1
|
Olszewski M, Stasevych M, Zvarych V, Maciejewska N. 9,10-Dioxoanthracenyldithiocarbamates effectively inhibit the proliferation of non-small cell lung cancer by targeting multiple protein tyrosine kinases. J Enzyme Inhib Med Chem 2024; 39:2284113. [PMID: 38078360 DOI: 10.1080/14756366.2023.2284113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
Anthraquinones have attracted considerable interest in the realm of cancer treatment owing to their potent anticancer properties. This study evaluates the potential of a series of new anthraquinone derivatives as anticancer agents for non-small-cell lung cancer (NSCLC). The compounds were subjected to a range of tests to assess their cytotoxic and apoptotic properties, ability to inhibit colony formation, pro-DNA damage functions, and capacity to inhibit the activity of tyrosine kinase proteins (PTKs). Based on the research findings, it has been discovered that most active derivatives (i84, i87, and i90) possess a substantial capability to impede the viability of NSCLC while having mostly a negligible effect on the human kidney cell line. Moreover, the anthraquinones displayed pro-apoptotic and genotoxic attributes while blocking the phosphorylation of multiple PTKs. Collectively, our findings indicate that these derivatives may demonstrate promising potential as effective anticancer agents for lung cancer treatment.
Collapse
Affiliation(s)
- Mateusz Olszewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Maryna Stasevych
- Department of Technology of Biologically Active Substances, Pharmacy, and Biotechnology, Lviv Polytechnic National University 13, Lviv, Ukraine
| | - Viktor Zvarych
- Department of Technology of Biologically Active Substances, Pharmacy, and Biotechnology, Lviv Polytechnic National University 13, Lviv, Ukraine
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
2
|
Stein WD. An Orthologics Study of the Notch Signaling Pathway. Genes (Basel) 2024; 15:1452. [PMID: 39596652 PMCID: PMC11594159 DOI: 10.3390/genes15111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
The Notch signaling pathway plays a major role in embryological development and in the ongoing life processes of many animals. Its role is to provide cell-to-cell communication in which a Sender cell, bearing membrane-embedded ligands, instructs a Receiver cell, bearing membrane-embedded receptors, to adopt one of two available fates. Elucidating the evolution of this pathway is the topic of this paper, which uses an orthologs approach, providing a comprehensive basis for the study. Using BLAST searches, orthologs were identified for all the 49 components of the Notch signaling pathway. The historical time course of integration of these proteins, as the animals evolved, was elucidated. Insofar as cell-to-cell communication is of relevance only in multicellular animals, it is not surprising that the Notch system became functional only with the evolutionary appearance of Metazoa, the first multicellular animals. Porifera contributed a quarter of the Notch pathway proteins, the Cnidaria brought the total to one-half, but the system reached completion only when humans appeared. A literature search elucidated the roles of the Notch system's components in modern descendants of the ortholog-contributing ancestors. A single protein, the protein tyrosine kinase (PTK) of the protozoan Ministeria vibrans, was identified as a possible pre-Metazoan ancestor of all three of the Notch pathway proteins, DLL, JAG, and NOTCH. A scenario for the evolution of the Notch signaling pathway is presented and described as the co-option of its components, clade by clade, in a repurposing of genes already present in ancestral unicellular organisms.
