1
|
Thomas S, Rajendran AR, Purushothaman B, Subramanian B. Advancing Bioactive Material for Mandibular Bone Regeneration: Transformation of Fibrous Mat into 3D Matrix Cotton for Enhanced Shape Retention and Rapid Hemostasis. ACS Biomater Sci Eng 2024; 10:5194-5209. [PMID: 39026391 DOI: 10.1021/acsbiomaterials.4c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Transformation of a fibrous mat into a three-dimensional (3D) scaffold opens up abundant innovative prospects in biomedical research, particularly for studying both soft as well as hard tissues. Electrospun nanofibers, which mimic the extracellular matrix have attracted significant attention in various studies. This research focuses on rapidly converting a fibrous mat made of polycaprolactone (PCL)/pluronic F-127 (PF-127) with different percentages of monetite calcium phosphate (MCP) into desirable 3D matrix cotton using a unique gas foaming technology. These matrix cottons possess biomimetic properties and have oriented porous structures. Using this innovative technique, various shapes of 3D matrix cotton, such as squares, hollow tubes, and other customizable forms, were successfully produced. Importantly, these 3D matrix cottons showed a consistent distribution of monetite particles with total porosity ranging from 90% to 98%. The structure of the 3D matrix cotton, its water/blood absorption capacity, the potential for causing non-hemolysis, and rapid hemostatic properties were thoroughly investigated. Additionally, periodontal cells were cultured on the 3D matrix cotton to assess their viability and morphology, revealing promising results. Furthermore, a coculture study involving NIH-3T3 and MG-63 cells on the 3D matrix cotton showed spheroidal formation within 24 h. Notably, in vitro assessments indicated that the matrix cotton containing 15% monetite (PCL-MMC15%) exhibited superior absorbent capabilities, excellent cell viability, and rapid hemostatic characteristics. Subsequently, the effectiveness of PCL-MMC15% in promoting mandibular bone regeneration was evaluated through an in vivo study on rabbits using a mandibular injury model. The results demonstrated that PCL-MMC15% facilitated the resolution of defects in the mandibular region by initiating new bone formation. Therefore, the presented 3D matrix cotton (PCL-MMC15%) shows significant promise for applications in both mandibular bone regeneration and hemostasis.
Collapse
Affiliation(s)
- Shalini Thomas
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Ajay Rakkesh Rajendran
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, TN 603203, India
| | - Bargavi Purushothaman
- Department of Oral Pathology, Saveetha Dental College and Hospital, Chennai, 600 077, India
| | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025, India
| |
Collapse
|
2
|
Marjuban SMH, Rahman M, Duza SS, Ahmed MB, Patel DK, Rahman MS, Lozano K. Recent Advances in Centrifugal Spinning and Their Applications in Tissue Engineering. Polymers (Basel) 2023; 15:polym15051253. [PMID: 36904493 PMCID: PMC10007050 DOI: 10.3390/polym15051253] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Over the last decade, researchers have investigated the potential of nano and microfiber scaffolds to promote wound healing, tissue regeneration, and skin protection. The centrifugal spinning technique is favored over others due to its relatively straightforward mechanism for producing large quantities of fiber. Many polymeric materials have yet to be investigated in search of those with multifunctional properties that would make them attractive in tissue applications. This literature presents the fundamental process of fiber generation, and the effects of fabrication parameters (machine, solution) on the morphologies such as fiber diameter, distribution, alignment, porous features, and mechanical properties. Additionally, a brief discussion is presented on the underlying physics of beaded morphology and continuous fiber formation. Consequently, the study provides an overview of the current advancements in centrifugally spun polymeric fiber-based materials and their morphological features, performance, and characteristics for tissue engineering applications.
Collapse
Affiliation(s)
- Shaik Merkatur Hakim Marjuban
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Musfira Rahman
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Syeda Sharmin Duza
- Microbiology & Immunology Department, Holy Family Red Crescent Medical College & Hospital, Dhaka 1000, Bangladesh
| | - Mohammad Boshir Ahmed
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Correspondence: (D.K.P.); (M.S.R.)
| | - Md Saifur Rahman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (D.K.P.); (M.S.R.)
