1
|
Wang Y, Schneider SW, Gorzelanny C. Crosstalk between Circulating Tumor Cells and Plasma Proteins-Impact on Coagulation and Anticoagulation. Cancers (Basel) 2023; 15:cancers15113025. [PMID: 37296987 DOI: 10.3390/cancers15113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer metastasis is a complex process. After their intravasation into the circulation, the cancer cells are exposed to a harsh environment of physical and biochemical hazards. Whether circulating tumor cells (CTCs) survive and escape from blood flow defines their ability to metastasize. CTCs sense their environment with surface-exposed receptors. The recognition of corresponding ligands, e.g., fibrinogen, by integrins can induce intracellular signaling processes driving CTCs' survival. Other receptors, such as tissue factor (TF), enable CTCs to induce coagulation. Cancer-associated thrombosis (CAT) is adversely connected to patients' outcome. However, cancer cells have also the ability to inhibit coagulation, e.g., through expressing thrombomodulin (TM) or heparan sulfate (HS), an activator of antithrombin (AT). To that extent, individual CTCs can interact with plasma proteins, and whether these interactions are connected to metastasis or clinical symptoms such as CAT is largely unknown. In the present review, we discuss the biological and clinical relevance of cancer-cell-expressed surface molecules and their interaction with plasma proteins. We aim to encourage future research to expand our knowledge of the CTC interactome, as this may not only yield new molecular markers improving liquid-biopsy-based diagnostics but also additional targets for better cancer therapies.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Taheri Baghmisheh S, Wu YY, Wu JE, Hsu KF, Chen YL, Hong TM. CASZ1 promotes migration, invasion, and metastasis of lung cancer cells by controlling expression of ITGAV. Am J Cancer Res 2023; 13:176-189. [PMID: 36777515 PMCID: PMC9906072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/27/2022] [Indexed: 02/14/2023] Open
Abstract
CASZ1, a zinc finger transcription factor with two isoforms, is known to play important roles in cardiac and neural development. The abnormal expression of CASZ1 is also frequently found in a variety of tumors but has different effects on different tumors; for example, it acts as a tumor suppressor in neuroblastoma but promotes cancer metastasis in ovarian cancer. However, the effect of CASZ1 in lung cancer, the most lethal cancer, remains unclear. Here, we found that the expression of CASZ1 in lung cancer is positively associated with cancer metastasis and poor prognosis. The overexpression of CASZ1b promotes lung cancer cell migration, invasion, and epithelial-mesenchymal transition and is associated with poor prognosis in lung cancer patients. The knockdown of CASZ1 resulted in the suppression of epithelial-mesenchymal transition, migration, and invasion of lung cancer cells and reduced metastasis in vivo. The results of an RNA-sequencing analysis of CASZ1-silenced cells showed that CASZ1 considerably affected the integrin-mediated pathways. CASZ1 bound to the ITGAV promoter and transcriptionally regulated ITGAV expression. Our findings demonstrate that CASZ1 plays an oncogenic role in lung cancer and that CASZ1 promotes lung cancer migration, invasion and metastasis is mediated by ITGAV.
Collapse
Affiliation(s)
- Sina Taheri Baghmisheh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yi-Ying Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Jia-En Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Keng-Fu Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Tse-Ming Hong
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
3
|
Sun R, Yuan L, Jiang Y, Wan Y, Ma X, Yang J, Sun G, Zhou S, Wang H, Qiu J, Zhang L, Cheng W. ALKBH5 activates FAK signaling through m6A demethylation in ITGB1 mRNA and enhances tumor-associated lymphangiogenesis and lymph node metastasis in ovarian cancer. Theranostics 2023; 13:833-848. [PMID: 36632222 PMCID: PMC9830429 DOI: 10.7150/thno.77441] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Lymph node (LN) metastasis is common in patients with epithelial ovarian cancer (EOC) and is associated with poor prognosis. Tumor-associated lymphangiogenesis is the first stage of LN metastasis. Research on lymphangiogenesis and lymph node metastases can help develop new anti-LN-targeted therapies. Aberrant N6-methyladenosine (m6A) modifications have been reported to be linked to LN metastasis in several cancers, however, their role in EOC lymphangiogenesis and LN metastasis remains unclear. Methods: m6A levels in EOC tissues with or without LN metastases were evaluated by dot blot analysis. Real-time polymerase chain reaction (PCR) and immunofluorescence were used to examine the expression of m6A-related enzymes. Additionally, in vitro and in vivo functional studies were performed to discover the importance of the AlkB homolog 5 (ALKBH5) gene in EOC lymphatic metastasis. To identify the downstream target genes regulated by ALKBH5, we performed RNA pulldown, RNA-binding protein immunoprecipitation-quantitative PCR, co-immunoprecipitation, m6A-modified RNA immunoprecipitation-quantitative PCR, and luciferase reporter assays. Results: m6A modification was reduced in ovarian cancers with LN metastases. ALKBH5 overexpression increased tumor-associated lymphangiogenesis and LN metastasis both in vitro and in vivo. ALKBH5 overexpression also reversed the m6A modification in ITGB1 mRNA and suppressed the YTHDF2 protein-mediated m6A-dependent ITGB1 mRNA degradation, which resulted in increased expression of ITGB1 and phosphorylation of the focal adhesion kinase (FAK) and Src proto-oncogene proteins, thereby increasing LN metastasis. Furthermore, hypoxia induced the expression of hypoxia inducible factor 1 subunit alpha, which increased ALKBH5 expression and enhanced LN metastasis in EOC. Conclusions: The ALKBH5/m6A-ITGB1/FAK signalling axis is important in ovarian cancer lymphangiogenesis and LN metastasis. Antibodies that block ITGB1 and FAK kinase-inhibitors are promising anti-metastatic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lin Zhang
- ✉ Corresponding authors: Lin Zhang: ; Wenjun Cheng:
| | - Wenjun Cheng
- ✉ Corresponding authors: Lin Zhang: ; Wenjun Cheng:
| |
Collapse
|
4
|
Lee J. Does IFITM3 link inflammation to tumorigenesis? BMB Rep 2022; 55:602-608. [PMID: 36404597 PMCID: PMC9813432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/29/2022] Open
Abstract
Uncontrolled chronic inflammation, in most cases due to excessive cytokine signaling through their receptors, is known to contribute to the development of tumorigenesis. Recently, it has been reported that the antiviral membrane protein interferon-induced transmembrane protein 3 (IFITM3), induced by interferon signaling as part of the inflammatory response after viral infection, contributes to the development of B-cell malignancy. The unexpected oncogenic signaling of IFITM3 upon malignant B cell activation elucidated the mechanism by which the uncontrolled expression of inflammatory proteins contributes to leukemogenesis. In this review, the potential effects of inflammatory cytokines on upregulation of IFITM3 and its contribution to tumorigenesis are discussed. [BMB Reports 2022; 55(12): 602-608].
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Korea
| |
Collapse
|
5
|
Lee J. Does IFITM3 link inflammation to tumorigenesis? BMB Rep 2022; 55:602-608. [PMID: 36404597 PMCID: PMC9813432 DOI: 10.5483/bmbrep.2022.55.12.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/15/2023] Open
Abstract
Uncontrolled chronic inflammation, in most cases due to excessive cytokine signaling through their receptors, is known to contribute to the development of tumorigenesis. Recently, it has been reported that the antiviral membrane protein interferon-induced transmembrane protein 3 (IFITM3), induced by interferon signaling as part of the inflammatory response after viral infection, contributes to the development of B-cell malignancy. The unexpected oncogenic signaling of IFITM3 upon malignant B cell activation elucidated the mechanism by which the uncontrolled expression of inflammatory proteins contributes to leukemogenesis. In this review, the potential effects of inflammatory cytokines on upregulation of IFITM3 and its contribution to tumorigenesis are discussed. [BMB Reports 2022; 55(12): 602-608].
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Korea
| |
Collapse
|
6
|
Vikas, Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: emerging trends and advances in lung cancer therapeutics. Nanomedicine (Lond) 2022; 17:1375-1395. [PMID: 36317852 DOI: 10.2217/nnm-2021-0470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Among all cancer types, lung cancer is recognized as the most lethal and highly metastatic. The application of targeted nanomedicine loaded with anticancer drugs is highly desirable for successful lung cancer treatment. However, due to the heterogenicity and complexity of lung cancer, the therapeutic effectiveness of a single receptor targeting nanomedicine is unfortunately limited. Therefore, the concept of dual-receptor-targeted nanomedicine is an emerging trend for the advancement in lung cancer therapeutics. In this review, the authors discuss various single- and dual-receptor-targeted nanomedicines that have been developed for lung cancer treatment. Furthermore, the authors also discussed all the types of receptors that can be utilized in combination for the development of dual-receptor-targeted nanomedicines.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Hemendra Kumar Sahu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
7
|
Li Z, Ren D, Chen C, Sun L, Fang K. OSU-T315 and doxorubicin synergistically induce apoptosis via mitochondrial pathway in bladder cancer cells. Cell Biol Int 2022; 46:1672-1681. [PMID: 35830716 DOI: 10.1002/cbin.11855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
Bladder cancer (BC) is a common urological malignancy that still lacks an effective treatment. Doxorubicin (Dox) has been widely used in the treatment of various cancers, including BC. However, chemoresistance often hampers the clinical application of Dox, therefore, it is necessary to develop effective strategies to improve its efficacy. By using high-throughput screening, we identified OSU-T315, an integrin-linked kinase (ILK) inhibitor, that can augment the cytotoxicity of Dox against BC cells. We found that OSU-T315 and Dox synergistically induce apoptosis of BC cells via mitochondrial pathway in a caspase-dependent. Mechanically, it was found that OSU-T315 and Dox synergistically induced activation of Bax which is critical for the induction of apoptosis. Moreover, it was also found that the downregulation of BCL-2 and MCL-1 is essential for the activation of BAX induced by OSU-T315 and Dox. OSU-T315 was found to downregulate MCL-1 via the GSK-3β/FBXW7 axis in BC cells. Our findings suggest that combined treatment with OSU-T315 and Dox may be a promising strategy to treat BC.