Collapse
Affiliation(s)
- Wilfred Donald Stein
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Wirth D, Özdemir E, Wimley WC, Pasquale EB, Hristova K. Transmembrane helix interactions regulate oligomerization of the receptor tyrosine kinase EphA2. J Biol Chem 2024; 300:107441. [PMID: 38838777 PMCID: PMC11263659 DOI: 10.1016/j.jbc.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
The transmembrane helices of receptor tyrosine kinases (RTKs) have been proposed to switch between two different dimeric conformations, one associated with the inactive RTK and the other with the active RTK. Furthermore, recent work has demonstrated that some full-length RTKs are associated into oligomers that are larger than dimers, raising questions about the roles of the TM helices in the assembly and function of these oligomers. Here we probe the roles of the TM helices in the assembly of EphA2 RTK oligomers in the plasma membrane. We employ mutagenesis to evaluate the relevance of a published NMR dimeric structure of the isolated EphA2 TM helix in the context of the full-length EphA2 in the plasma membrane. We use two fluorescence methods, Förster Resonance Energy Transfer and Fluorescence Intensity Fluctuations spectrometry, which yield complementary information about the EphA2 oligomerization process. These studies reveal that the TM helix mutations affect the stability, structure, and size of EphA2 oligomers. However, the effects are multifaceted and point to a more complex role of the TM helix than the one expected from the "TM dimer switch" model.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elena B Pasquale
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Kileeg Z, Haldar A, Khan H, Qamar A, Mott GA. Differential expansion and retention patterns of LRR-RLK genes across plant evolution. PLANT DIRECT 2023; 7:e556. [PMID: 38145254 PMCID: PMC10739070 DOI: 10.1002/pld3.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023]
Abstract
To maximize overall fitness, plants must accurately respond to a host of growth, developmental, and environmental signals throughout their life. Many of these internal and external signals are perceived by the leucine-rich repeat receptor-like kinases, which play roles in regulating growth, development, and immunity. This largest family of receptor kinases in plants can be divided into subfamilies based on the conservation of the kinase domain, which demonstrates that shared evolutionary history often indicates shared molecular function. Here we investigate the evolutionary history of this family across the evolution of 112 plant species. We identify lineage-specific expansions of the malectin-domain containing subfamily LRR subfamily I primarily in the Brassicales and bryophytes. Most other plant lineages instead show a large expansion in LRR subfamily XII, which in Arabidopsis is known to contain key receptors in pathogen perception. This striking asymmetric expansion may reveal a dichotomy in the evolutionary history and adaptation strategies employed by plants. A greater understanding of the evolutionary pressures and adaptation strategies acting on members of this receptor family offers a way to improve functional predictions for orphan receptors and simplify the identification of novel stress-related receptors.
Collapse
Affiliation(s)
- Zachary Kileeg
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Aparna Haldar
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Hasna Khan
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Arooj Qamar
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
| | - G. Adam Mott
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
- Centre for the Analysis of Genome Evolution & FunctionUniversity of TorontoTorontoCanada
| |
Collapse
|
5
|
Gladkauskas T, Bruland O, Abu Safieh L, Edward DP, Rødahl E, Bredrup C. Corneal Vascularization Associated With a Novel PDGFRB Variant. Invest Ophthalmol Vis Sci 2023; 64:9. [PMID: 37934158 PMCID: PMC10631511 DOI: 10.1167/iovs.64.14.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
Purpose The purpose of this study was to identify the genetic cause of aggressive corneal vascularization in otherwise healthy children in one family. Further, to study molecular consequences associated with the identified variant and implications for possible treatment. Methods Exome sequencing was performed in affected individuals. HeLa cells were transduced with the identified c.1643C>A, p.(Ser548Tyr) variant in the platelet-derived growth factor receptor beta gene (PDGFRB) or wild-type PDGFRB. ELISA and immunoblot analysis were used to detect the phosphorylation levels of PDGFRβ and downstream signaling proteins in untreated and ligand-stimulated cells. Sensitivity to various receptor tyrosine kinase inhibitors (TKIs) was determined. Results A novel c.1643C>A, p.(Ser548Tyr) PDGFRB variant was found in affected family members. HeLa cells transduced with this variant did not have increased baseline levels of phosphorylated PDGFRβ. However, upon stimulation with ligand, excessive activation of PDGFRβ was observed compared to cells transduced with the wild-type variant. PDGFRβ with the p.(Ser548Tyr) amino acid substitution was successfully inhibited with tyrosine kinase inhibitors (axitinib, dasatinib, imatinib, and sunitinib) in vitro. Conclusions A novel c.1643C>A, p.(Ser548Tyr) PDGFRB variant was found in family members with isolated corneal vascularization. Cells transduced with the newly identified variant showed increased phosphorylation of PDGFRβ upon ligand stimulation. This suggests that PDGF-PDGFRβ signaling in these patients leads to overactivation of PDGFRβ, which could lead to abnormal wound healing of the cornea. The examined TKIs prevented such overactivation, introducing the possibility for targeted treatment in these patients.