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
3
|
Kulkarni D, Musale S, Panzade P, Paiva-Santos AC, Sonwane P, Madibone M, Choundhe P, Giram P, Cavalu S. Surface Functionalization of Nanofibers: The Multifaceted Approach for Advanced Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3899. [PMID: 36364675 PMCID: PMC9655053 DOI: 10.3390/nano12213899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 05/13/2023]
Abstract
Nanocarriers are gaining significant importance in the modern era of drug delivery. Nanofiber technology is one of the prime paradigms in nanotechnology for various biomedical and theranostic applications. Nanofibers obtained after successful electrospinning subjected to surface functionalized for drug delivery, biomedical, tissue engineering, biosensing, cell imaging and wound dressing application. Surface functionalization entirely changes physicochemical and biological properties of nanofibers. In physicochemical properties, wettability, melting point, glass transition temperature, and initial decomposition temperature significantly change offer several advantageous for nanofibers. Similarly, biological properties include cell adhesion, biocompatibility, and proliferation, also changes by functionalization of nanofibers. Various natural and synthetic materials polymers, metals, carbon materials, functional groups, proteins, and peptides, are currently used for surface modification of nanofibers. Various research studies across the globe demonstrated the usefulness of surface functionalized nanofibers in tissue engineering, wound healing, skin cancers, melanoma, and disease diagnosis. The delivery of drug through surface functionalized nanofibers results in improved permeation and bioavailability of drug which is important for better targeting of disease and therapeutic efficacy. This review provides a comprehensive insight about various techniques of surface functionalization of nanofibers along with its biomedical applications, toxicity assessment and global patent scenario.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Shubham Musale
- Formulation and Development Department, Aculife Healthcare Pvt. Ltd., Sachana, Ahmedabad 382150, India
| | - Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3004-531 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Pratiksha Sonwane
- Department of Chemistry, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Monika Madibone
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Puja Choundhe
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
4
|
Novel In Situ-Cross-Linked Electrospun Gelatin/Hydroxyapatite Nonwoven Scaffolds Prove Suitable for Periodontal Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14061286. [PMID: 35745858 PMCID: PMC9230656 DOI: 10.3390/pharmaceutics14061286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Periodontal diseases affect millions of people worldwide and can result in tooth loss. Regenerative treatment options for clinical use are thus needed. We aimed at developing new nonwoven-based scaffolds for periodontal tissue engineering. Nonwovens of 16% gelatin/5% hydroxyapatite were produced by electrospinning and in situ glyoxal cross-linking. In a subset of scaffolds, additional porosity was incorporated via extractable polyethylene glycol fibers. Cell colonization and penetration by human mesenchymal stem cells (hMSCs), periodontal ligament fibroblasts (PDLFs), or cocultures of both were visualized by scanning electron microscopy and 4′,6-diamidin-2-phenylindole (DAPI) staining. Metabolic activity was assessed via Alamar Blue® staining. Cell type and differentiation were analyzed by immunocytochemical staining of Oct4, osteopontin, and periostin. The electrospun nonwovens were efficiently populated by both hMSCs and PDLFs, while scaffolds with additional porosity harbored significantly more cells. The metabolic activity was higher for cocultures of hMSCs and PDLFs, or for PDLF-seeded scaffolds. Periostin and osteopontin expression was more pronounced in cocultures of hMSCs and PDLFs, whereas Oct4 staining was limited to hMSCs. These novel in situ-cross-linked electrospun nonwoven scaffolds allow for efficient adhesion and survival of hMSCs and PDLFs. Coordinated expression of differentiation markers was observed, which rendered this platform an interesting candidate for periodontal tissue engineering.