Collapse
Affiliation(s)
- Zhihui Li
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital/Hospital of Integrated Traditional Chinese and Western Medicine in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Danhong Ren
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital/Hospital of Integrated Traditional Chinese and Western Medicine in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chen Chen
- Department of Urology, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Leiming Sun
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital/Hospital of Integrated Traditional Chinese and Western Medicine in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Kun Fang
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital/Hospital of Integrated Traditional Chinese and Western Medicine in Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Petrovic D, Bodinier B, Dagnino S, Whitaker M, Karimi M, Campanella G, Haugdahl Nøst T, Polidoro S, Palli D, Krogh V, Tumino R, Sacerdote C, Panico S, Lund E, Dugué PA, Giles GG, Severi G, Southey M, Vineis P, Stringhini S, Bochud M, Sandanger TM, Vermeulen RCH, Guida F, Chadeau-Hyam M. Epigenetic mechanisms of lung carcinogenesis involve differentially methylated CpG sites beyond those associated with smoking. Eur J Epidemiol 2022; 37:629-640. [PMID: 35595947 PMCID: PMC9288379 DOI: 10.1007/s10654-022-00877-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Smoking-related epigenetic changes have been linked to lung cancer, but the contribution of epigenetic alterations unrelated to smoking remains unclear. We sought for a sparse set of CpG sites predicting lung cancer and explored the role of smoking in these associations. We analysed CpGs in relation to lung cancer in participants from two nested case-control studies, using (LASSO)-penalised regression. We accounted for the effects of smoking using known smoking-related CpGs, and through conditional-independence network. We identified 29 CpGs (8 smoking-related, 21 smoking-unrelated) associated with lung cancer. Models additionally adjusted for Comprehensive Smoking Index-(CSI) selected 1 smoking-related and 49 smoking-unrelated CpGs. Selected CpGs yielded excellent discriminatory performances, outperforming information provided by CSI only. Of the 8 selected smoking-related CpGs, two captured lung cancer-relevant effects of smoking that were missed by CSI. Further, the 50 CpGs identified in the CSI-adjusted model complementarily explained lung cancer risk. These markers may provide further insight into lung cancer carcinogenesis and help improving early identification of high-risk patients.
Collapse
Affiliation(s)
- Dusan Petrovic
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Department of Epidemiology and Health Systems (DESS), University Centre for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland
- Department and Division of Primary Care Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Barbara Bodinier
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Sonia Dagnino
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Matthew Whitaker
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Maryam Karimi
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Bureau de Biostatistique et d'Épidémiologie, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Oncostat U1018, Inserm, Équipe Labellisée Ligue Contre Le Cancer, Université Paris-Saclay, Villejuif, France
| | - Gianluca Campanella
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Therese Haugdahl Nøst
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE- ONLUS, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology Città Della Salute e della Scienza University-Hospital, Via Santena 7, 10126, Turin, Italy
| | - Salvatore Panico
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Eiliv Lund
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The Norwegian Cancer Registry, Oslo, Norway
| | - Pierre-Antoine Dugué
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Gianluca Severi
- Centre for Research in Epidemiology and Population Health, Inserm (Institut National de La Sante Et de a Recherche Medicale), Villejuif, France
| | - Melissa Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Silvia Stringhini
- Department of Epidemiology and Health Systems (DESS), University Centre for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland
- Department and Division of Primary Care Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Murielle Bochud
- Department of Epidemiology and Health Systems (DESS), University Centre for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Roel C H Vermeulen
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht, Utrecht, The Netherlands
| | - Florence Guida
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Group of Genetic Epidemiology, International Agency for Research on Cancer (IARC) - World Health Organization (WHO), Lyon, France
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Chatzisideri T, Leonidis G, Karampelas T, Skavatsou E, Velentza-Almpani A, Bianchini F, Tamvakopoulos C, Sarli V. Integrin-Mediated Targeted Cancer Therapy Using c(RGDyK)-Based Conjugates of Gemcitabine. J Med Chem 2021; 65:271-284. [PMID: 34967607 DOI: 10.1021/acs.jmedchem.1c01468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
c(RGDyK)-based conjugates of gemcitabine (GEM) with the carbonate and carbamate linkages in the 6-OH group of GEM were synthesized for the targeted delivery of GEM to integrin αvβ3, overexpressing cancer cells to increase the stability as well as the tumor delivery of GEM and minimize common side effects associated with GEM treatment. Competitive cell uptake experiments demonstrated that conjugate TC113 could be internalized by A549 cells through integrin αvβ3. Among the synthesized conjugates, TC113 bearing the carbamate linker was stable in human plasma and was further assessed in an in vivo pharmacokinetic study. TC113 appeared to be relatively stable, releasing GEM slowly into blood, while it showed potent antiproliferative properties against WM266.4 and A549 cells. The encouraging data presented in this study with respect to TC113 provide a promising keystone for further investigation of this GEM conjugate with potential future clinical applications.
Collapse
Affiliation(s)
- Theodora Chatzisideri
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - George Leonidis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Theodoros Karampelas
- Center of Clinical Research, Experimental Surgery and Translational Research, Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou Street 4, Athens GR-11527, Greece
| | - Eleni Skavatsou
- Center of Clinical Research, Experimental Surgery and Translational Research, Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou Street 4, Athens GR-11527, Greece
| | - Angeliki Velentza-Almpani
- Center of Clinical Research, Experimental Surgery and Translational Research, Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou Street 4, Athens GR-11527, Greece
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, V.le GB Morgagni 50, 50134 Firenze, Italy
| | - Constantin Tamvakopoulos
- Center of Clinical Research, Experimental Surgery and Translational Research, Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou Street 4, Athens GR-11527, Greece
| | - Vasiliki Sarli
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Meisaprow P, Aksorn N, Vinayanuwattikun C, Chanvorachote P, Sukprasansap M. Caffeine Induces G0/G1 Cell Cycle Arrest and Inhibits Migration through Integrin αv, β3, and FAK/Akt/c-Myc Signaling Pathway. Molecules 2021; 26:7659. [PMID: 34946741 PMCID: PMC8706725 DOI: 10.3390/molecules26247659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is recognized as a major cause of mortality worldwide owing to its metastatic activity. Given the lack of solid information regarding the possible effects of caffeine, one of the most consumed natural psychoactive substances, on molecular signaling pathways implicated in the aggressive behavior of lung cancer, our study aimed to evaluate the effect and mechanism of caffeine on metastasis-related mechanisms. The results revealed that caffeine treatment at concentrations of 0-500 µM caused no direct cytotoxic effects on NCI-H23 cells. Treatment of cells with caffeine showed good potential to inhibit cell proliferation at 48 h and induced significant cell cycle arrest at the G0/G1 phase. Concerning metastasis, caffeine was shown to reduce filopodia formation, inhibit migration and invasion capability, and reduce the ability of cancer cells to survive and grow in an anchorage-independent manner. Moreover, caffeine could attenuate the formation of 3D tumor spheroids in cancer stem cell (CSC)-enriched populations. With regard to mechanisms, we found that caffeine significantly altered the integrin pattern of the treated cells and caused the downregulation of metastasis-associated integrins, namely, integrins αv and β3. Subsequently, the downstream signals, including protein signaling and transcription factors, namely, phosphorylated focal adhesion kinase (p-FAK), phosphorylated protein kinase B (p-Akt), cell division cycle 42 (Cdc42), and c-Myc, were significantly decreased in caffeine-exposed cells. Taken together, our novel data on caffeine-inhibiting mechanism in relation to metastasis in lung cancer could provide insights into the impact of caffeine intake on human diseases and conditions.
Collapse
Affiliation(s)
- Pichitchai Meisaprow
- Graduate Student in Master of Science Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand;
| | - Nithikoon Aksorn
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand;
| | - Chanida Vinayanuwattikun
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pithi Chanvorachote
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| |
Collapse
|
11
|
Wang D, Qu X, Lu W, Wang Y, Jin Y, Hou K, Yang B, Li C, Qi J, Xiao J, Che X, Liu Y. N 6-Methyladenosine RNA Demethylase FTO Promotes Gastric Cancer Metastasis by Down-Regulating the m6A Methylation of ITGB1. Front Oncol 2021; 11:681280. [PMID: 34277426 PMCID: PMC8282183 DOI: 10.3389/fonc.2021.681280] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/21/2021] [Indexed: 01/27/2023] Open
Abstract
Abnormal RNA m6A methylation is known to lead to the occurrence and progression of multiple cancers including gastric cancer (GC). However, the integrative effects of all m6A methylation regulators on GC prognosis are unclear. Our research aimed to globally analyze the prognosis values of all 33 m6A RNA methylation regulators in GC by univariate and multivariate Cox regression analyses. Among all 33 m6A RNA methylation regulators, fat mass and obesity-associated protein (FTO), an m6A demethylase, was identified as a key prognostic risk factor on overall survival (OS) of GC patients. It was found that FTO could promote GC cell migration and invasion abilities, and we predicted that ITGB1 was a demethylated target of FTO. Knockdown (KD) of FTO significantly down-regulated ITGB1 expression at both mRNA and protein levels and augmented ITGB1 mRNA m6A modification level. Moreover, overexpression (OE) of ITGB1 could partially reverse FTO-KD-inhibited migration and invasion of GC cells. Our study found that FTO was an independent risk factor for overall survival (OS) of GC patients and FTO could promote GC metastasis by upregulating the expression of Integrin β1(ITGB1) via decreasing its m6A level. These results indicated that FTO can be a potent GC biomarker for prognosis prediction as well as a potential target in GC treatment.
Collapse
Affiliation(s)
- Duo Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Wenqing Lu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yizhe Wang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Jin
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Bowen Yang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jianfei Qi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| |
Collapse
|
12
|
Zhou X, Dang S, Jiang H, Gu M. Identification of G-protein signaling modulator 2 as a diagnostic and prognostic biomarker of pancreatic adenocarcinoma: an exploration of its regulatory mechanisms. J Gastrointest Oncol 2021; 12:1164-1179. [PMID: 34295565 DOI: 10.21037/jgo-21-224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/26/2021] [Indexed: 01/26/2023] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) has a high rate of mortality. Unfortunately, it is difficult to diagnosis. This study aimed to develop a more in-depth understanding of the disease. Methods A total of 177 patients with PAAD were recruited from The Cancer Genome Atlas (TCGA) database. Microarray analysis was performed to identify differentially expressed genes (DEGs) in PAAD. The microarray data were adapted to the ingenuity pathway analysis (IPA) for annotation and visualization, followed by protein-protein interaction (PPI) network analysis. In vitro transwell migration assays were conducted to explore the molecular and functional characteristics of pancreatic adenocarcinoma cells (PANC-1) with stable low expression of G-protein signaling modulator 2 (GPSM2). Expression of GPSM2 and the associated hub genes were detected by reverse transcription-quantitative polymerase chain reaction (qPCR). Results The overexpression of GPSM2 was proved in PAAD, as compared with the healthy tissues, as well as its correlation with history of chronic pancreatitis, T stage, TNM stage and tumor grade. We described it as an independent prognostic factor and found that it could influence the infiltration of immune cells in the tumor microenvironment. Silencing of GPSM2 restrained the and migration of the cells. Microarray analysis identified 1,631 DEGs in PAAD cells. The PPI network analysis identified hub genes including CD44, ITGB1, ITGB5, ITGA2, ITGA5, AKT1, EGFR, NRAS and MAP2K1, and their relationship with GPSM2 was confirmed by qPCR. Conclusions GPSM2 is a novel prognostic factor and therapeutic target for PAAD. GPSM2 promoted the migration of pancreatic adenocarcinoma cells .Targeting GPSM2 and its downstream genes may prolong the survival time of patients with PAAD.
