in stiffness between the implant and adjacent bone tissue could be addressed with TiNb alloys and thereby reduce stress shielding, which can result in bone resorption and subsequent implant loosening; however, the cellular response on the specific material is crucial for sufficient osseointegration. We therefore hypothesize that the response of human mesenchymal stromal cells (hMSC) and osteoblast-like cells on Ti45Nb surfaces can be improved by a novel nanoporous surface structure. For this purpose, an etching technique using hydrogen peroxide electrolyte solution was applied to Ti45Nb. The treated surfaces were characterized using SEM, LSM, AFM, nanoindentation, and contact angle measurements. Cell culture experiments using hMCS and MG-63 were conducted. The H2O2 treatment resulted in surface nanopores, an increase in surface wettability and a reduction in surface hardness. The proliferation of MG-63 was enhanced on TiNb45 compared to Ti6Al4V. MG-63 focal adhesion complexes were detected on all Ti45Nb surfaces, whereas the nanostructures notably increased the cell area and decreased cell solidity, indicating stimulated cell spreading and pseudopodia formation. Alizarin red stainings indicated that the nanoporous surfaces stimulated the osteogenic differentiation of hMSC. It can be concluded that the proposed surface treatment could potentially help to stimulate the osseointegration behaviour of the advantageous low stiff Ti45Nb alloy.
Collapse
Affiliation(s)
- Ines Lauria
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Tatiana Nicole Kutz
- Chair of Corrosion and Corrosion Protection, Foundry Institute, RWTH Aachen University, Intzestrasse 5, 52072 Aachen, Germany.
| | - Frederik Böke
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Stephan Rütten
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Daniela Zander
- Chair of Corrosion and Corrosion Protection, Foundry Institute, RWTH Aachen University, Intzestrasse 5, 52072 Aachen, Germany.
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
22
|
Chang L, Liu T, Chai Z, Jie S, Li Z, Liu M, Dong W, Wang X, Zhou B. lincRNA-p21 Mediates the Anti-Cancer Effect of Ginkgo Biloba Extract EGb 761 by Stabilizing E-Cadherin Protein in Colon Cancer. Med Sci Monit 2018; 24:9488-9496. [PMID: 30594943 PMCID: PMC6322715 DOI: 10.12659/msm.911924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Ginkgo biloba extract EGb 761 is a putative antioxidant and has been used for thousands of years to treat a variety of ailments, including cancer. While it is known that cell behavior can be modulated by long non-coding RNAs (lncRNAs), the contributions of lncRNAs in EGb 761-induced anti-cancer effects are largely unknown. Material/Methods Colon cancer cell lines HT29 and HCT116 were used in this study. RT-qPCR was used to detect the relative expression of lincRNA-p21 in colon cancer cells. Wound-healing assay and Matrigel Transwell assay were performed to investigate the migration and invasion of colon cancer cells. Immunoprecipitation and Western blot experiments were used to verify ubiquitination and the interaction between lincRNA-p21 and E-cadherin, or E-cadherin and b-transducin repeat containing (BTRC) E3 ubiquitin protein ligase. Results Cell function assay verified that treatment with EGb 761 suppressed the migratory and invasive abilities of colon cancer cells in a dose-dependent manner via the suppression of E-cadherin expression level. lincRNA-p21 was upregulated in colon cancer cells after treatment with EGb 761, and knockdown of lincRNA-p21 reversed the EGb 761-induced anti-metastatic effect. Furthermore, lincRNA-p21 was localized in cytoplasm of colon cells and regulated E-cadherin expression at a post-transcriptional level. Specifically, lincRNA-p21 promotes E-cadherin stability by preventing the interaction between BTRC and E-cadherin, which leads to the inhibition of E-cadherin ubiquitination. Conclusions We demonstrated that lincRNA-p21 mediates the anti-cancer effect of Ginkgo biloba extract EGb 761 by stabilizing E-cadherin protein in colon cancer, which may help define the functional role of EGb 761 in cancer treatment.