Collapse
|
5
|
Priyanto A, Hapidin DA, Khairurrijal K. Potential Loading of Virgin Coconut Oil into Centrifugally‐Spun Nanofibers for Biomedical Applications. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Aan Priyanto
- Institut Teknologi Bandung Department of Physics Jalan Ganesa 10 40132 Bandung Indonesia
| | - Dian Ahmad Hapidin
- Institut Teknologi Bandung Department of Physics Jalan Ganesa 10 40132 Bandung Indonesia
| | - Khairurrijal Khairurrijal
- Institut Teknologi Bandung Department of Physics Jalan Ganesa 10 40132 Bandung Indonesia
- Institut Teknologi Bandung University Center of Excellence – Nutraceutical, Bioscience and Biotechnology Research Center Jalan Ganesa 10 40132 Bandung Indonesia
| |
Collapse
|
6
|
Priyanto A, Hapidin DA, Suciati T, Khairurrijal K. Current Developments on Rotary Forcespun Nanofibers and Prospects for Edible Applications. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-021-09304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Affiliation(s)
- Bülin Atıcı
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul, Turkey
| | - Cüneyt H. Ünlü
- Chemistry, Istanbul Technical University, Turkey, Istanbul
| | - Meltem Yanilmaz
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul, Turkey
- Textile Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
8
|
Saeed M, Beigi-Boroujeni S, Rajabi S, Rafati Ashteiani G, Dolatfarahi M, Özcan M. A simple, green chemistry technology for fabrication of tissue-engineered scaffolds based on mussel-inspired 3D centrifugal spun. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111849. [PMID: 33579483 DOI: 10.1016/j.msec.2020.111849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022]
Abstract
The fabrication of 3D fibrous scaffolds with highly interconnected pores has been crucial in the development of tissue regeneration techniques. The present study describes the fabrication of 3D fibrous scaffolds by freeze-drying of polydopamine (PDA) coated centrifugal spun gelatin fibers. We wanted to combine the mussel-inspired chemistry, Maillard reaction, and the 3D microstructural advantages of centrifugal spun fibers to develop the green fibrous scaffolds at low cost, high speed, and desired mold shape. The resultant PDA-gelatin fibers exhibited a smooth 3D microstructure with a uniform formation of PDA thin ad-layer that enhanced the mechanical properties and stability of the scaffolds, and thereby decreased the degradation rate. All scaffolds showed promising properties including good dimensional and mechanical stability under wet state, optimal porosity over 94%, and high water uptake of approximately 1500%. The results of cell culture studies, further confirmed that all scaffolds exhibited appropriate biocompatibility, cell proliferation, migration, and infiltration. Particularly, the PDA-coated scaffolds showed a significant enhancement in proliferation, migration, and infiltration of HDF-GFP+ cells. These results show that a 3D porous fibrous scaffold with simplifying tunable density and desirable shape on a large scale can be readily prepared for different fields of tissue engineering applications.
Collapse
Affiliation(s)
- Mahdi Saeed
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran.
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur, Monterrey, 2501, N.L., Mexico; Hard Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Golnaz Rafati Ashteiani
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Dolatfarahi
- Hard Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mutlu Özcan
- University of Zürich, Division of Dental Biomaterials, Center for Dental and Oral Medicine, Clinic for Reconstructive Dentistry, Zürich, Switzerland
| |
Collapse
|
9
|
Vocetkova K, Sovkova V, Buzgo M, Lukasova V, Divin R, Rampichova M, Blazek P, Zikmund T, Kaiser J, Karpisek Z, Amler E, Filova E. A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment. NANOMATERIALS 2020; 10:nano10091801. [PMID: 32927642 PMCID: PMC7559479 DOI: 10.3390/nano10091801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Vitiligo is the most common depigmentation disorder of the skin. Currently, its therapy focuses on the halting of the immune response and stimulation of the regenerative processes, leading to the restoration of normal melanocyte function. Platelet-rich plasma (PRP) represents a safe and cheap regenerative therapy option, as it delivers a wide spectrum of native growth factors, cytokines and other bioactive molecules. The aim of this study was to develop a simple delivery system to prolong the effects of the bioactive molecules released from platelets. The surface of electrospun and centrifugally spun poly-ε-caprolactone (PCL) fibrous scaffolds was functionalized with various concentrations of platelets; the influence of the morphology of the scaffolds and the concentration of the released platelet-derived bioactive molecules on melanocytes, was then assessed. An almost two-fold increase in the amount of the released bioactive molecules was detected on the centrifugally spun vs. electrospun scaffolds, and a sustained 14-day release of the bioactive molecules was demonstrated. A strong concentration-dependent response of melanocyte to the bioactive molecules was observed; higher concentrations of bioactive molecules resulted in improved metabolic activity and proliferation of melanocytes. This simple system improves melanocyte viability, offers on-site preparation and is suitable for prolonged topical PRP administration.
Collapse
Affiliation(s)
- Karolina Vocetkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
- Correspondence:
| | - Vera Sovkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Matej Buzgo
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Vera Lukasova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Radek Divin
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Michala Rampichova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
| | - Pavel Blazek
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic; (P.B.); (T.Z.); (J.K.)
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic; (P.B.); (T.Z.); (J.K.)
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic; (P.B.); (T.Z.); (J.K.)
| | - Zdenek Karpisek
- Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno, Czech Republic;
| | - Evzen Amler
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Eva Filova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (V.S.); (M.B.); (V.L.); (R.D.); (M.R.); (E.F.)
- Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic;
| |
Collapse
|
10
|
Chen S, John JV, McCarthy A, Carlson MA, Li X, Xie J. Fast transformation of 2D nanofiber membranes into pre-molded 3D scaffolds with biomimetic and oriented porous structure for biomedical applications. APPLIED PHYSICS REVIEWS 2020; 7:021406. [PMID: 32494338 PMCID: PMC7233601 DOI: 10.1063/1.5144808] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 05/24/2023]
Abstract
The ability to transform two-dimensional (2D) structures into three-dimensional (3D) structures leads to a variety of applications in fields such as soft electronics, soft robotics, and other biomedical-related fields. Previous reports have focused on using electrospun nanofibers due to their ability to mimic the extracellular matrix. These studies often lead to poor results due to the dense structures and small poor sizes of 2D nanofiber membranes. Using a unique method of combining innovative gas-foaming and molding technologies, we report the rapid transformation of 2D nanofiber membranes into predesigned 3D scaffolds with biomimetic and oriented porous structure. By adding a surfactant (pluronic F-127) to poly(ε-caprolactone) (PCL) nanofibers, the rate of expansion is dramatically enhanced due to the increase in hydrophilicity and subsequent gas bubble stability. Using this novel method together with molding, 3D objects with cylindrical, hollow cylindrical, cuboid, spherical, and irregular shapes are created. Interestingly, these 3D shapes exhibit anisotropy and consistent pore sizes throughout entire object. Through further treatment with gelatin, the scaffolds become superelastic and shape-recoverable. Additionally, gelatin-coated, cube-shaped scaffolds were further functionalized with polypyrrole coatings and exhibited dynamic electrical conductivity during cyclic compression. Cuboid-shaped scaffolds have been demonstrated to be effective for compressible hemorrhage in a porcine liver injury model. In addition, human neural progenitor cells can be uniformly distributed and differentiated into neurons throughout the cylinder-shaped nanofiber scaffolds, forming ordered 3D neural tissue constructs. Taken together, the approach presented in this study is very promising in the production of pre-molded 3D nanofiber scaffolds for many biomedical applications.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Johnson V. John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Mark A. Carlson
- Department of Surgery-General Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198 and Department of Surgery, Omaha VA Medical Center, Omaha, Nebraska 68105, USA
| | - Xiaowei Li
- Department of Neurological Sciences and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
11
|
Coaxial Nanofibrous Scaffold Prepared Using Centrifugal Spinning as a Drug Delivery System for Skeletal Tissue Engineering. ACTA ACUST UNITED AC 2020. [DOI: 10.4028/www.scientific.net/kem.834.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Skeletal disorders, caused by trauma, disease, or carcinoma, may result in tissue loss and, finally, in endoprosthesis. Tissue engineering offers an alternative - tissue scaffolds. Its constructs may be seeded with autologous cells or, alternatively, attract cells from the surrounding tissues. Such a scaffold must meet several requirements, such as biocompatibility, biodegradability and suitable morphology for cell attachment and proliferation. Nonetheless, scaffold should stimulate cells migrated from the surrounding tissues to infiltrate the scaffold, proliferate and differentiate to the required cell type. In the current study, we developed a fibrous scaffold with 3D structure using emulsion centrifugal spinning. The scaffold from poly-ɛ-caprolactone contained a cocktail of growth factors, i.e. TGF-β, IGF and bFGF. The released growth factors enhanced cell proliferation and chondrogenic differentiation. The scaffold is a promising material for skeletal tissue engineering.
Collapse
|
12
|
|
13
|
Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater 2019; 4:271-292. [PMID: 31709311 PMCID: PMC6829098 DOI: 10.1016/j.bioactmat.2019.10.005] [Citation(s) in RCA: 427] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Considering the advantages and disadvantages of biomaterials used for the production of 3D scaffolds for tissue engineering, new strategies for designing advanced functional biomimetic structures have been reviewed. We offer a comprehensive summary of recent trends in development of single- (metal, ceramics and polymers), composite-type and cell-laden scaffolds that in addition to mechanical support, promote simultaneous tissue growth, and deliver different molecules (growth factors, cytokines, bioactive ions, genes, drugs, antibiotics, etc.) or cells with therapeutic or facilitating regeneration effect. The paper briefly focuses on divers 3D bioprinting constructs and the challenges they face. Based on their application in hard and soft tissue engineering, in vitro and in vivo effects triggered by the structural and biological functionalized biomaterials are underlined. The authors discuss the future outlook for the development of bioactive scaffolds that could pave the way for their successful imposing in clinical therapy.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7000, Ruse, Bulgaria
| | - Murthy S. Chavali
- Shree Velagapudi Ramakrishna Memorial College (PG Studies, Autonomous), Nagaram, 522268, Guntur District, India
- PG Department of Chemistry, Dharma Appa Rao College, Nuzvid, 521201, Krishna District, India