Collapse
Affiliation(s)
- Xintong Zhou
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Shengchun Dang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huaji Jiang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Min Gu
- Department of Oncology, Zhenjiang Hospital of Traditional Chinese and Western Medicine, Zhenjiang, China
| |
Collapse
|
13
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
14
|
Mészáros B, Sámano-Sánchez H, Alvarado-Valverde J, Čalyševa J, Martínez-Pérez E, Alves R, Shields DC, Kumar M, Rippmann F, Chemes LB, Gibson TJ. Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Sci Signal 2021; 14:eabd0334. [PMID: 33436497 PMCID: PMC7928535 DOI: 10.1126/scisignal.abd0334] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the μ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin β3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.
Collapse
Affiliation(s)
- Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Elizabeth Martínez-Pérez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Laboratorio de bioinformática estructural, Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Renato Alves
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Denis C Shields
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Friedrich Rippmann
- Computational Chemistry & Biology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, CP1650 San Martín, Buenos Aires, Argentina.
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|
15
|
Zhang Y, Cheng K, Xu B, Shi J, Qiang J, Shi S, Yi Y, Li H, Jin T, Guo R, Wu Y, Liu Z, Wei X, Huang JA, Yang XH. Epigenetic Input Dictates the Threshold of Targeting of the Integrin-Dependent Pathway in Non-small Cell Lung Cancer. Front Cell Dev Biol 2020; 8:652. [PMID: 32793596 PMCID: PMC7387701 DOI: 10.3389/fcell.2020.00652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
We investigated the therapeutic potential of targeting integrin/FAK-dependent signaling, an adhesion receptor-mediated pathway that has been increasingly linked to non-small cell lung cancer (NSCLC) malignancy. Our analysis of the TCGA cohort showed that a subset of pro-tumorigenic integrins, including α1β1, α2β1, α3β1, α5β1, and α6β4, were frequently amplified or upregulated at the genomic or mRNA level in KRAS or EGFR mutation/overexpression-enriched adenocarcinomas. These alterations appeared complementary, correlated with poor patient survival (p < 0.0072), and were collaborative with KRAS mutation-coupled αv integrins (p < 0.00159). Since integrin/FAK-dependent signaling is tightly coupled with normal human physiology, we sought to use a synthetic lethal-type targeting comprising of VS-6063, a chemical inhibitor of integrin-mediated FAK activity, and A549 cells, which carry a KRAS mutation and EGFR overexpression. Our screening analysis revealed that JQ1 and IBET-762, inhibitors of epigenetic reader BRD4, and LBH589, a pan inhibitor of histone deacetylases (HDACs), exhibited synergy with VS-6063 in mitigating tumor cell viability. This epigenetic link was corroborated by strong effects of additional inhibitors and RNAi-mediated knockdown of FAK and BRD4 or its downstream effector, c-Myc. Low doses of JQ1 (≤0.5 μM) markedly escalated efficacy of VS-6063 across a panel of 10 NSCLC cell lines. This catalyst-like effect is in line with the oncogenic landscape in the TCGA cohort since c-Myc falls downstream of the KRAS and EGFR oncogenes. Mechanistically, co-inhibiting the integrin-FAK and BRD4/c-Myc axes synergistically induced apoptotic cell death and DNA damage response, and impaired stemness-associated tumorsphere formation. These effects were accompanied by a marked inhibition of Akt- and p130Cas/Src-dependent signaling, but not Erk1/2 activity. Meanwhile, JQ1 alone or in combination with VS-6063 attenuated cell-cell adhesion and extracellular matrix (ECM)-dependent cell spreading, which is reminiscent of phenotype induced by malfunctional E-cadherin or integrins. Paradoxically, this phenotypic impact coincided with downregulation of epithelial-mesenchymal transition (EMT)-inducting transcription factor ZEB1 or Snail. Finally, we showed that the effect of the VS-6063/JQ1 combination was nearly equivalent to that of VS-6063 plus Carboplatin or Osimertinib. Overall, our study indicates that the integrin/FAK and BRD4/c-Myc axes cooperatively drive NSCLC virulence, and a co-targeting may provide a line of therapy capable of overcoming EGFR/KRAS-driven malignancy.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.,Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Kai Cheng
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Bingwei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.,Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Junfeng Shi
- Department of Oncology, Nanjing Medical University, Nanjing, China
| | - Jun Qiang
- Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Shujin Shi
- Department of Oncology, Nanjing Medical University, Nanjing, China
| | - Yuanqin Yi
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.,Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongxia Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.,Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yadi Wu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.,Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Zeyi Liu
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowei Wei
- Department of Oncology, Nanjing Medical University, Nanjing, China
| | - Jian-An Huang
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiuwei H Yang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.,Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
16
|
Serum Type XIX Collagen is Significantly Elevated in Non-Small Cell Lung Cancer: A Preliminary Study on Biomarker Potential. Cancers (Basel) 2020; 12:cancers12061510. [PMID: 32527017 PMCID: PMC7352985 DOI: 10.3390/cancers12061510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Type XIX collagen is a poorly characterized collagen associated with the basement membrane. It is abnormally regulated during breast cancer progression and the NC1 (XIX) domain has anti-tumorigenic signaling properties. However, little is known about the biomarker potential of collagen XIX in cancer. In this study, we describe a competitive ELISA, named PRO-C19, targeting the C-terminus of collagen XIX using a monoclonal antibody. PRO-C19 was measured in serum of patients with a range of cancer types and was elevated in non-small cell lung cancer (NSCLC) (p < 0.0001), small cell lung cancer (p = 0.0081), breast (p = 0.0005) and ovarian cancer (p < 0.0001) compared to healthy controls. In a separate NSCLC cohort, PRO-C19 was elevated compared to controls when evaluating adenocarcinoma (AD) (p = 0.0003) and squamous cell carcinoma (SCC) (p < 0.0001) patients but was not elevated in chronic obstructive pulmonary disease patients. SCC also had higher PRO-C19 levels than AD (p = 0.0457). PRO-C19 could discriminate between NSCLC and healthy controls (AUROC:0.749 and 0.826 for AD and SCC, respectively) and maintained discriminatory performance in patients of tumor stages I+II (AUROC:0.733 and 0.818 for AD and SCC, respectively). Lastly, we confirmed the elevated type XIX collagen levels using gene expression data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) initiatives. In conclusion, type XIX collagen is released into circulation and is significantly elevated in the serum of cancer patients and PRO-C19 shows promise as a cancer biomarker.
Collapse
|
17
|
Deb B, Puttamallesh VN, Gondkar K, Thiery JP, Gowda H, Kumar P. Phosphoproteomic Profiling Identifies Aberrant Activation of Integrin Signaling in Aggressive Non-Type Bladder Carcinoma. J Clin Med 2019; 8:E703. [PMID: 31108958 PMCID: PMC6572125 DOI: 10.3390/jcm8050703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Bladder carcinoma is highly heterogeneous and its complex molecular landscape; thus, poses a significant challenge for resolving an effective treatment in metastatic tumors. We computed the epithelial-mesenchymal transition (EMT) scores of three bladder carcinoma subtypes-luminal, basal, and non-type. The EMT score of the non-type indicated a "mesenchymal-like" phenotype, which correlates with a relatively more aggressive form of carcinoma, typified by an increased migration and invasion. To identify the altered signaling pathways potentially regulating this EMT phenotype in bladder cancer cell lines, we utilized liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based phosphoproteomic approach. Bioinformatics analyses were carried out to determine the activated pathways, networks, and functions in bladder carcinoma cell lines. A total of 3125 proteins were identified, with 289 signature proteins noted to be differentially phosphorylated (p ≤ 0.05) in the non-type cell lines. The integrin pathway was significantly enriched and five major proteins (TLN1, CTTN, CRKL, ZYX and BCAR3) regulating cell motility and invasion were hyperphosphorylated. Our study reveals GSK3A/B and CDK1 as promising druggable targets for the non-type molecular subtype, which could improve the treatment outcomes for aggressive bladder carcinoma.
Collapse
Affiliation(s)
- Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- Manipal Academy of Higher Education, Madhav Nagar, Manipal 576104, India.
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India.
| | - Kirti Gondkar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India.
| | - Jean P Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore 117597, Singapore.
- Comprehensive Cancer Center, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94800 Villejuif, France.
- CNRS UMR 7057, Matter and Complex Systems, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet Paris, 75205 Paris, France.
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- Manipal Academy of Higher Education, Madhav Nagar, Manipal 576104, India.
| |
Collapse
|
18
|
Vuyyuri SB, Shidal C, Davis KR. Development of the plant-derived peptide lunasin as an anticancer agent. Curr Opin Pharmacol 2018; 41:27-33. [DOI: 10.1016/j.coph.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/02/2023]
|
19
|
hMENA isoforms impact NSCLC patient outcome through fibronectin/β1 integrin axis. Oncogene 2018; 37:5605-5617. [PMID: 29907768 PMCID: PMC6193944 DOI: 10.1038/s41388-018-0364-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022]
Abstract
We demonstrated previously that the splicing of the actin regulator, hMENA, generates two alternatively expressed isoforms, hMENA11a and hMENAΔv6, which have opposite functions in cell invasiveness. Their mechanisms of action have remained unclear. Here we report two major findings: (i) hMENA regulates β1 integrin expression. This was shown by depleting total hMENA, which led to loss of nuclear expression of serum response factor (SRF)-coactivator myocardin-related transcription factor 1 (MRTF-A), leading to an increase in the G-actin/F-actin ratio crucial for MRTF-A localization. This in turn inhibited SRF activity and the expression of its target gene β1 integrin. (ii) hMENA11a reduces and hMENAΔv6 increases β1 integrin activation and signaling. Moreover, exogenous expression of hMENA11a in hMENAΔv6-positive cancer cells dramatically reduces secretion of extracellular matrix (ECM) components, including β1 integrin ligands and metalloproteinases. On the other hand, overexpression of the pro-invasive hMENAΔv6 increases fibronectin production. In primary tumors high hMENA11a correlates with low stromal fibronectin and a favorable clinical outcome of early node-negative non-small-cell lung cancer patients. These data provide new insights into the roles of hMENA11a and hMENAΔv6 in the druggable β1 integrin-ECM signaling axis and allow stratification of patient risk, guiding their clinical management.