Collapse
Affiliation(s)
- Liqiang Chang
- Department of Anorectal Surgery, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, Shanxi, China (mainland)
| | - Tingting Liu
- Department of Anorectal Surgery, Tianjin Traditional Chinese Medicine Hospital of Binhai New Area, Tianjin, China (mainland)
| | - Zhongqiu Chai
- Department of Anorectal Surgery, Tianjin Traditional Chinese Medicine Hospital of Binhai New Area, Tianjin, China (mainland)
| | - Song Jie
- Department of Anorectal Surgery, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, Shanxi, China (mainland)
| | - Zhongyun Li
- Department of Anorectal Surgery, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, Shanxi, China (mainland)
| | - Meilian Liu
- Department of Medical Insurance, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, Shanxi, China (mainland)
| | - Wenhai Dong
- Department of Anorectal Surgery, Tianjin Traditional Chinese Medicine Hospital of Binhai New Area, Tianjin, China (mainland)
| | - Xixing Wang
- Department of Oncology, Shanxi Provincial Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China (mainland)
| | - Bing Zhou
- Department of Anorectal Surgery, Tianjin Traditional Chinese Medicine Hospital of Binhai New Area, Tianjin, China (mainland)
| |
Collapse
|
23
|
Paing HW, Marcus RK. Investigation of hydrophobic substrates for solution residue analysis utilizing an ambient desorption liquid sampling-atmospheric pressure glow discharge microplasma. Analyst 2018; 143:1417-1425. [PMID: 29459925 DOI: 10.1039/c7an02075a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A practical method for preparation of solution residue samples for analysis utilizing the ambient desorption liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy (AD-LS-APGD-OES) microplasma is described. Initial efforts involving placement of solution aliquots in wells drilled into copper substrates, proved unsuccessful. A design-of-experiment (DOE) approach was carried out to determine influential factors during sample deposition including solution volume, solute concentration, number of droplets deposited, and the solution matrix. These various aspects are manifested in the mass of analyte deposited as well as the size/shape of the product residue. Statistical analysis demonstrated that only those initial attributes were significant factors towards the emission response of the analyte. Various approaches were investigated to better control the location/uniformity of the deposited sample. Three alternative substrates, a glass slide, a poly(tetrafluoro)ethylene (PTFE) sheet, and a polydimethylsiloxane (PDMS)-coated glass slide, were evaluated towards the microplasma analytical performance. Co-deposition with simple organic dyes provided an accurate means of determining the location of the analyte with only minor influence on emission responses. The PDMS-coated glass provided the best performance by virtue of its providing a uniform spatial distribution of the residue material. This uniformity yielded an improved limits of detection by approximately 22× for 20 μL and 4 x for 2 μL over the other two substrates. While they operate by fundamentally different processes, this choice of substrate is not restricted to the LS-APGD, but may also be applicable to other AD methods such as DESI, DART, or LIBS. Further developments will be directed towards a field-deployable ambient desorption OES source for quantitative analysis of microvolume solution residues of nuclear forensics importance.
Collapse
Affiliation(s)
- Htoo W Paing
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina 29634, USA.
| | | |
Collapse
|
24
|
IP 3R3 silencing induced actin cytoskeletal reorganization through ARHGAP18/RhoA/mDia1/FAK pathway in breast cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:945-958. [PMID: 29630900 DOI: 10.1016/j.bbamcr.2018.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Abstract
Cell morphology is altered in the migration process, and the underlying cytoskeleton remodeling is highly dependent of intracellular Ca2+ concentration. Many calcium channels are known to be involved in migration. Inositol 1,4,5-trisphosphate receptor (IP3R) was demonstrated to be implicated in breast cancer cells migration, but its involvement in morphological changes during the migration process remains unclear. In the present work, we showed that IP3R3 expression was correlated to cell morphology. IP3R3 silencing induced rounding shape and decreased adhesion in invasive breast cancer cell lines. Moreover, IP3R3 silencing decreased ARHGAP18 expression, RhoA activity, Cdc42 expression and Y861FAK phosphorylation. Interestingly, IP3R3 was able to regulate profilin remodeling, without inducing any myosin II reorganization. IP3R3 silencing revealed an oscillatory calcium signature, with a predominant oscillating profile occurring in early wound repair. To summarize, we demonstrated that IP3R3 is able to modulate intracellular Ca2+ availability and to coordinate the remodeling of profilin cytoskeleton organization through the ARHGAP18/RhoA/mDia1/FAK pathway.