- MCETRC, Tenali, 522201, Guntur District, Andhra Pradesh, India
| |
Collapse
|
14
|
Natale A, Vanmol K, Arslan A, Van Vlierberghe S, Dubruel P, Van Erps J, Thienpont H, Buzgo M, Boeckmans J, De Kock J, Vanhaecke T, Rogiers V, Rodrigues RM. Technological advancements for the development of stem cell-based models for hepatotoxicity testing. Arch Toxicol 2019; 93:1789-1805. [PMID: 31037322 DOI: 10.1007/s00204-019-02465-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Stem cells are characterized by their self-renewal capacity and their ability to differentiate into multiple cell types of the human body. Using directed differentiation strategies, stem cells can now be converted into hepatocyte-like cells (HLCs) and therefore, represent a unique cell source for toxicological applications in vitro. However, the acquired hepatic functionality of stem cell-derived HLCs is still significantly inferior to primary human hepatocytes. One of the main reasons for this is that most in vitro models use traditional two-dimensional (2D) setups where the flat substrata cannot properly mimic the physiology of the human liver. Therefore, 2D-setups are progressively being replaced by more advanced culture systems, which attempt to replicate the natural liver microenvironment, in which stem cells can better differentiate towards HLCs. This review highlights the most recent cell culture systems, including scaffold-free and scaffold-based three-dimensional (3D) technologies and microfluidics that can be employed for culture and hepatic differentiation of stem cells intended for hepatotoxicity testing. These methodologies have shown to improve in vitro liver cell functionality according to the in vivo liver physiology and allow to establish stem cell-based hepatic in vitro platforms for the accurate evaluation of xenobiotics.
Collapse
Affiliation(s)
- Alessandra Natale
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Koen Vanmol
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Aysu Arslan
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Jürgen Van Erps
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | | | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
15
|
Lukášová V, Buzgo M, Vocetková K, Sovková V, Doupník M, Himawan E, Staffa A, Sedláček R, Chlup H, Rustichelli F, Amler E, Rampichová M. Needleless electrospun and centrifugal spun poly-ε-caprolactone scaffolds as a carrier for platelets in tissue engineering applications: A comparative study with hMSCs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:567-575. [PMID: 30678943 DOI: 10.1016/j.msec.2018.12.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
The biofunctionalization of scaffolds for tissue engineering is crucial to improve the results of regenerative therapies. This study compared the effect of platelet-functionalization of 2D electrospun and 3D centrifugal spun scaffolds on the osteogenic potential of hMSCs. Scaffolds prepared from poly-ε-caprolactone, using electrospinning and centrifugal spinning technology, were functionalized using five different concentrations of platelets. Cell proliferation, metabolic activity and osteogenic differentiation were tested using hMSCs cultured in differential and non-differential medium. The porous 3D structure of the centrifugal spun fibers resulted in higher cell proliferation. Furthermore, the functionalization of the scaffolds with platelets resulted in a dose-dependent increase in cell metabolic activity, proliferation and production of an osteogenic marker - alkaline phosphatase. The effect was further promoted by culture in an osteogenic differential medium. The increase in combination of both platelets and osteogenic media shows an improved osteoinduction by platelets in environments rich in inorganic phosphate and ascorbate. Nevertheless, the results of the study showed that the optimal concentration of platelets for induction of hMSC osteogenesis is in the range of 900-3000 × 109 platelets/L. The study determines the potential of electrospun and centrifugal spun fibers with adhered platelets, for use in bone tissue engineering.
Collapse
Affiliation(s)
- V Lukášová
- University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague, Czech Republic
| | - M Buzgo
- University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic; InoCure s.r.o., Politických vězňů 935/13, Prague 1, Czech Republic
| | - K Vocetková
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic
| | - V Sovková
- University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic; Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Uvalu 84, Prague 5-Motol 150 06, Czech Republic
| | - M Doupník
- University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; InoCure s.r.o., Politických vězňů 935/13, Prague 1, Czech Republic
| | - E Himawan
- InoCure s.r.o., Politických vězňů 935/13, Prague 1, Czech Republic
| | - A Staffa
- University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic; InoCure s.r.o., Politických vězňů 935/13, Prague 1, Czech Republic
| | - R Sedláček
- Laboratory of Biomechanics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague 6, Czech Republic
| | - H Chlup
- Laboratory of Biomechanics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague 6, Czech Republic
| | - F Rustichelli
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic
| | - E Amler
- University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic; Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Uvalu 84, Prague 5-Motol 150 06, Czech Republic
| | - M Rampichová
- University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic.