Collapse
|
20
|
Noh KW, Sohn I, Song JY, Shin HT, Kim YJ, Jung K, Sung M, Kim M, An S, Han J, Lee SH, Lee MS, Choi YL. Integrin β3 Inhibition Enhances the Antitumor Activity of ALK Inhibitor in ALK-Rearranged NSCLC. Clin Cancer Res 2018; 24:4162-4174. [PMID: 29776956 DOI: 10.1158/1078-0432.ccr-17-3492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/08/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Anaplastic lymphoma kinase (ALK)-positive cancers are sensitive to small-molecule ALK kinase inhibitors, but most cases experience failure following treatment. Hence, additional drug targets and combination therapeutic treatments are needed. We investigated gene expression that is regulated by the expression of ALK and explored its roles in cancer progression and therapeutic implication.Experimental Design: We screened ALK-rearranged non-small cell lung cancer (NSCLC) cases using immunohistochemistry and fluorescence in situ hybridization and then conducted multiplex gene expression analysis. We also performed a clinicopathologic analysis to validate the findings. Additional cellular experiments, including inhibition and migration assays, and in vivo lung cancer model studies were performed.Results: Among patients with ALK-rearranged NSCLC, integrin β3 (ITGB3) was one of the overexpressed genes in comparison with that in ALK-negative NSCLC (P = 0.0003). ALK and integrin β3 expression were positively correlated, and we discovered that high integrin β3 mRNA expression was associated with metastasis and more advanced tumor stages (P < 0.005; P < 0.05). Furthermore, we found that inhibition of both ALK and integrin β3 led to increased drug sensitivity in vitro and in vivo (both P < 0.05).Conclusions: We discovered a positive correlation between ALK and integrin β3 expression levels in ALK-rearranged NSCLC. Our findings suggest that high integrin β3 expression in ALK-rearranged NSCLC is associated with tumor progression and a worse prognosis. This finding demonstrates the prognostic value of integrin β3 and provides a rationale for combination treatment with ALK and integrin β3 inhibitors in patients with ALK-rearranged NSCLC. Clin Cancer Res; 24(17); 4162-74. ©2018 AACR.
Collapse
Affiliation(s)
- Ka-Won Noh
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Lab of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Insuk Sohn
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Ji-Young Song
- Lab of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun-Tae Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Yu-Jin Kim
- Lab of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyungsoo Jung
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Lab of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Minjung Sung
- Lab of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mingi Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Lab of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sungbin An
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Lab of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joungho Han
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se-Hoon Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi-Sook Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea. .,Lab of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon-La Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea. .,Lab of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Lu TN, Ganganna B, Pham TT, Vo AV, Lu TP, Nguyen HGT, Nguyen MNT, Huynh PN, Truong NT, Lee J. Antitumor effect of the integrin α4 signaling inhibitor JK273 in non-small cell lung cancer NCI-H460 cells. Biochem Biophys Res Commun 2017; 491:355-360. [PMID: 28728840 DOI: 10.1016/j.bbrc.2017.07.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 07/16/2017] [Indexed: 01/14/2023]
Abstract
Lung cancer accounts for the highest death rate among cancers worldwide, with most patients being diagnosed with non-small cell lung cancer (NSCLC), urging more effective therapies. We report that JK273, a pyrrolo[2,3-d]pyrimidine analog, which inhibits α4 integrin signaling, showed a selective cytotoxic effect against HCI-H460 NSCLC cells, with an IC50 of 0.98 ± 0.15 μM, but showed less sensitivity to fibroblasts with a selectivity index (SI) greater than 30. This effect was attributed to cell cycle arrest at S phase by JK273 treatment, resulting in the apoptosis of NCI-H460 cells, further confirmed by exposing phosphatidylserine and morphological changes. Taken together with the previous study of JK273 inhibiting cell migration, we propose that JK273 could serve as an antitumor compound to specifically target cancer cells but not non-cancerous cells by triggering programmed cell death, in addition to anti-metastatic effects in cancer therapy.
Collapse
Affiliation(s)
- Thien Nhan Lu
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do 24341, Republic of Korea; Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang Street, District 1, Ho Chi Minh City 701000, Viet Nam.
| | - Bogonda Ganganna
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Thuy Trang Pham
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Anh Van Vo
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennohdai, Tsukuba, Ibaraki 305-8575, Japan; Human Biology Program, School of Integrative and Global Majors, University of Tsukuba, 1-1-1, Tennohdai, Tsukuba, Ibaraki 305-8575, Japan
| | - Thien Phuc Lu
- Department of Analytical Chemistry- Toxicology- Drug Quality Control, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Ninh Kieu District, Can Tho City 900000, Viet Nam
| | - Huong-Giang Thi Nguyen
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang Street, District 1, Ho Chi Minh City 701000, Viet Nam
| | - My-Nuong Thi Nguyen
- Department of Genetics, Faculty of Biology, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 703000, Viet Nam
| | - Phuong Nguyen Huynh
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang Street, District 1, Ho Chi Minh City 701000, Viet Nam
| | - Ngoc Tuyen Truong
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang Street, District 1, Ho Chi Minh City 701000, Viet Nam
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do 24341, Republic of Korea
| |
Collapse
|
22
|
Amreddy N, Babu A, Muralidharan R, Munshi A, Ramesh R. Polymeric Nanoparticle-Mediated Gene Delivery for Lung Cancer Treatment. Top Curr Chem (Cham) 2017; 375:35. [PMID: 28290155 PMCID: PMC5480422 DOI: 10.1007/s41061-017-0128-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 11/28/2022]
Abstract
In recent years, researchers have focused on targeted gene therapy for lung cancer, using nanoparticle carriers to overcome the limitations of conventional treatment methods. The main goal of targeted gene therapy is to develop more efficient therapeutic strategies by improving the bioavailability, stability, and target specificity of gene therapeutics and to reduce off-target effects. Polymer-based nanoparticles, an alternative to lipid and inorganic nanoparticles, efficiently carry nucleic acid therapeutics and are stable in vivo. Receptor-targeted delivery is a promising approach that can limit non-specific gene delivery and can be achieved by modifying the polymer nanoparticle surface with specific receptor ligands or antibodies. This review highlights the recent developments in gene delivery using synthetic and natural polymer-based nucleic acid carriers for lung cancer treatment. Various nanoparticle systems based on polymers and polymer combinations are discussed. Further, examples of targeting ligands or moieties used in targeted, polymer-based gene delivery to lung cancer are reviewed.
Collapse
Affiliation(s)
- Narsireddy Amreddy
- Department of Pathology, Stanton L. Young Biomedical Research Center, University of Oklahoma Health Sciences Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anish Babu
- Department of Pathology, Stanton L. Young Biomedical Research Center, University of Oklahoma Health Sciences Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ranganayaki Muralidharan
- Department of Pathology, Stanton L. Young Biomedical Research Center, University of Oklahoma Health Sciences Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, Stanton L. Young Biomedical Research Center, University of Oklahoma Health Sciences Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
23
|
Kermanizadeh A, Villadsen K, Østrem RG, Jensen KJ, Møller P, Loft S. Integrin Targeting and Toxicological Assessment of Peptide-Conjugated Liposome Delivery Systems to Activated Endothelial Cells. Basic Clin Pharmacol Toxicol 2017; 120:380-389. [DOI: 10.1111/bcpt.12692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/18/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Ali Kermanizadeh
- Section of Environmental Health; Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - Klaus Villadsen
- Biomolecular Nanoscale Engineering Center (BioNEC); Department of Chemistry; University of Copenhagen; Copenhagen Denmark
| | - Ragnhild G. Østrem
- Colloids and Biological Interfaces Group; Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; Technical University of Denmark; Lyngby Denmark
| | - Knud J. Jensen
- Biomolecular Nanoscale Engineering Center (BioNEC); Department of Chemistry; University of Copenhagen; Copenhagen Denmark
| | - Peter Møller
- Section of Environmental Health; Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - Steffen Loft
- Section of Environmental Health; Department of Public Health; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
24
|
Ma X, Phi Van V, Kimm MA, Prakash J, Kessler H, Kosanke K, Feuchtinger A, Aichler M, Gupta A, Rummeny EJ, Eisenblätter M, Siveke J, Walch AK, Braren R, Ntziachristos V, Wildgruber M. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer. Neoplasia 2017; 19:8-16. [PMID: 27940248 PMCID: PMC5157790 DOI: 10.1016/j.neo.2016.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 11/05/2022]
Abstract
Integrins play an important role in tumor progression, invasion and metastasis. Therefore we aimed to evaluate a preclinical imaging approach applying ανβ3 integrin targeted hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography (FMT-XCT) for monitoring tumor progression as well as early therapy response in a syngeneic murine Non-Small Cell Lung Cancer (NSCLC) model. Lewis Lung Carcinomas were grown orthotopically in C57BL/6 J mice and imaged in-vivo using a ανβ3 targeted near-infrared fluorescence (NIRF) probe. ανβ3-targeted FMT-XCT was able to track tumor progression. Cilengitide was able to substantially block the binding of the NIRF probe and suppress the imaging signal. Additionally mice were treated with an established chemotherapy regimen of Cisplatin and Bevacizumab or with a novel MEK inhibitor (Refametinib) for 2 weeks. While μCT revealed only a moderate slowdown of tumor growth, ανβ3 dependent signal decreased significantly compared to non-treated mice already at one week post treatment. ανβ3 targeted imaging might therefore become a promising tool for assessment of early therapy response in the future.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Lewis Lung/diagnosis
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Disease Models, Animal
- Disease Progression
- Fluorescence
- Gene Expression
- Humans
- Integrin alphaVbeta3/genetics
- Integrin alphaVbeta3/metabolism
- Integrins/genetics
- Integrins/metabolism
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Molecular Imaging
- Protein Kinase Inhibitors/pharmacology
- Tomography
- Tomography, X-Ray Computed
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xiaopeng Ma
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Oberschleissheim, Germany
| | - Valerie Phi Van
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany
| | - Melanie A Kimm
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany
| | - Jaya Prakash
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Oberschleissheim, Germany
| | - Horst Kessler
- Chemistry Department and TUM Institute for Advanced Study, Lichtenbergstrasse 2a, D-85748, Garching, Germany
| | - Katja Kosanke
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Oberschleissheim, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Oberschleissheim, Germany
| | - Aayush Gupta
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany
| | - Ernst J Rummeny
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany
| | - Michel Eisenblätter
- Department of Clinical Radiology, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Jens Siveke
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany; Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), partner site Essen, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Axel K Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Oberschleissheim, Germany
| | - Rickmer Braren
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Oberschleissheim, Germany
| | - Moritz Wildgruber
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany; Department of Clinical Radiology, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany.