Collapse
Affiliation(s)
- Titas Gladkauskas
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ove Bruland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Leen Abu Safieh
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
- Bioinformatics and Computational Biology Department, Research Center, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Deepak P. Edward
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois, United States
- Department of Ophthalmology, Loyola University College of Medicine, Chicago, Illinois, United States
| | - Eyvind Rødahl
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| | - Cecilie Bredrup
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Pei J, Cong Q. Computational analysis of regulatory regions in human protein kinases. Protein Sci 2023; 32:e4764. [PMID: 37632170 PMCID: PMC10503413 DOI: 10.1002/pro.4764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Eukaryotic proteins often feature modular domain structures comprising globular domains that are connected by linker regions and intrinsically disordered regions that may contain important functional motifs. The intramolecular interactions of globular domains and nonglobular regions can play critical roles in different aspects of protein function. However, studying these interactions and their regulatory roles can be challenging due to the flexibility of nonglobular regions, the long insertions separating interacting modules, and the transient nature of some interactions. Obtaining the experimental structures of multiple domains and functional regions is more difficult than determining the structures of individual globular domains. High-quality structural models generated by AlphaFold offer a unique opportunity to study intramolecular interactions in eukaryotic proteins. In this study, we systematically explored intramolecular interactions between human protein kinase domains (KDs) and potential regulatory regions, including globular domains, N- and C-terminal tails, long insertions, and distal nonglobular regions. Our analysis identified intramolecular interactions between human KDs and 35 different types of globular domains, exhibiting a variety of interaction modes that could contribute to orthosteric or allosteric regulation of kinase activity. We also identified prevalent interactions between human KDs and their flanking regions (N- and C-terminal tails). These interactions exhibit group-specific characteristics and can vary within each specific kinase group. Although long-range interactions between KDs and nonglobular regions are relatively rare, structural details of these interactions offer new insights into the regulation mechanisms of several kinases, such as HASPIN, MAPK7, MAPK15, and SIK1B.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
7
|
Abdellateif MS, Bayoumi AK, Mohammed MA. c-Kit Receptors as a Therapeutic Target in Cancer: Current Insights. Onco Targets Ther 2023; 16:785-799. [PMID: 37790582 PMCID: PMC10544070 DOI: 10.2147/ott.s404648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
c-Kit is a type III receptor tyrosine kinase (RTK) that has an essential role in various biological functions including gametogenesis, melanogenesis, hematopoiesis, cell survival, and apoptosis. c-KIT aberrations, either overexpression or loss-of-function mutations, have been implicated in the pathogenesis and development of many cancers, including gastrointestinal stromal tumors, mastocytosis, acute myeloid leukemia, breast, thyroid, and colorectal cancer, making c-KIT an attractive molecular target for the treatment of cancers. Therefore, a lot of effort has been put into investigating the utility of tyrosine kinase inhibitors for the management of c-KIT mutated tumors. This review of the literature illustrates the role of c-KIT mutations in many cancers, aiming to provide insights into the role of TKIs as a therapeutic option for cancer patients with c-KIT aberrations. In conclusion, c-KIT is implicated in different types of cancer, and it could be a successful molecular target; however, proper detection of the underlying mutation type is required before starting the appropriate personalized therapy.
Collapse
Affiliation(s)
- Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Ahmed K Bayoumi
- Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
- Children’s Cancer Hospital 57357, Cairo, 11617, Egypt
| | - Mohammed Aly Mohammed
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| |
Collapse
|
8
|
Rehman ZU, Najmi A. Exploring EGFR inhibitors with the aid of virtual screening, docking, and dynamics simulation studies. J Biomol Struct Dyn 2023; 42:10489-10509. [PMID: 37707987 DOI: 10.1080/07391102.2023.2256887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