Collapse
|
25
|
Lauria I, Dickmeis C, Röder J, Beckers M, Rütten S, Lin YY, Commandeur U, Fischer H. Engineered Potato virus X nanoparticles support hydroxyapatite nucleation for improved bone tissue replacement. Acta Biomater 2017; 62:317-327. [PMID: 28864253 DOI: 10.1016/j.actbio.2017.08.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/18/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
Bionanoparticles based on filamentous phages or flexuous viruses are interesting candidates for meeting the challenges of tailoring biomineralization in hydrogel-based bone tissue substitutes. We hypothesized that hydroxyapatite crystal nucleation and matrix mineralization can be significantly increased by mineralization-inducing (MIP) and integrin binding motif (RGD) peptides presented on biomimetic nanoparticles. In this study, Potato virus X (PVX), a flexible rod-shaped plant virus was genetically engineered to present these functional peptides on its particle surface. Recombinant PVX-MIP/RGD particles were isolated from infected Nicotiana benthamiana plants and characterized by western blot, SEM, TEM, and TPLSM in MSC cultures. The presence of RGD was proven by cell attachment, spreading, and vinculin cluster analysis, and MIP by in vitro mineralization and osteogenic differentiation assays. Thus the tailored surface of genetically engineered PVX forms fibril-like nanostructures which enables enhanced focal adhesion-dependent cell adhesion, and matrix mineralization verified by Alizarin. Hydroxyapatite crystal nucleation is supported on recombinant PVX particles leading to a biomimetic network and bundle-like structures similar to mineralized collagen fibrils. In conclusion, the recombinant flexuous PVX nanoparticles exhibit properties with great potential for bone tissue substitutes. STATEMENT OF SIGNIFICANCE A suitable biomaterial for tissue engineering should be able to mimic the endogenous extracellular matrix by presenting biochemical and biophysical cues. Novel hydrogel-based materials seek to meet the criteria of cytocompatibility, biodegradability, printability, and crosslinkability under mild conditions. However, a majority of existing hydrogels lack cell-interactive motifs, which are crucial to modulate cellular responses. The incorporation of the plant virus PVX to the hydrogel could improve functions like integrin-binding and mineralization due to peptide-presentation on the particle surface. The tailored surface of genetically engineered PVX forms fibril-like nanostructures which enables enhanced focal adhesion-dependent cell adhesion and matrix mineralization and offers great potential for the development of new hydrogel compositions for bone tissue substitutes.
Collapse
Affiliation(s)
- Ines Lauria
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Juliane Röder
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Malin Beckers
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Stephan Rütten
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Ying Ying Lin
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
26
|
Kedaria D, Vasita R. Bi-functional oxidized dextran–based hydrogel inducing microtumors: An in vitro three-dimensional lung tumor model for drug toxicity assays. J Tissue Eng 2017; 8:2041731417718391. [PMID: 35003617 PMCID: PMC8738854 DOI: 10.1177/2041731417718391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/09/2017] [Indexed: 11/15/2022] Open
Abstract
Cancer is a serious death causing disease having 8.2 million deaths in 2012. In
the last decade, only about 10% of chemotherapeutic compounds showed
productivity in drug screening. Two-dimensional culture assays are the most
common in vitro drug screening models, which do not precisely model the in vivo
condition for reliable preclinical drug screening. Three-dimensional
scaffold–based cell cultures perhaps mimic tumor microenvironment and
recapitulate physiologically more relevant tumor. This study was carried out to
develop bi-functional oxidized dextran–based cell instructive hydrogel that
provides three-dimensional environment to cancer cells for inducing microtumor.
Oxidized dextran was blended with thiolated chitosan to fabricate an in situ
self-gelable hydrogel (modified dextran–chitosan) in a one-step process. The
hydrogels characterization revealed cross-linked network structure with highly
porous structure and water absorption. The modified dextran–chitosan hydrogel
showed reduced hydrophobicity and has reduced protein absorption, which resulted
in changing the A549 cell adhesiveness, and encouraged them to form microtumor.