| |
Collapse
|
25
|
The fibronectin III-1 domain activates a PI3-Kinase/Akt signaling pathway leading to αvβ5 integrin activation and TRAIL resistance in human lung cancer cells. BMC Cancer 2016; 16:574. [PMID: 27484721 PMCID: PMC4970220 DOI: 10.1186/s12885-016-2621-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
Background Fibronectin is a mechanically sensitive protein which is organized in the extracellular matrix as a network of interacting fibrils. The lung tumor stroma is enriched for fibronectin which is thought to contribute to metastasis and drug resistance. Fibronectin is an elastic, multi-modular protein made up of individually folded domains, some of which can stretch in response to increased mechanical tension. Very little is known about the relationship of fibronectin’s unfolded domains to lung cancer resistance to chemotherapy. In the present study, we evaluated the impact of unfolding the first Type III domain of fibronectin (FnIII-1c) on TNF-related apoptosis inducing ligand (TRAIL) resistance. Methods NCI-H460 non-small cell lung cancer cells were treated with FnIII-1c then assessed for TRAIL-induced apoptosis. Subsequent analysis of FnIII-1c-mediated signaling pathways was also completed. Human non-small cell lung cancer tissue sections were assessed for the expression of vitronectin by immunohistochemistry. Results FnIII-1c inhibited TRAIL-induced activation of caspase 8 and subsequent apoptosis in NCI-H460 lung cancer cells. FnIII-1c treatment was associated with the activation of the phosphatidylinositol-3-kinase/alpha serine/threonine kinase (PI3K/Akt) pathway and the αvβ5 integrin receptor for vitronectin, both of which were required for TRAIL resistance. Immunohistochemical staining of sections from non-small cell lung cancers showed that vitronectin was localized around blood vessels and in the tumor-stroma interface. Conclusions Unfolding of Type III domains within the fibronectin matrix may promote TRAIL resistance through the activation of a PI3K/Akt/αvβ5 signaling axis and point to a novel mechanism by which changes in secondary structure of fibronectin contribute to cancer cell resistance to apoptosis.
Collapse
|
26
|
Puchsaka P, Chaotham C, Chanvorachote P. α-Lipoic acid sensitizes lung cancer cells to chemotherapeutic agents and anoikis via integrin β1/β3 downregulation. Int J Oncol 2016; 49:1445-56. [PMID: 27431988 DOI: 10.3892/ijo.2016.3624] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/07/2016] [Indexed: 11/06/2022] Open
Abstract
Chemotherapeutic failure and metastasis are the main causes of high mortality rate in lung cancer. Alteration of cellular redox status in response to endogenous stimuli or exogenous compounds has a significant impact on cell signaling and behavior. Herein we divulge for the first time that lung cancer cells exposed to α-lipoic acid (LA) resulted in a higher level of cellular superoxide anion (O2·-) and hydrogen peroxide (H2O2), and such an increase of the specific reactive oxygen species (ROS) downregulated integrin β1 and β3, the integrins known for potentiating aggressive behavior and metastasis. The LA-treated cells exhibited significant decrease in their abilities to survive in detached condition and grow in anchorage-independent soft agar assay. Furthermore, LA sensitized the cells to cisplatin, etoposide and paclitaxel-induced apoptosis. For underlying mechanism, we found that the treatment of the cells with LA significantly decreased integrin β1 and β3, while had no effect on integrin α5 and αv. Interestingly, survival protein p-AKT and anti-apoptotic protein Bcl-2 were reduced in an association to such integrin modulations. Using ROS probes and selective anti-oxidants, we have shown that H2O2 and O2·- induced by LA are key players for the decrease of β1 and β3 integrins, respectively. These findings indicate a novel effect of LA as well as specific ROS, O2·- and H2O2 in integrin regulation, anoikis and chemotherapeutic sensitizations.
Collapse
Affiliation(s)
- Punyawee Puchsaka
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
27
|
Teoh CM, Tan SSL, Tran T. Integrins as Therapeutic Targets for Respiratory Diseases. Curr Mol Med 2016; 15:714-34. [PMID: 26391549 PMCID: PMC5427774 DOI: 10.2174/1566524015666150921105339] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 09/09/2015] [Accepted: 09/19/2015] [Indexed: 01/14/2023]
Abstract
Integrins are a large family of transmembrane heterodimeric proteins that constitute the main receptors for extracellular matrix components. Integrins were initially thought to be primarily involved in the maintenance of cell adhesion and tissue integrity. However, it is now appreciated that integrins play important roles in many other biological processes such as cell survival, proliferation, differentiation, migration, cell shape and polarity. Lung cells express numerous combinations and permutations of integrin heterodimers. The complexity and diversity of different integrin heterodimers being implicated in different lung diseases present a major challenge for drug development. Here we provide a comprehensive overview of the current knowledge of integrins from studies in cell culture to integrin knockout mouse models and provide an update of results from clinical trials for which integrins are therapeutic targets with a focus on respiratory diseases (asthma, emphysema, pneumonia, lung cancer, pulmonary fibrosis and sarcoidosis).
Collapse
Affiliation(s)
| | | | - T Tran
- Department of Physiology, MD9, 2 Medical Drive, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
28
|
Zhu G, Huang Y, Wu C, Wei D, Shi Y. Activation of G-Protein-Coupled Estrogen Receptor Inhibits the Migration of Human Nonsmall Cell Lung Cancer Cells via IKK-β/NF-κB Signals. DNA Cell Biol 2016; 35:434-42. [PMID: 27082459 DOI: 10.1089/dna.2016.3235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Estrogen signals have been suggested to modulate the progression and metastasis of nonsmall cell lung cancer (NSCLC), which is one of the leading causes of cancer deaths worldwide. While there are limited data concerning the roles and effects of G-protein-coupled estrogen receptor (GPER) on the progression of NSCLC, our present study reveals that the expression of GPER in NSCLC cells is obviously greater than that in lung fibroblast cell line MRC-5. Activation of GPER via its specific agonist G-1 decreases the in vitro motility of A549 and H358 cells and the expression of matrix metalloproteinase 2 (MMP-2) and MMP-9. Further, G-1 treatment can rapidly decrease the phosphorylation, nuclear translocation, and promoter activities of NF-κB in NSCLC cells. BAY 11-7082, the inhibitor of NF-κB, also inhibits the expression of MMP-2/9, while overexpression of p65 significantly attenuates G-1-induced downregulation of MMP-2/9. It suggests that inhibition of NF-κB mediates G-1-induced MMP-2/9 downregulation. G-1 treatment significantly down regulates the phosphorylation of IκB kinase β (IKK-β) and IκBα, while not IKK-α, in both 549 and H358 cells. ACHP, the specific inhibitor of IKK-β, can reinforce G-1-induced MMP-2/9 downregulation and invasion suppression of A549 cells. Collectively, our results suggest that activation of GPER can inhibit the migration of human NSCLC cells via suppression of IKK-β/NF-κB signals. These findings will help to better understand the roles and mechanisms of GPER as a potential therapy target for NSCLC patients.
Collapse
Affiliation(s)
- Guangfa Zhu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| | - Yan Huang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| | - Chunting Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| | - Dong Wei
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| | - Yingxin Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| |
Collapse
|
29
|
Liu XZ, Li CJ, Wu SJ, Shi X, Zhao JN. Involvement of α5 integrin in survivin-mediated osteosarcoma metastasis. ASIAN PAC J TROP MED 2016; 9:478-83. [PMID: 27261858 DOI: 10.1016/j.apjtm.2016.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To investigate the role of survivin in osteosarcoma metastasis. METHODS Small interfering RNA (siRNA) was used to knockdown the expression of survivin and α5 integrin in the human osteosarcoma cell line MG63. Western blotting and immunostaining methods were used to assessed the effect of survivin knockdown on the expression of α5 integrin through flow cytometry and fluorescence microscopy detection. Meanwhile, the invasion and migration of transfected cells in Transwell and wound healing assays were probed, and the growth situation of these cells transplanted into nude mice was monitored. RESULTS Knockdown of survivin expression could inhibit the invasion and migration of osteosarcoma MG64 cells in vitro and the expression of α5 integrin on osteosarcoma MG64 cell surface, suggesting that survivin can inhibit the invasion and migration of osteosarcoma cells through downregulation of α5 integrin. Anti-α5 integrin antibody could also markedly decrease the capability of invasion and migration of osteosarcoma MG64 cells. Additionally, knockdown of survivin expression could slow the growth of osteosarcoma MG63 cells transplanted into nude mice. CONCLUSIONS Survivin-directed anti-tumor strategies might be an effective method in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Xiao-Zhou Liu
- Southern Medical University, Guangzhou 510515, China; Department of Orthopedics, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Cheng-Jun Li
- Department of Orthopedics, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Su-Jia Wu
- Department of Orthopedics, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xin Shi
- Department of Orthopedics, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jian-Ning Zhao
- Southern Medical University, Guangzhou 510515, China; Southern Medical University, Guangzhou 510515, Guangdong Province, China.
| |
Collapse
|
30
|
Alteration of Pituitary Tumor Transforming Gene-1 Regulates Trophoblast Invasion via the Integrin/Rho-Family Signaling Pathway. PLoS One 2016; 11:e0149371. [PMID: 26900962 PMCID: PMC4764760 DOI: 10.1371/journal.pone.0149371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/01/2016] [Indexed: 11/23/2022] Open
Abstract
Trophoblast invasion ability is an important factor in early implantation and placental development. Recently, pituitary tumor transforming gene 1 (PTTG1) was shown to be involved in invasion and proliferation of cancer. However, the role of PTTG1 in trophoblast invasion remains unknown. Thus, in this study we analyzed PTTG1 expression in trophoblasts and its effect on trophoblast invasion activity and determined the mechanism through which PTTG1 regulates trophoblast invasion. Trophoblast proliferation and invasion abilities, regardless of PTTG1 expression, were analyzed by quantitative real-time polymerase chain reaction, fluorescence-activated cell sorting analysis, invasion assay, western blot, and zymography after treatment with small interfering RNA against PTTG1 (siPTTG1). Additionally, integrin/Rho-family signaling in trophoblasts by PTTG1 alteration was analyzed. Furthermore, the effect of PTTG1 on trophoblast invasion was evaluated by microRNA (miRNA) mimic and inhibitor treatment. Trophoblast invasion was significantly reduced through decreased matrix metalloproteinase (MMP)-2 and MMP-9 expression when PTTG1 expression was inhibited by siPTTG1 (p < 0.05). Furthermore, knockdown of PTTG1 increased expression of integrin alpha 4 (ITGA4), ITGA5, and integrin beta 1 (ITGB1); otherwise, RhoA expression was significantly decreased (p < 0.05). Treatment of miRNA-186-5p mimic and inhibitor controlled trophoblast invasion ability by altering PTTG1 and MMP expression. PTTG1 can control trophoblast invasion ability via regulation of MMP expression through integrin/Rho-family signaling. In addition, PTTG1 expression and its function were regulated by miRNA-186-5p. These results help in understanding the mechanism through which PTTG1 regulates trophoblast invasion and thereby implantation and placental development.