In humans, Epidermal Growth Factor Receptor (EGFR) is linked to small-cell lung cancer, breast cancer, and glioblastoma. Receptor kinase inhibitors against EGFR have become a standard treatment option for non-small cell lung cancer (NSCLC), breast cancer patients, and even for those with EGFR mutations or resistance. About 2734 FDA-approved medication compounds were subjected to virtual screening for EGFR kinase inhibitory activity. The top 30 molecules were chosen based on the binding affinity scores and subjected to extra-precision docking and binding free energy analysis. The ADMET profile of the top three hit molecules was verified to confirm their druggability nature. Top three hits- compound 1047 (ZINC000001550477), 1302 (ZINC00003781952), and 2332 (ZINC000019632618) were identified on account of their MMGBSA binding affinity values. The top three hit compounds were subjected to molecular dynamics (MD) simulation for 100 ns. The dynamic nature of the ligand-protein complex was analyzed which corroborated the results of molecular docking and MMGBSA analysis studies. All the top three hits were further subjected to steered MD studies for testing the strength of these ligand-receptor binding in the presence of an external force. Compound 2332 (ZINC000019632618) was identified as the best hit molecule that can be used as a lead to develop newer derivatives of EGFR kinase inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zia Ur Rehman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
9
|
S AK, Patel SS, Patel S, Parikh P. Future treatment of Diabetes - Tyrosine Kinase inhibitors. J Diabetes Metab Disord 2023; 22:61-71. [PMID: 37255821 PMCID: PMC10225458 DOI: 10.1007/s40200-022-01164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/24/2022] [Indexed: 06/01/2023]
Abstract
Background Diabetes mellitus (DM) is a group of metabolic disorders that have an increased risk of macro and micro-vascular complications due to lipid dysfunction. The present drug treatments for the management of DM either have numerous side effects or do not have long-lasting therapeutic effects. So it is essential to find a newer class of drug for DM treatment. Method Broad information has been researched regarding Tyrosine kinase Inhibitors (TKIs) and their mechanism of action. They are proven for the management of various kinds of cancers. TKIs produce anti-hyperglycemic effects by acting on multiple targets such as c-Abl, Platelet-Derived Growth Factor Receptor (PDGFR), Vascular Endothelial Growth Factor Receptor (VEGFR), Epidermal Growth Factor Receptor (EGFR), and c-Kit. Result This family of drugs blocks numerous tyrosine kinases by acting as a partial agonist of PPAR-γ receptors and results in an anti-diabetic effect by improving insulin sensitivity and glucose disposal rate. Conclusion Therefore, it is said that TKI drugs will be great potential for the treatment of Diabetes. This review summarizes the possible targets of TKIs and TKIs being a potential drug class in the management of Diabetes mellitus.
Collapse
Affiliation(s)
- Aakash Kumar S
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, Gota, Ahmedabad, Gujarat 382481 India
| | - Snehal S Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, Gota, Ahmedabad, Gujarat 382481 India
| | - Shreya Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, Gota, Ahmedabad, Gujarat 382481 India
| | - Palak Parikh
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, Gota, Ahmedabad, Gujarat 382481 India
| |
Collapse
|
10
|
Tota M, Łacwik J, Laska J, Sędek Ł, Gomułka K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells 2023; 12:cells12091326. [PMID: 37174726 PMCID: PMC10177218 DOI: 10.3390/cells12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Asthma is a chronic complex pulmonary disease characterized by airway inflammation, remodeling, and hyperresponsiveness. Vascular endothelial growth factor (VEGF) and eosinophil-derived neurotoxin (EDN) are two significant mediators involved in the pathophysiology of asthma. In asthma, VEGF and EDN levels are elevated and correlate with disease severity and airway hyperresponsiveness. Diversity in VEGF polymorphisms results in the variability of responses to glucocorticosteroids and leukotriene antagonist treatment. Targeting VEGF and eosinophils is a promising therapeutic approach for asthma. We identified lichochalcone A, bevacizumab, azithromycin (AZT), vitamin D, diosmetin, epigallocatechin gallate, IGFBP-3, Neovastat (AE-941), endostatin, PEDF, and melatonin as putative add-on drugs in asthma with anti-VEGF properties. Further studies and clinical trials are needed to evaluate the efficacy of those drugs. AZT reduces the exacerbation rate and may be considered in adults with persistent symptomatic asthma. However, the long-term effects of AZT on community microbial resistance require further investigation. Vitamin D supplementation may enhance corticosteroid responsiveness. Herein, anti-eosinophil drugs are reviewed. Among them are, e.g., anti-IL-5 (mepolizumab, reslizumab, and benralizumab), anti-IL-13 (lebrikizumab and tralokinumab), anti-IL-4 and anti-IL-13 (dupilumab), and anti-IgE (omalizumab) drugs. EDN over peripheral blood eosinophil count is recommended to monitor the asthma control status and to assess the efficacy of anti-IL-5 therapy in asthma.