| |
Collapse
|
16
|
Rampichová M, Chvojka J, Jenčová V, Kubíková T, Tonar Z, Erben J, Buzgo M, Daňková J, Litvinec A, Vocetková K, Plencner M, Prosecká E, Sovková V, Lukášová V, Králíčková M, Lukáš D, Amler E. The combination of nanofibrous and microfibrous materials for enhancement of cell infiltration and
in vivo
bone tissue formation. Biomed Mater 2018; 13:025004. [DOI: 10.1088/1748-605x/aa9717] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Vera L, Matej B, Karolina V, Tereza K, Zbyněk T, Miroslav D, Veronika B, Andrej L, Vera S, Barbora V, Andrea S, Petr S, Milena K, Evzen A, Eva F, Franco R, Michala R. Osteoinductive 3D scaffolds prepared by blend centrifugal spinning for long-term delivery of osteogenic supplements. RSC Adv 2018; 8:21889-21904. [PMID: 35541719 PMCID: PMC9081096 DOI: 10.1039/c8ra02735h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/06/2018] [Indexed: 11/21/2022] Open
Abstract
Bone regeneration is a long-term process requiring proper scaffolding and drug delivery systems. The current study delivers a three-dimensional (3D) scaffold prepared by blend centrifugal spinning loaded with the osteogenic supplements (OS) β-glycerol phosphate, ascorbate-2-phosphate and dexamethasone. The OS were successfully encapsulated into a fibrous scaffold and showed sustained release for 30 days. Furthermore, biological testing showed the osteoinductive properties of the scaffolds on a model of human mesenchymal stem cells and stimulatory effect on a model of osteoblasts. The osteoinductive properties were further proved in vivo in critical size defects of rabbits. The amount of bone trabecules was bigger compared to control fibers without OS. The results indicate that due to its long-term drug releasing properties, single step fabrication process and 3D structure, the system shows ideal properties for use as a cell-free bone implant in tissue-engineering. Bone regeneration is a long-term process requiring proper scaffolding and drug delivery systems.![]()
Collapse
|
18
|
Rampichová M, Košt'áková Kuželová E, Filová E, Chvojka J, Šafka J, Pelcl M, Daňková J, Prosecká E, Buzgo M, Plencner M, Lukáš D, Amler E. Composite 3D printed scaffold with structured electrospun nanofibers promotes chondrocyte adhesion and infiltration. Cell Adh Migr 2017; 12:271-285. [PMID: 29130836 DOI: 10.1080/19336918.2017.1385713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Additive manufacturing, also called 3D printing, is an effective method for preparing scaffolds with defined structure and porosity. The disadvantage of the technique is the excessive smoothness of the printed fibers, which does not support cell adhesion. In the present study, a 3D printed scaffold was combined with electrospun classic or structured nanofibers to promote cell adhesion. Structured nanofibers were used to improve the infiltration of cells into the scaffold. Electrospun layers were connected to 3D printed fibers by gluing, thus enabling the fabrication of scaffolds with unlimited thickness. The composite 3D printed/nanofibrous scaffolds were seeded with primary chondrocytes and tested in vitro for cell adhesion, proliferation and differentiation. The experiment showed excellent cell infiltration, viability, and good cell proliferation. On the other hand, partial chondrocyte dedifferentiation was shown. Other materials supporting chondrogenic differentiation will be investigated in future studies.