Collapse
|
31
|
Jagiella N, Müller B, Müller M, Vignon-Clementel IE, Drasdo D. Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data. PLoS Comput Biol 2016; 12:e1004412. [PMID: 26866479 PMCID: PMC4750943 DOI: 10.1371/journal.pcbi.1004412] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 06/24/2015] [Indexed: 12/25/2022] Open
Abstract
We develop a quantitative single cell-based mathematical model for multi-cellular tumor spheroids (MCTS) of SK-MES-1 cells, a non-small cell lung cancer (NSCLC) cell line, growing under various nutrient conditions: we confront the simulations performed with this model with data on the growth kinetics and spatial labeling patterns for cell proliferation, extracellular matrix (ECM), cell distribution and cell death. We start with a simple model capturing part of the experimental observations. We then show, by performing a sensitivity analysis at each development stage of the model that its complexity needs to be stepwise increased to account for further experimental growth conditions. We thus ultimately arrive at a model that mimics the MCTS growth under multiple conditions to a great extent. Interestingly, the final model, is a minimal model capable of explaining all data simultaneously in the sense, that the number of mechanisms it contains is sufficient to explain the data and missing out any of its mechanisms did not permit fit between all data and the model within physiological parameter ranges. Nevertheless, compared to earlier models it is quite complex i.e., it includes a wide range of mechanisms discussed in biological literature. In this model, the cells lacking oxygen switch from aerobe to anaerobe glycolysis and produce lactate. Too high concentrations of lactate or too low concentrations of ATP promote cell death. Only if the extracellular matrix density overcomes a certain threshold, cells are able to enter the cell cycle. Dying cells produce a diffusive growth inhibitor. Missing out the spatial information would not permit to infer the mechanisms at work. Our findings suggest that this iterative data integration together with intermediate model sensitivity analysis at each model development stage, provide a promising strategy to infer predictive yet minimal (in the above sense) quantitative models of tumor growth, as prospectively of other tissue organization processes. Importantly, calibrating the model with two nutriment-rich growth conditions, the outcome for two nutriment-poor growth conditions could be predicted. As the final model is however quite complex, incorporating many mechanisms, space, time, and stochastic processes, parameter identification is a challenge. This calls for more efficient strategies of imaging and image analysis, as well as of parameter identification in stochastic agent-based simulations. We here present how to parameterize a mathematical agent-based model of growing MCTS almost completely from experimental data. MCTS show a similar establishment of pathophysiological gradients and concentric arrangement of heterogeneous cell populations as found in avascular tumor nodules. We build a process chain of imaging, image processing and analysis, and mathematical modeling. In this model, each individual cell is represented by an agent populating one site of a three dimensional un-structured lattice. The spatio-temporal multi-cellular behavior, including migration, growth, division, death of each cell, is considered by a stochastic process, simulated numerically by the Gillespie algorithm. Processes on the molecular scale are described by deterministic partial differential equations for molecular concentrations, coupled to intracellular and cellular decision processes. The parameters of the multi-scale model are inferred from comparisons to the growth kinetics and from image analysis of spheroid cryosections stained for cell death, proliferation and collagen IV. Our final model assumes ATP to be the critical resource that cells try to keep constant over a wide range of oxygen and glucose medium concentrations, by switching between aerobic and anaerobic metabolism. Besides ATP, lactate is shown to be a possible explanation for the control of the necrotic core size. Direct confrontation of the model simulation results with image data on the spatial profiles of cell proliferation, ECM distribution and cell death, indicates that in addition, the effects of ECM and waste factors have to be added to explain the data. Hence the model is a tool to identify likely mechanisms at work that may subsequently be studied experimentally, proposing a model-guided experimental strategy.
Collapse
Affiliation(s)
- Nick Jagiella
- Institute for Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- INRIA Paris, Centre de recherche Inria de Paris, Paris, France
- Interdisciplinary Centre for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Benedikt Müller
- Institute for Pathology Heidelberg (iPH), Heidelberg University Hospital, Heidelberg, Germany
| | - Margareta Müller
- Faculty of Medical and Life Sciences, Furtwangen University, Furtwangen, Germany
| | - Irene E. Vignon-Clementel
- INRIA Paris, Centre de recherche Inria de Paris, Paris, France
- Laboratoire Jacques Louis Lions, Sorbonne Universités UPMC Univ. Paris 6, Paris, France
| | - Dirk Drasdo
- INRIA Paris, Centre de recherche Inria de Paris, Paris, France
- Interdisciplinary Centre for Bioinformatics, Leipzig University, Leipzig, Germany
- Laboratoire Jacques Louis Lions, Sorbonne Universités UPMC Univ. Paris 6, Paris, France
- * E-mail:
| |
Collapse
|
32
|
McConnell EJ, Devapatla B, Yaddanapudi K, Davis KR. The soybean-derived peptide lunasin inhibits non-small cell lung cancer cell proliferation by suppressing phosphorylation of the retinoblastoma protein. Oncotarget 2016; 6:4649-62. [PMID: 25609198 PMCID: PMC4467105 DOI: 10.18632/oncotarget.3080] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/27/2014] [Indexed: 12/22/2022] Open
Abstract
Lunasin, a soybean bioactive peptide, has both chemopreventive and chemotherapeutic activities. The aim of this study was to determine the chemotherapeutic potential of lunasin against human lung cancer. Treatment of non-small cell lung cancer (NSCLC) cells with highly purified soybean-derived lunasin caused limited, cell-line specific anti-proliferative effects on anchorage-dependent growth whereas two normal bronchial epithelial cell lines were unaffected. Lunasin's antiproliferative effects were potentiated upon utilization of anchorage-independent conditions. Furthermore, NSCLC cell lines that were unaffected by lunasin in anchorage-dependent assays exhibited a dose-dependent inhibition in colony formation or colony size. Mouse xenograft studies revealed that 30 mg lunasin/kg body weight per day decreased NSCLC H1299 tumor volume by 63.0% at day 32. Mechanistic studies using cultured NSCLC H661 cells showed that lunasin inhibited cell cycle progression at the G1/S phase interface without inducing apoptosis. Immunoblot analyses of key cell-cycle proteins demonstrated that lunasin altered the expression of the G1 specific cyclin-dependent kinase complex components, increased levels of p27Kip1, reduced levels of phosphorylated Akt, and ultimately inhibited the sequential phosphorylation of the retinoblastoma protein (RB). These results establish for the first time that lunasin can inhibit NSCLC proliferation by suppressing cell-cycle dependent phosphorylation of RB.
Collapse
Affiliation(s)
- Elizabeth J McConnell
- Owensboro Cancer Research Program, Mitchell Memorial Cancer Center, Owensboro, Kentucky, USA
| | - Bharat Devapatla
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Kavitha Yaddanapudi
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Keith R Davis
- Owensboro Cancer Research Program, Mitchell Memorial Cancer Center, Owensboro, Kentucky, USA.,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
33
|
Lu Y, Hu J, Sun W, Li S, Deng S, Li M. MiR-29c inhibits cell growth, invasion, and migration of pancreatic cancer by targeting ITGB1. Onco Targets Ther 2015; 9:99-109. [PMID: 26766915 PMCID: PMC4699545 DOI: 10.2147/ott.s92758] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MiR-29c is frequently dysregulated in many cancers; however, the roles of miR-29c in pancreatic cancer (PC) and underlying mechanisms remain poorly understood. In this study, we investigated the role of miR-29c in PC. Using quantitative real-time polymerase chain reaction, we demonstrated that miR-29c was frequently downregulated in clinical PC tissues and cell lines. Overexpression of miR-29c significantly inhibited the proliferation, migration, and invasion of PC cells in vitro, which demonstrated that miR-29c acts as a tumor suppressor in PC cells. Further analysis revealed that ITGB1 is one of the functional target genes of miR-29c, and knockdown of ITGB1 inhibited the proliferation, migration, and invasion of PC cells, which was similar to the effects of overexpression of miR-29c. Taken together, our results highlight the significance of miR-29c–ITGB1 interaction in the development and progression of PC.
Collapse
Affiliation(s)
- Yebin Lu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Juanjuan Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weijia Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shengyu Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shuangya Deng
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ming Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
34
|
Scherzer MT, Waigel S, Donninger H, Arumugam V, Zacharias W, Clark G, Siskind LJ, Soucy P, Beverly L. Fibroblast-Derived Extracellular Matrices: An Alternative Cell Culture System That Increases Metastatic Cellular Properties. PLoS One 2015; 10:e0138065. [PMID: 26371754 PMCID: PMC4570771 DOI: 10.1371/journal.pone.0138065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/26/2015] [Indexed: 12/31/2022] Open
Abstract
Poor survival rates from lung cancer can largely be attributed to metastatic cells that invade and spread throughout the body. The tumor microenvironment (TME) is composed of multiple cell types, as well as non-cellular components. The TME plays a critical role in the development of metastatic cancers by providing migratory cues and changing the properties of the tumor cells. The Extracellular Matrix (ECM), a main component of the TME, has been shown to change composition during tumor progression, contributing to cancer cell invasion and survival away from the primary cancer site. Although the ECM is well-known to influence the fate of tumor progression, little is known about the molecular mechanisms that are affected by the cancer cell-ECM interactions. It is imperative that these mechanisms are elucidated in order to properly understand and prevent lung cancer dissemination. However, common in vitro studies do not incorporate these interactions into everyday cell culture assays. We have adopted a model that examines decellularized human fibroblast-derived ECM as a 3-dimensional substrate for growth of lung adenocarcinoma cell lines. Here, we have characterized the effect of fibroblast-derived matrices on the properties of various lung-derived epithelial cell lines, including cancerous and non-transformed cells. This work highlights the significance of the cell-ECM interaction and its requirement for incorporation into in vitro experiments. Implementation of a fibroblast-derived ECM as an in vitro technique will provide researchers with an important factor to manipulate to better recreate and study the TME.