Collapse
Affiliation(s)
- Maciej Tota
- Student Scientific Group of Adult Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
11
|
Homayoonfal M, Gilasi H, Asemi Z, Mahabady MK, Asemi R, Yousefi B. Quercetin modulates signal transductions and targets non-coding RNAs against cancer development. Cell Signal 2023; 107:110667. [PMID: 37023996 DOI: 10.1016/j.cellsig.2023.110667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
In recent decades, various investigations have indicated that natural compounds have great potential in the prevention and treatment of different chronic disorders including different types of cancer. As a bioactive flavonoid, Quercetin (Qu) is a dietary ingredient enjoying high pharmacological values and health-promoting effects due to its antioxidant and anti-inflammatory characterization. Conclusive in vitro and in vivo evidence has revealed that Qu has great potential in cancer prevention and development. Qu exerts its anticancer influences by altering various cellular processes such as apoptosis, autophagy, angiogenesis, metastasis, cell cycle, and proliferation. In this way, Qu by targeting numerous signaling pathways as well as non-coding RNAs regulates several cellular mechanisms to suppress cancer occurrence and promotion. This review aimed to summarize the impact of Qu on the molecular pathways and non-coding RNAs in modulating various cancer-associated cellular mechanisms.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamidreza Gilasi
- Department of Biostatistics and Epidemiology, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Guney Eskiler G, Kazan N, Haciefendi A, Deveci Ozkan A, Ozdemir K, Ozen M, Kocer HB, Yilmaz F, Kaleli S, Sahin E, Bilir C. The prognostic and predictive values of differential expression of exosomal receptor tyrosine kinases and associated with the PI3K/AKT/mTOR signaling in breast cancer patients undergoing neoadjuvant chemotherapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:460-472. [PMID: 36181664 DOI: 10.1007/s12094-022-02959-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE Cancer cell-derived exosomes are the mediator of the tumor microenvironment and the molecular content of exosomes presents a promising prognostic or predictive marker in tumor progression and the treatment response of cancer patients. The aim of this study was to identify the expression levels of receptor tyrosine kinases (RTKs) and AKT1 and mTOR before and after neoadjuvant chemotherapy (NACT) in the exosomes of BC patients compared with healthy females. METHODS After isolating exosomes in the serum of 25 BC patients and characterization by flow cytometry, the mRNA levels of FGFR2, FGFR3, PDGFRB, AKT1 and mTOR in the exosomes were analyzed by RT-PCR. RESULTS Our preliminary findings showed that FGFR2, PDGFRB, AKT1 and mTOR levels were significantly upregulated in BC patients before NACT compared with the healthy group (p < 0.05). Furthermore, the mRNA levels PDGFRB and AKT1 were significantly down-regulated after NACT compared with control. PDGFRB expression level could predict pathological non-response and significantly correlated with tumor size after NACT. CONCLUSION Therefore, especially FGFR2, PDGFRB and AKT1 could be a therapeutic target as a prognostic marker, whereas PDGFRB may be a promising predictive indicator of therapy response in BC patients. However, the prognostic or predictive role of RTKs and PI3K/AKT/mTOR signaling in the exosomes should be further investigated in a large patient population.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, 54290, Sakarya, Turkey.
| | - Nur Kazan
- Department of Medical Biology, Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | - Ayten Haciefendi
- Department of Medical Biology, Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, 54290, Sakarya, Turkey
| | - Kayhan Ozdemir
- Department of General Surgery, Nevsehir Urgup State Hospital, Nevsehir, Turkey
| | - Mirac Ozen
- Department of Medical Oncology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Havva Belma Kocer
- Department of General Surgery, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Fahri Yilmaz
- Department of Medical Pathology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Suleyman Kaleli
- Department of Medical Biology, Faculty of Medicine, Sakarya University, 54290, Sakarya, Turkey
| | - Elvan Sahin
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Cemil Bilir
- Department of Medical Oncology, Faculty of Medicine, Istinye University VM Medical Park Pendik Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Design, Synthesis and Evaluation of Vascular Endothelial Growth Factor Receptor Inhibitors for the Potential Treatment of Human Cancers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Sheikh E, Tran T, Vranic S, Levy A, Bonfil RD. Role and significance of c-KIT receptor tyrosine kinase in cancer: A review. Bosn J Basic Med Sci 2022; 22:683-698. [PMID: 35490363 PMCID: PMC9519160 DOI: 10.17305/bjbms.2021.7399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
c-kit is a classical proto-oncogene that encodes a receptor tyrosine kinase (RTK) that responds to stem cell factor (SCF). C-KIT signaling is a critical regulator of cell proliferation, survival, and migration and is implicated in several physiological processes, including pigmentation, hematopoiesis and gut movement. Accumulating evidence suggests that dysregulated c-KIT function, caused by either overexpression or mutations in c-kit, promotes tumor development and progression in various human cancers. In this review, we discuss the most important structural and biological features of c-KIT, as well as insights into the activation of intracellular signaling pathways following SCF binding to this RTK. We then illustrate how different c-kit alterations are associated with specific human cancers and describe recent studies that highlight the contribution of c-KIT to cancer stemness, epithelial-mesenchymal transition and progression to metastatic disease in different experimental models. The impact of tyrosine kinase inhibitors in treating c-KIT-positive tumors and limitations due to their propensity to develop drug resistance are summarized. Finally, we appraise the potential of novel therapeutic approaches targeting c-KIT more selectively while minimizing toxicity to normal tissue.