The cells were proliferated in clusters having spherical morphology with
randomly oriented stress fiber and large nucleus. Further microtumors were
studied for hypoxia where reactive oxygen species generation demonstrated
15-fold increase as compared to monolayer culture. Drug-sensitivity results
showed that microtumors generated on modified dextran–chitosan hydrogel showed
resistance to doxorubicin with having 33%–58% increased growth than
two-dimensional monolayer model at concentrations of 25–100 µM. In summary, the
modified dextran–chitosan scaffold can provide surface chemistry that induces
three-dimensional microtumors with physiologically relevant properties to in
vivo tumor including growth, morphology, extracellular matrix production,
hypoxic phenotype, and drug response. This model can be potentially utilized for
drug toxicity studies and cancer disease modeling to understand tumor phenotype
and progression.
Collapse
Affiliation(s)
- Dhaval Kedaria
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
27
|
Pre-cancer risk assessment in habitual smokers from DIC images of oral exfoliative cells using active contour and SVM analysis. Tissue Cell 2017; 49:296-306. [DOI: 10.1016/j.tice.2017.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 01/21/2017] [Accepted: 01/21/2017] [Indexed: 11/20/2022]
|
28
|
Dinicola S, Fabrizi G, Masiello MG, Proietti S, Palombo A, Minini M, Harrath AH, Alwasel SH, Ricci G, Catizone A, Cucina A, Bizzarri M. Inositol induces mesenchymal-epithelial reversion in breast cancer cells through cytoskeleton rearrangement. Exp Cell Res 2016; 345:37-50. [DOI: 10.1016/j.yexcr.2016.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
|
29
|
Cinci L, Luceri C, Bigagli E, Carboni I, Paccosi S, Parenti A, Guasti D, Coronnello M. Development and characterization of an in vitro model of colorectal adenocarcinoma with MDR phenotype. Cancer Med 2016; 5:1279-91. [PMID: 27016279 PMCID: PMC4924386 DOI: 10.1002/cam4.694] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/20/2023] Open
Abstract
The major cause of failure in cancer chemotherapy is the development of multidrug resistance (MDR), and the characterization of biological factors involved in this response to therapy is particularly needed. A doxorubicin-resistant HCT-8/R clone was selected from sensitive parental cells and characterized analyzing several parameters (cell cycle phase distribution, apoptotic activity, expression, distribution and functionality of the P-gp efflux pump, the response to other chemotherapy agents, its ultrastructural features, invasiveness, and transcriptomic profile). HCT-8/R cells showed a peculiar S phase distribution, characterized by a single pulse of proliferation, resistance to drug-mediated apoptosis, increased expression and functionality of P-gp and overexpression of stem cell markers (CD44 and aldehyde dehydrogenase 1A2). At the ultrastructural level, HCT-8/R presented a greater cell volume and several intracytoplasmic vesicles respect to HCT-8. Moreover, the resistant clone was characterized by cross resistance to other cytotoxic drugs and a greater capacity for migration and invasion, compared to parental cells. Our data reinforce the concept that the MDR phenotype in HCT-8/R cells is multifactorial and involves multiple mechanisms, representing an interesting tool to understand the biological basis of MDR and to test strategies that overcome resistance to chemotherapy.