Collapse
Affiliation(s)
- Michael T. Scherzer
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Sabine Waigel
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Howard Donninger
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Vennila Arumugam
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Wolfgang Zacharias
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Geoffrey Clark
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Leah J. Siskind
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Patricia Soucy
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Levi Beverly
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40202, United States of America
- * E-mail:
| |
Collapse
|
35
|
The ZNF304-integrin axis protects against anoikis in cancer. Nat Commun 2015; 6:7351. [PMID: 26081979 DOI: 10.1038/ncomms8351] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/29/2015] [Indexed: 01/15/2023] Open
Abstract
Ovarian cancer (OC) is a highly metastatic disease, but no effective strategies to target this process are currently available. Here, an integrative computational analysis of the Cancer Genome Atlas OC data set and experimental validation identifies a zinc finger transcription factor ZNF304 associated with OC metastasis. High tumoral ZNF304 expression is associated with poor overall survival in OC patients. Through reverse phase protein array analysis, we demonstrate that ZNF304 promotes multiple proto-oncogenic pathways important for cell survival, migration and invasion. ZNF304 transcriptionally regulates β1 integrin, which subsequently regulates Src/focal adhesion kinase and paxillin and prevents anoikis. In vivo delivery of ZNF304 siRNA by a dual assembly nanoparticle leads to sustained gene silencing for 14 days, increased anoikis and reduced tumour growth in orthotopic mouse models of OC. Taken together, ZNF304 is a transcriptional regulator of β1 integrin, promotes cancer cell survival and protects against anoikis in OC.
Collapse
|
36
|
Vansteenkiste J, Barlesi F, Waller CF, Bennouna J, Gridelli C, Goekkurt E, Verhoeven D, Szczesna A, Feurer M, Milanowski J, Germonpre P, Lena H, Atanackovic D, Krzakowski M, Hicking C, Straub J, Picard M, Schuette W, O'Byrne K. Cilengitide combined with cetuximab and platinum-based chemotherapy as first-line treatment in advanced non-small-cell lung cancer (NSCLC) patients: results of an open-label, randomized, controlled phase II study (CERTO). Ann Oncol 2015; 26:1734-40. [PMID: 25939894 DOI: 10.1093/annonc/mdv219] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/28/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND This multicentre, open-label, randomized, controlled phase II study evaluated cilengitide in combination with cetuximab and platinum-based chemotherapy, compared with cetuximab and chemotherapy alone, as first-line treatment of patients with advanced non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Patients were randomized 1:1:1 to receive cetuximab plus platinum-based chemotherapy alone (control), or combined with cilengitide 2000 mg 1×/week i.v. (CIL-once) or 2×/week i.v. (CIL-twice). A protocol amendment limited enrolment to patients with epidermal growth factor receptor (EGFR) histoscore ≥200 and closed the CIL-twice arm for practical feasibility issues. Primary end point was progression-free survival (PFS; independent read); secondary end points included overall survival (OS), safety, and biomarker analyses. A comparison between the CIL-once and control arms is reported, both for the total cohorts, as well as for patients with EGFR histoscore ≥200. RESULTS There were 85 patients in the CIL-once group and 84 in the control group. The PFS (independent read) was 6.2 versus 5.0 months for CIL-once versus control [hazard ratio (HR) 0.72; P = 0.085]; for patients with EGFR histoscore ≥200, PFS was 6.8 versus 5.6 months, respectively (HR 0.57; P = 0.0446). Median OS was 13.6 for CIL-once versus 9.7 months for control (HR 0.81; P = 0.265). In patients with EGFR ≥200, OS was 13.2 versus 11.8 months, respectively (HR 0.95; P = 0.855). No major differences in adverse events between CIL-once and control were reported; nausea (59% versus 56%, respectively) and neutropenia (54% versus 46%, respectively) were the most frequent. There was no increased incidence of thromboembolic events or haemorrhage in cilengitide-treated patients. αvβ3 and αvβ5 expression was neither a predictive nor a prognostic indicator. CONCLUSIONS The addition of cilengitide to cetuximab/chemotherapy indicated potential clinical activity, with a trend for PFS difference in the independent-read analysis. However, the observed inconsistencies across end points suggest additional investigations are required to substantiate a potential role of other integrin inhibitors in NSCLC treatment. CLINICAL TRIAL REGISTRATION ID NUMBER NCT00842712.
Collapse
Affiliation(s)
- J Vansteenkiste
- Respiratory Oncology Unit, Department of Respiratory Medicine, University Hospitals KU Leuven, Leuven, Belgium
| | - F Barlesi
- Multidisciplinary Oncology and Therapeutic Innovations, Aix Marseille University-Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - C F Waller
- Haematology, Oncology and Stem Cell Transplantation, University Hospital of Freiburg, Freiburg, Germany
| | - J Bennouna
- Département d'Oncologie Médicale, Centre Rene Gauducheau, Saint-Herblain Cedex, France
| | - C Gridelli
- Division of Medical Oncology, Azienda Ospedaliera 'S.G. Moscati', Avellino, Italy
| | - E Goekkurt
- Department of Oncology, Hematology, Stem Cell Transplantation and Hemostaseology, University Hospital Aachen, Aachen, Germany
| | - D Verhoeven
- Iridium Cancer Network, Medical Oncology, AZ Klina, Antwerp, Belgium
| | - A Szczesna
- Mazowieckie Centrum Leczenia Chorób Pluc i Gruźlicy, Otwock, Poland
| | - M Feurer
- Lungenpraxis Munich, Munich, Germany
| | - J Milanowski
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - P Germonpre
- Pulmonary Medicine, AZ Maria Middelares, Ghent, Belgium
| | - H Lena
- Pneumology, CHU Rennes, Rennes, France
| | - D Atanackovic
- Oncology/Hematology/Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Krzakowski
- The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Lung and Thoracic Tumours, Warsaw, Poland
| | | | | | | | - W Schuette
- Krankenhaus Martha-Maria Halle-Dölau, Klinik für Innere Medizin II, Halle, Germany
| | - K O'Byrne
- Cancer Services, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
37
|
Ermolayev V, Mohajerani P, Ale A, Sarantopoulos A, Aichler M, Kayser G, Walch A, Ntziachristos V. Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model. Int J Cancer 2015; 137:1107-18. [DOI: 10.1002/ijc.29372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 11/03/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Vladimir Ermolayev
- Institute for Biological and Medical Imaging; Helmholtz Zentrum Munich, Ingolstaedter Landstrasse 1 D-85764 Neuherberg Germany
| | - Pouyan Mohajerani
- Institute for Biological and Medical Imaging; Helmholtz Zentrum Munich, Ingolstaedter Landstrasse 1 D-85764 Neuherberg Germany
| | - Angelique Ale
- Institute for Biological and Medical Imaging; Helmholtz Zentrum Munich, Ingolstaedter Landstrasse 1 D-85764 Neuherberg Germany
| | - Athanasios Sarantopoulos
- Institute for Biological and Medical Imaging; Helmholtz Zentrum Munich, Ingolstaedter Landstrasse 1 D-85764 Neuherberg Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology-Institute of Pathology; Helmholtz Zentrum Munich, Ingolstaedter Landstrasse 1 D-85764 Neuherberg Germany
| | - Gian Kayser
- Institute of Pathology; Universitätsklinkum Freiburg; Freiburg im Breisgau Germany
| | - Axel Walch
- Research Unit Analytical Pathology-Institute of Pathology; Helmholtz Zentrum Munich, Ingolstaedter Landstrasse 1 D-85764 Neuherberg Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging; Helmholtz Zentrum Munich, Ingolstaedter Landstrasse 1 D-85764 Neuherberg Germany
- Techniche Universitaet Muenchen; Chair for Biological Imaging; Arcisstrasse 21, D-80333 Munich
| |
Collapse
|
38
|
Zha R, Guo W, Zhang Z, Qiu Z, Wang Q, Ding J, Huang S, Chen T, Gu J, Yao M, He X. Genome-wide screening identified that miR-134 acts as a metastasis suppressor by targeting integrin β1 in hepatocellular carcinoma. PLoS One 2014; 9:e87665. [PMID: 24498348 PMCID: PMC3912066 DOI: 10.1371/journal.pone.0087665] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/28/2013] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small, single-stranded, non-coding RNAs that play pivotal roles in human cancer development and progression, such as tumor metastasis. Here, we identified the miRNAs that regulate hepatocellular carcinoma (HCC) cell migration by a high-throughput screening method using the classical wound-healing assay with time-lapse video microscopy and validation with a transwell migration assay. Eleven miRNAs (miR-134, -146b-3p, -188-3p, -525-3p, -661, -767-5p, -891a, -891b, -1244, -1247 and miR-1471) were found to promote or inhibit HCC cell migration. Further investigation revealed that miR-134 suppressed the invasion and metastasis of HCC cells in vitro and in vivo, and integrin beta 1 (ITGB1) was a direct and functional target gene of miR-134. Moreover, miR-134 inhibited the phosphorylation of focal adhesion kinase (FAK) and the activation of RhoA downstream of the ITGB1 pathway, thereby decreasing stress fiber formation and cell adhesion in HCC cells. In conclusion, we demonstrated that miR-134 is a novel metastasis suppressor in HCC and could be a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Ruopeng Zha
- Shanghai Medical College, Fudan University, Shanghai, China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijie Guo
- Shanghai Medical College, Fudan University, Shanghai, China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoping Qiu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qifeng Wang
- Shanghai Cancer Hospital, Fudan University, Shanghai, China
| | - Jie Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenglin Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taoyang Chen
- Qi Dong Liver Cancer Institute, Qi Dong, Jiangsu, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianghuo He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Schittenhelm J, Klein A, Tatagiba MS, Meyermann R, Fend F, Goodman SL, Sipos B. Comparing the expression of integrins αvβ3, αvβ5, αvβ6, αvβ8, fibronectin and fibrinogen in human brain metastases and their corresponding primary tumors. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:2719-32. [PMID: 24294359 PMCID: PMC3843253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/09/2013] [Indexed: 06/02/2023]
Abstract
AIMS To evaluate the expression of αv-series integrins in brain metastases. Inhibitors targeting these integrins are being tested for their therapeutic potential. MATERIAL AND METHOD The extracellular regions of the αvβ3, αvβ5, αvβ6, αvβ8, the cytoplasmic domain of β3, the αv-chain, and the ECM molecules fibronectin and fibrinogen were studied immunohistochemically in a series of 122 carcinoma and 60 melanomas metastatic to the central nervous system. In addition, 38 matched primary and metastatic tumors to the brain were compared directly. RESULTS The αv-subunit was generally moderately to highly expressed in most tumors. αvβ3 and cytoplasmic β3 were weakly to moderately detectable in metastatic renal cell carcinomas and melanomas, αvβ5 was prominently expressed in metastatic renal and colorectal carcinomas, αvβ6 was most abundantly detectable in metastatic lung adenocarcinomas, but absent in melanomas. The tumor associated vessels in CNS metastases consistently expressed αvβ3, αvβ5, αv-, fibronectin and fibrinogen, however, mostly at low levels, while αvβ6, αvβ8 were lacking in vasculature. The comparative analysis of 38 matched primary tumors and brain metastases showed comparable levels of expression only for αvβ3 and αvβ8, while αvβ6 and αvβ5 were higher in primaries. CONCLUSION We confirmed that integrin expression exhibits considerable heterogeneity according to tumor origin. αvβ5 is the most promising target for integrin targeted treatment in brain metastases.