Collapse
Affiliation(s)
- M Rampichová
- a University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague , Buštěhrad , Czech Republic.,b Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic
| | - E Košt'áková Kuželová
- c Technical University of Liberec , Department of Nonwovens and Nanofibrous Materials , Liberec , Czech Republic
| | - E Filová
- b Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic
| | - J Chvojka
- c Technical University of Liberec , Department of Nonwovens and Nanofibrous Materials , Liberec , Czech Republic
| | - J Šafka
- d Technical University of Liberec , Department of Manufacturing Systems and Automatization , Liberec , Czech Republic
| | - M Pelcl
- c Technical University of Liberec , Department of Nonwovens and Nanofibrous Materials , Liberec , Czech Republic
| | - J Daňková
- b Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic
| | - E Prosecká
- b Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic
| | - M Buzgo
- a University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague , Buštěhrad , Czech Republic
| | - M Plencner
- b Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic
| | - D Lukáš
- c Technical University of Liberec , Department of Nonwovens and Nanofibrous Materials , Liberec , Czech Republic
| | - E Amler
- a University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague , Buštěhrad , Czech Republic.,b Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
19
|
Lu Y, Li X, Hou T, Yang B. Centrifugally spun of alginate-riched submicron fibers from alginate/polyethylene oxide blends. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yishen Lu
- Non-weaving Engineering department, National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles; Zhejiang Sci-Tech University; 310018 China
| | - Xianglong Li
- Non-weaving Engineering department, National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles; Zhejiang Sci-Tech University; 310018 China
| | - Teng Hou
- Non-weaving Engineering department, National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles; Zhejiang Sci-Tech University; 310018 China
| | - Bin Yang
- Non-weaving Engineering department, National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles; Zhejiang Sci-Tech University; 310018 China
| |
Collapse
|
20
|
Song W, Chen L, Seta J, Markel DC, Yu X, Ren W. Corona Discharge: A Novel Approach To Fabricate Three-Dimensional Electrospun Nanofibers for Bone Tissue Engineering. ACS Biomater Sci Eng 2017; 3:1146-1153. [DOI: 10.1021/acsbiomaterials.7b00061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Song
- Department of Biomedical
Engineering, Wayne State University, Detroit, Michigan 48201, United States
| | - Liang Chen
- Department of Biomedical
Engineering, Wayne State University, Detroit, Michigan 48201, United States
| | - Joseph Seta
- Department of Biomedical
Engineering, Wayne State University, Detroit, Michigan 48201, United States
| | - David C. Markel
- Department of Biomedical
Engineering, Wayne State University, Detroit, Michigan 48201, United States
- Department
of Orthopaedic Surgery, Providence Hospital, Southfield, Michigan 48075, United States
| | - Xiaowei Yu
- Department
of Orthopaedics, Shanghai Sixth People’s Hospital, Shanghai 200231, China
| | - Weiping Ren
- Department of Biomedical
Engineering, Wayne State University, Detroit, Michigan 48201, United States
- Department
of Orthopaedic Surgery, Providence Hospital, Southfield, Michigan 48075, United States
| |
Collapse
|
21
|
Rampichová M, Buzgo M, Míčková A, Vocetková K, Sovková V, Lukášová V, Filová E, Rustichelli F, Amler E. Platelet-functionalized three-dimensional poly-ε-caprolactone fibrous scaffold prepared using centrifugal spinning for delivery of growth factors. Int J Nanomedicine 2017; 12:347-361. [PMID: 28123295 PMCID: PMC5229261 DOI: 10.2147/ijn.s120206] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone and cartilage are tissues of a three-dimensional (3D) nature. Therefore, scaffolds for their regeneration should support cell infiltration and growth in all 3 dimensions. To fulfill such a requirement, the materials should possess large, open pores. Centrifugal spinning is a simple method for producing 3D fibrous scaffolds with large and interconnected pores. However, the process of bone regeneration is rather complex and requires additional stimulation by active molecules. In the current study, we introduced a simple composite scaffold based on platelet adhesion to poly-ε-caprolactone 3D fibers. Platelets were used as a natural source of growth factors and cytokines active in the tissue repair process. By immobilization in the fibrous scaffolds, their bioavailability was prolonged. The biological evaluation of the proposed system in the MG-63 model showed improved metabolic activity, proliferation and alkaline phosphatase activity in comparison to nonfunctionalized fibrous scaffold. In addition, the response of cells was dose dependent with improved biocompatibility with increasing platelet concentration. The results demonstrated the suitability of the system for bone tissue.
Collapse
Affiliation(s)
- Michala Rampichová
- Indoor Environmental Quality, University Center for Energy Efficient Buildings, Czech Technical University in Prague, Buštěhrad; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Matej Buzgo
- Indoor Environmental Quality, University Center for Energy Efficient Buildings, Czech Technical University in Prague, Buštěhrad
| | - Andrea Míčková
- Indoor Environmental Quality, University Center for Energy Efficient Buildings, Czech Technical University in Prague, Buštěhrad; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Karolína Vocetková
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Věra Sovková
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Věra Lukášová
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Eva Filová
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Franco Rustichelli
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Evžen Amler
- Indoor Environmental Quality, University Center for Energy Efficient Buildings, Czech Technical University in Prague, Buštěhrad; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
22
|
Vocetkova K, Buzgo M, Sovkova V, Rampichova M, Staffa A, Filova E, Lukasova V, Doupnik M, Fiori F, Amler E. A comparison of high throughput core–shell 2D electrospinning and 3D centrifugal spinning techniques to produce platelet lyophilisate-loaded fibrous scaffolds and their effects on skin cells. RSC Adv 2017. [DOI: 10.1039/c7ra08728d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nanofibres enriched with bioactive molecules, as actively acting scaffolds, play an important role in tissue engineering.