Collapse
Affiliation(s)
- Lorenzo Cinci
- Departments of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Cristina Luceri
- Departments of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Elisabetta Bigagli
- Departments of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Ilaria Carboni
- Diagnostic Genetics Unit, Azienda Ospedaliero Universitaria "Careggi", Largo Brambilla 5, Florence, Italy
| | - Sara Paccosi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 5, Florence, Italy
| | - Marcella Coronnello
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| |
Collapse
|
30
|
Dinicola S, Pasqualato A, Proietti S, Masiello MG, Palombo A, Coluccia P, Canipari R, Catizone A, Ricci G, Harrath AH, Alwasel SH, Cucina A, Bizzarri M. Paradoxical E-cadherin increase in 5FU-resistant colon cancer is unaffected during mesenchymal-epithelial reversion induced by γ-secretase inhibition. Life Sci 2015; 145:174-83. [PMID: 26746659 DOI: 10.1016/j.lfs.2015.12.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/05/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
Abstract
AIM Presenilin-1 (PS1), the main component of γ-secretase activity support a key role during Epithelial-Mesenchymal Transition (EMT) and chemoresistance acquisition by triggering a complex sequence of molecular events, including E-cadherin down-regulation. However, we hypothesize that EMT and chemoresistance should be deemed separate processes in HCT-8 colon cancer cells. MAIN METHODS HCT-8 and HCT-8FUres invasion was evaluated by trans-well assay. uPA activity was detected by zymography. Prostaglandin E2 levels were quantified using an ELISA kit. E-cadherin FL and CTF2, PS1, Notch1, Cyclin D1, COX2, SNAI1 and α-SMA expression were determined using Western blot technique. β-Catenin localization was observed by confocal microscopy. Cell apoptosis was evaluated by cytofluorimetric assay, and measurement of caspase-3 and cl-PARP. γ-Secretase activity was inhibited by DAPT, a γ-secretase inhibitor. KEY FINDINGS Chemoresistant HCT-8 underwent EMT that can be efficiently reversed by inhibiting PS1 activity, leading thus to a normalization of mostly of the pivotal features showed by the invasive cancer phenotype. Indeed, we observed decreased SNAI1 and Notch 1 activation, altogether with reduced E-cadherin cleavage. Concomitantly, resistant HCT-8 invasiveness was almost completely abolished. However, such reversion was not followed by any increase in apoptotic rate, not by changes in E-cadherin levels. Indeed, despite HCT-8FUres underwent an undeniable EMT, full-length E-cadherin levels were found remarkably higher than those observed in wild HCT-8. SIGNIFICANCE High E-cadherin concentration in presence of enhanced γ-secretase activity is incontestably a paradoxically result, highlighting that E-cadherin loss is not a pre-requisite for EMT. Additionally, EMT and chemoresistance acquisition in HCT-8 should be considered as distinct processes.
Collapse
Affiliation(s)
- Simona Dinicola
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
| | - Alessia Pasqualato
- Azienda Policlinico Umberto I, viale del Policlinico 155, 00161 Rome, Italy
| | - Sara Proietti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
| | - Maria Grazia Masiello
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
| | - Alessandro Palombo
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy; Department of Experimental Medicine, Sapienza University of Rome, Systems Biology Group Lab, viale Regina Elena 324, 00161 Rome, Italy
| | - Pierpaolo Coluccia
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy; Azienda Policlinico Umberto I, viale del Policlinico 155, 00161 Rome, Italy
| | - Rita Canipari
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Second University of Naples, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Alessandra Cucina
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy; Azienda Policlinico Umberto I, viale del Policlinico 155, 00161 Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Systems Biology Group Lab, viale Regina Elena 324, 00161 Rome, Italy; Systems Biology Group Lab, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
31
|
Scherzer MT, Waigel S, Donninger H, Arumugam V, Zacharias W, Clark G, Siskind LJ, Soucy P, Beverly L. Fibroblast-Derived Extracellular Matrices: An Alternative Cell Culture System That Increases Metastatic Cellular Properties. PLoS One 2015; 10:e0138065. [PMID: 26371754 PMCID: PMC4570771 DOI: 10.1371/journal.pone.0138065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/26/2015] [Indexed: 12/31/2022] Open
Abstract
Poor survival rates from lung cancer can largely be attributed to metastatic cells that invade and spread throughout the body. The tumor microenvironment (TME) is composed of multiple cell types, as well as non-cellular components. The TME plays a critical role in the development of metastatic cancers by providing migratory cues and changing the properties of the tumor cells. The Extracellular Matrix (ECM), a main component of the TME, has been shown to change composition during tumor progression, contributing to cancer cell invasion and survival away from the primary cancer site. Although the ECM is well-known to influence the fate of tumor progression, little is known about the molecular mechanisms that are affected by the cancer cell-ECM interactions. It is imperative that these mechanisms are elucidated in order to properly understand and prevent lung cancer dissemination. However, common in vitro studies do not incorporate these interactions into everyday cell culture assays. We have adopted a model that examines decellularized human fibroblast-derived ECM as a 3-dimensional substrate for growth of lung adenocarcinoma cell lines. Here, we have characterized the effect of fibroblast-derived matrices on the properties of various lung-derived epithelial cell lines, including cancerous and non-transformed cells. This work highlights the significance of the cell-ECM interaction and its requirement for incorporation into in vitro experiments. Implementation of a fibroblast-derived ECM as an in vitro technique will provide researchers with an important factor to manipulate to better recreate and study the TME.