Collapse
Affiliation(s)
- Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of TübingenTübingen 72076, Germany
| | - Annemarie Klein
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of TübingenTübingen 72076, Germany
| | - Marcos S Tatagiba
- Department of Neurosurgery, University of TübingenTübingen 72076, Germany
| | - Richard Meyermann
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of TübingenTübingen 72076, Germany
| | - Falko Fend
- Department of Pathology, Institute of Pathology and Neuropathology, University of TübingenTübingen 72076, Germany
| | - Simon L Goodman
- Department of Translational and Biomarkers Research - Oncology, Merck KGaA64271 Darmstadt, Germany
| | - Bence Sipos
- Department of Pathology, Institute of Pathology and Neuropathology, University of TübingenTübingen 72076, Germany
| |
Collapse
|
40
|
Longitudinal expression analysis of αv integrins in human gliomas reveals upregulation of integrin αvβ3 as a negative prognostic factor. J Neuropathol Exp Neurol 2013; 72:194-210. [PMID: 23399898 DOI: 10.1097/nen.0b013e3182851019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Integrin inhibitors targeting αv series integrins are being tested for their therapeutic potential in patients with brain tumors, but pathologic studies have been limited by lack of antibodies suitable for immunohistochemistry (IHC) on formalin-fixed, paraffin-embedded specimens. We compared the expression of αv integrins by IHC in brain tumor and normal human brain samples with gene expression data in a public database using new rabbit monoclonal antibodies against αvβ3, αvβ5, αvβ6, and αvβ8 complexes using both manual and automated microscopy analyses. Glial tumors usually shared an αvβ3-positive/αvβ5-positive/αvβ8-positive/αvβ6-negative phenotype. In 94 WHO (World Health Organization) grade II astrocytomas, 85 anaplastic astrocytomas WHO grade III, and 324 glioblastomas from archival sources, expression of integrins generally increased with grade of malignancy. Integrins αvβ3 and αvβ5 were expressed in many glioma vessels; the intensity of vascular expression of αvβ3 increased with grade of malignancy, whereas αvβ8 was absent. Analysis of gene expression in an independent cohort showed a similar increase in integrin expression with tumor grade, particularly of ITGB3 and ITGB8; ITGB6 was not expressed, consistent with the IHC data. Parenchymal αvβ3 expression and ITGB3 gene overexpression in glioblastomas were associated with a poor prognosis, as revealed by survival analysis (Kaplan-Meier logrank, p = 0.016). Together, these data strengthen the rationale for anti-integrin treatment of glial tumors.
Collapse
|
41
|
Abstract
During angiogenesis, αv integrins are overexpressed on the endothelial cell surface to facilitate the growth and survival of newly forming vessels. Accordingly, blocking αv integrin function by disrupting ligand binding can produce an antiangiogenic effect. Although the integrin ectodomain regulates ligand binding specificity, the short cytoplasmic tail facilitates intracellular signaling pathways through the recruitment and activation of specific kinases and signaling intermediates. This in turn controls endothelial cell adhesion, morphology, migration, invasion, proliferation, and survival. These same integrin-mediated signaling pathways are exploited in cancer to promote the invasiveness and survival of tumor cells and to manipulate the host microenvironment to provide ample blood vessel and stromal resources to support tumor growth and metastatic spread. Because expression of αv integrins on distinct cell types contributes to cancer growth, αv integrin antagonists have the potential to disrupt multiple aspects of disease progression.
Collapse
Affiliation(s)
- Sara M Weis
- Moores UCSD Cancer Center, and University of California, San Diego, La Jolla, California 92093-0803, USA; Department of Pathology, University of California, San Diego, La Jolla, California 92093-0803, USA
| | | |
Collapse
|
42
|
Fibrillar type I collagen matrices enhance metastasis/invasion of ovarian epithelial cancer via β1 integrin and PTEN signals. Int J Gynecol Cancer 2013; 22:1316-24. [PMID: 23013730 DOI: 10.1097/igc.0b013e318263ef34] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE This study investigated the involvement of fibrillar collagen in remodeling extracellular matrices (ECM) and its significant impact on the metastasis/invasion of epithelial ovarian cancer cells via β1 integrin/phosphatase and tensin homolog (PTEN) signaling. MATERIALS/METHODS Normal ovarian surface epithelium tissues (n = 13), ovarian cancer tissues (n = 28), ovarian cancer cell lines, and a 3-dimensional model of fibrillar type I collagen that mimicked pathological ECM in vivo were used in the study. We explored the specific mechanisms behind ECM remodeling and the cellular signals that affected the invasion of ovarian cancer cells. RESULTS The data showed that increased β1 integrin expression in ovarian cancer cells led to enhance migration/invasion of ovarian cancer cells via regulation of PTEN/protein kinase B (Akt) signal in response to fibrillar type I collagen matrices. Low PTEN activity corresponded to the following: (1) increased PTEN degradation and (2) phosphorylation of PTEN. Decreased protein phosphatase 2A activity was detected in ovarian cancer. Protein phosphatase 2A might play a role in enhancing the progression of ovarian cancer through regulating PTEN/Akt signal. CONCLUSION These findings indicate that fibrillar type I collagen, by modulating integrin-PTEN/PI3K/Akt signaling pathway in remodeling ECM, is very important in affecting the invasion of aggressive ovarian cancer cells. Moreover, these data provide direct evidence for pathological ECM remodeling and cell signaling networks involved in the invasion of ovarian cancer cells.
Collapse
|
43
|
Schaffner F, Ray AM, Dontenwill M. Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors. Cancers (Basel) 2013; 5:27-47. [PMID: 24216697 PMCID: PMC3730317 DOI: 10.3390/cancers5010027] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/11/2022] Open
Abstract
Integrins are transmembrane heterodimeric proteins sensing the cell microenvironment and modulating numerous signalling pathways. Changes in integrin expression between normal and tumoral cells support involvement of specific integrins in tumor progression and aggressiveness. This review highlights the current knowledge about α5β1 integrin, also called the fibronectin receptor, in solid tumors. We summarize data showing that α5β1 integrin is a pertinent therapeutic target expressed by tumoral neovessels and tumoral cells. Although mainly evaluated in preclinical models, α5β1 integrin merits interest in particular in colon, breast, ovarian, lung and brain tumors where its overexpression is associated with a poor prognosis for patients. Specific α5β1 integrin antagonists will be listed that may represent new potential therapeutic agents to fight defined subpopulations of particularly aggressive tumors.
Collapse
Affiliation(s)
- Florence Schaffner
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | | | | |
Collapse
|
44
|
Singh AB, Sharma A, Dhawan P. Claudin-1 expression confers resistance to anoikis in colon cancer cells in a Src-dependent manner. Carcinogenesis 2012; 33:2538-47. [PMID: 22941059 DOI: 10.1093/carcin/bgs275] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Denial of the appropriate cell-matrix interaction in epithelial cells induces apoptosis and is called 'anoikis'. Cancer cells are resistant to anoikis and it is believed that the resistance to anoikis helps promote tumor malignancy especially metastasis. We and others have demonstrated that the expression of tight junction protein claudin-1 is highly upregulated in colorectal cancer (CRC) and helps promote tumor progression and metastasis. However, molecular mechanism/s underlying claudin-1-dependent regulation of CRC progression remains poorly understood. In current study, we have determined that claudin-1 expression modulates anoikis in colon cancer cells to influence colon cancer invasion and thus metastasis. We have further provided data that claudin-1 modulates anoikis in a Src-Akt-Bcl-2-dependent manner. Importantly, claudin-1 physically associates with Src/p-Src in a multiprotein complex that also includes ZO-1, a PDZ-binding tight junction protein. Taken together, our data support the role of claudin-1 in the regulation of CRC progression and suggest that the regulation of anoikis may serve as a key regulatory mechanism in claudin-1-dependent regulation of CRC progression. Our findings are of direct clinical relevance and may open new therapeutic opportunity in colon cancer treatment and/or management.
Collapse
Affiliation(s)
- Amar B Singh
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN-37232, USA
| | | | | |
Collapse
|
45
|
Lu TP, Lai LC, Tsai MH, Chen PC, Hsu CP, Lee JM, Hsiao CK, Chuang EY. Integrated analyses of copy number variations and gene expression in lung adenocarcinoma. PLoS One 2011; 6:e24829. [PMID: 21935476 PMCID: PMC3173487 DOI: 10.1371/journal.pone.0024829] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 08/22/2011] [Indexed: 02/04/2023] Open
Abstract
Numerous efforts have been made to elucidate the etiology and improve the treatment of lung cancer, but the overall five-year survival rate is still only 15%. Identification of prognostic biomarkers for lung cancer using gene expression microarrays poses a major challenge in that very few overlapping genes have been reported among different studies. To address this issue, we have performed concurrent genome-wide analyses of copy number variation and gene expression to identify genes reproducibly associated with tumorigenesis and survival in non-smoking female lung adenocarcinoma. The genomic landscape of frequent copy number variable regions (CNVRs) in at least 30% of samples was revealed, and their aberration patterns were highly similar to several studies reported previously. Further statistical analysis for genes located in the CNVRs identified 475 genes differentially expressed between tumor and normal tissues (p<10(-5)). We demonstrated the reproducibility of these genes in another lung cancer study (p = 0.0034, Fisher's exact test), and showed the concordance between copy number variations and gene expression changes by elevated Pearson correlation coefficients. Pathway analysis revealed two major dysregulated functions in lung tumorigenesis: survival regulation via AKT signaling and cytoskeleton reorganization. Further validation of these enriched pathways using three independent cohorts demonstrated effective prediction of survival. In conclusion, by integrating gene expression profiles and copy number variations, we identified genes/pathways that may serve as prognostic biomarkers for lung tumorigenesis.
Collapse
Affiliation(s)
- Tzu-Pin Lu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|