Collapse
|
23
|
Buzgo M, Rampichova M, Vocetkova K, Sovkova V, Lukasova V, Doupnik M, Mickova A, Rustichelli F, Amler E. Emulsion centrifugal spinning for production of 3D drug releasing nanofibres with core/shell structure. RSC Adv 2017. [DOI: 10.1039/c6ra26606a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Herein we describe the core/shell centrifugal spinning process to deliver susceptible bioactive molecules.
Collapse
Affiliation(s)
- Matej Buzgo
- Department of Biophysics
- 2nd Faculty of Medicine
- Charles University in Prague
- 150 06 Prague 5
- Czech Republic
| | - Michala Rampichova
- Institute of Experimental Medicine
- Czech Academy of Sciences
- 142 20 Prague 4
- Czech Republic
- University Center of Energetically Efficient Buildings
| | - Karolina Vocetkova
- Institute of Experimental Medicine
- Czech Academy of Sciences
- 142 20 Prague 4
- Czech Republic
- Department of Biophysics
| | - Vera Sovkova
- Institute of Experimental Medicine
- Czech Academy of Sciences
- 142 20 Prague 4
- Czech Republic
- Department of Biophysics
| | - Vera Lukasova
- Institute of Experimental Medicine
- Czech Academy of Sciences
- 142 20 Prague 4
- Czech Republic
- Department of Biophysics
| | - Miroslav Doupnik
- University Center of Energetically Efficient Buildings
- Czech Technical University
- 273 43 Buštěhrad
- Czech Republic
| | - Andrea Mickova
- Institute of Experimental Medicine
- Czech Academy of Sciences
- 142 20 Prague 4
- Czech Republic
- University Center of Energetically Efficient Buildings
| | - Franco Rustichelli
- Institute of Experimental Medicine
- Czech Academy of Sciences
- 142 20 Prague 4
- Czech Republic
| | - Evzen Amler
- Institute of Experimental Medicine
- Czech Academy of Sciences
- 142 20 Prague 4
- Czech Republic
- Department of Biophysics
| |
Collapse
|
24
|
Jordan AM, Viswanath V, Kim SE, Pokorski JK, Korley LTJ. Processing and surface modification of polymer nanofibers for biological scaffolds: a review. J Mater Chem B 2016; 4:5958-5974. [PMID: 32263485 DOI: 10.1039/c6tb01303a] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymeric fibrous constructs possess high surface area-to-volume ratios when compared with solid substrates and are quite commonly used as tissue engineering and cell growth scaffolds. An overview of important design and material considerations for fibrous scaffolds as well as an outline of both established and emerging solution- and melt-based fabrication techniques is provided. Innovative post-process surface modification avenues using "click" chemistry with both single and dual active cues as well as gradient cues, which maintain the fibrous structure are described. By combining process parameters with post-process surface modification, researchers have been able to selectively tune cellular response after seeding and culturing on fibrous constructs.
Collapse
Affiliation(s)
- Alex M Jordan
- Center for Layered Polymeric Systems, Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, USA.
| | | | | | | | | |
Collapse
|
25
|
Nam J, Huang Y, Agarwal S, Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. TISSUE ENGINEERING 2007; 13:2249-57. [PMID: 17536926 PMCID: PMC4948987 DOI: 10.1089/ten.2006.0306] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Small pore sizes inherent to electrospun matrices can hinder efficient cellular ingrowth. To facilitate infiltration while retaining its extracellular matrix-like character, electrospinning was combined with salt leaching to produce a scaffold having deliberate, engineered delaminations. We made elegant use of a specific randomizing component of the electrospinning process, the Taylor Cone and the falling fiber beneath it, to produce a uniform, well-spread distribution of salt particles. After 3 weeks of culture, up to 4 mm of cellular infiltration was observed, along with cellular coverage of up to 70% within the delaminations. To our knowledge, this represents the first observation of extensive cellular infiltration of electrospun matrices. Infiltration appears to be driven primarily by localized proliferation rather than coordinated cellular locomotion. Cells also moved from the salt-generated porosity into the surrounding electrospun fiber matrix. Given that the details of salt deposition (amount, size, and number density) are far from optimized, the result provides a convincing illustration of the ability of mammalian cells to interact with appropriately tailored electrospun matrices. These layered structures can be precisely fabricated by varying the deposition interval and particle size conceivably to produce in vivo-like gradients in porosity such that the resulting scaffolds better resemble the desired final structure.
Collapse
Affiliation(s)
- Jin Nam
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|