Collapse
Affiliation(s)
- Michael T. Scherzer
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Sabine Waigel
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Howard Donninger
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Vennila Arumugam
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Wolfgang Zacharias
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Geoffrey Clark
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Leah J. Siskind
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Patricia Soucy
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Levi Beverly
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40202, United States of America
- * E-mail:
| |
Collapse
|
32
|
Lennon FE, Cianci GC, Cipriani NA, Hensing TA, Zhang HJ, Chen CT, Murgu SD, Vokes EE, Vannier MW, Salgia R. Lung cancer-a fractal viewpoint. Nat Rev Clin Oncol 2015; 12:664-75. [PMID: 26169924 DOI: 10.1038/nrclinonc.2015.108] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fractals are mathematical constructs that show self-similarity over a range of scales and non-integer (fractal) dimensions. Owing to these properties, fractal geometry can be used to efficiently estimate the geometrical complexity, and the irregularity of shapes and patterns observed in lung tumour growth (over space or time), whereas the use of traditional Euclidean geometry in such calculations is more challenging. The application of fractal analysis in biomedical imaging and time series has shown considerable promise for measuring processes as varied as heart and respiratory rates, neuronal cell characterization, and vascular development. Despite the advantages of fractal mathematics and numerous studies demonstrating its applicability to lung cancer research, many researchers and clinicians remain unaware of its potential. Therefore, this Review aims to introduce the fundamental basis of fractals and to illustrate how analysis of fractal dimension (FD) and associated measurements, such as lacunarity (texture) can be performed. We describe the fractal nature of the lung and explain why this organ is particularly suited to fractal analysis. Studies that have used fractal analyses to quantify changes in nuclear and chromatin FD in primary and metastatic tumour cells, and clinical imaging studies that correlated changes in the FD of tumours on CT and/or PET images with tumour growth and treatment responses are reviewed. Moreover, the potential use of these techniques in the diagnosis and therapeutic management of lung cancer are discussed.
Collapse
Affiliation(s)
- Frances E Lennon
- Section of Hematology/Oncology, University of Chicago, 5841 South Maryland Avenue, MC 2115 Chicago, IL 60637, USA
| | - Gianguido C Cianci
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Nicole A Cipriani
- Department of Pathology, University of Chicago, 5841 South Maryland Avenue, MC 2115 Chicago, IL 60637, USA
| | - Thomas A Hensing
- NorthShore University Health System, 2650 Ridge Avenue, Evanston, IL 60201, USA
| | - Hannah J Zhang
- Department of Radiology, University of Chicago, 5841 South Maryland Avenue, MC 2115 Chicago, IL 60637, USA
| | - Chin-Tu Chen
- Department of Radiology, University of Chicago, 5841 South Maryland Avenue, MC 2115 Chicago, IL 60637, USA
| | - Septimiu D Murgu
- Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 2115 Chicago, IL 60637, USA
| | - Everett E Vokes
- Section of Hematology/Oncology, University of Chicago, 5841 South Maryland Avenue, MC 2115 Chicago, IL 60637, USA
| | - Michael W Vannier
- Department of Radiology, University of Chicago, 5841 South Maryland Avenue, MC 2115 Chicago, IL 60637, USA
| | - Ravi Salgia
- Section of Hematology/Oncology, University of Chicago, 5841 South Maryland Avenue, MC 2115 Chicago, IL 60637, USA
| |
Collapse
|