Collapse
Affiliation(s)
- Emana Sheikh
- OMS-III, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States
| | - Tony Tran
- OMS-III, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States
| | - Semir Vranic
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Arkene Levy
- Department of Medical Education, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States
| | - R. Daniel Bonfil
- Department of Medical Education, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States
| |
Collapse
|
15
|
Bleffert F, Granzin J, Caliskan M, Schott-Verdugo SN, Siebers M, Thiele B, Rahme L, Felgner S, Dörmann P, Gohlke H, Batra-Safferling R, Jaeger KE, Kovacic F. Structural, mechanistic, and physiological insights into phospholipase A-mediated membrane phospholipid degradation in Pseudomonas aeruginosa. eLife 2022; 11:e72824. [PMID: 35536643 PMCID: PMC9132575 DOI: 10.7554/elife.72824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A1 (PlaF) from Pseudomonas aeruginosa, which might be involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa ΔplaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-Å-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. The dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network, which might explain the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the PlaF-mediated GPL remodeling pathway for virulence and could pave the way for the development of novel therapeutics targeting PlaF.
Collapse
Affiliation(s)
- Florian Bleffert
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Joachim Granzin
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
| | - Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Stephan N Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University DüsseldorfDuesseldorfGermany
- Centro de Bioinformática y Simulación Molecular (CBSM), Faculty of Engineering, University of TalcaTalcaChile
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbHJülichGermany
| | - Meike Siebers
- Institute of Molecular Physiology, and Biotechnology of Plants (IMBIO), University of BonnBonnGermany
- Institute for Plant Genetics, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Björn Thiele
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), and Agrosphere (IBG-3), Forschungszentrum Jülich GmbHJülichGermany
| | - Laurence Rahme
- Department of Microbiology, and Immunobiology, Harvard Medical SchoolBostonUnited States
| | - Sebastian Felgner
- Department of Molecular Bacteriology, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Peter Dörmann
- Institute of Molecular Physiology, and Biotechnology of Plants (IMBIO), University of BonnBonnGermany
| | - Holger Gohlke
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University DüsseldorfDuesseldorfGermany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbHJülichGermany
| | - Renu Batra-Safferling
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbHJülichGermany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| |
Collapse
|
16
|
Colony-stimulating factor 1 receptor signaling in the central nervous system and the potential of its pharmacological inhibitors to halt the progression of neurological disorders. Inflammopharmacology 2022; 30:821-842. [PMID: 35290551 DOI: 10.1007/s10787-022-00958-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Colony Stimulating Factor-1 (CSF-1)/Colony Stimulating Factor-1 Receptor (CSF-1R) signaling axis plays an essential role in the development, maintenance, and proliferation of macrophage lineage cells. Within the central nervous system, CSF-1R signaling primarily maintains microglial homeostasis. Microglia, being the resident macrophage and first responder to any neurological insults, plays critical importance in overall health of the human brain. Aberrant and sustained activation of microglia along with continued proliferation and release of neurotoxic proinflammatory cytokines have been reported in various neurological and neurodegenerative diseases. Therefore, halting the neuroinflammatory pathway via targeting microglial proliferation, which depends on CSF-1R signaling, has emerged as a potential therapeutic target for neurological disorders. However, apart from regulating the microglial function, recently it has been discovered that CSF-1R has much broader role in central nervous system. These findings limit the therapeutic utility of CSF-1R inhibitors but also highlight the need for a complete understanding of CSF-1R function within the central nervous system. Moreover, it has been found that selective inhibitors of CSF-1R may be more efficient in avoiding non-specific targeting and associated side effects. Short-term depletion of microglial population in diseased conditions have also been found to be beneficial; however, the dose and therapeutic window for optimum effects may need to be standardized further.This review summarizes the present understanding of CSF-1R function within the central nervous system. We discuss the CSF-1R signaling in the context of microglia function, crosstalk between microglia and astroglia, and regulation of neuronal cell function. We also discuss a few of the neurological disorders with a focus on the utility of CSF-1R inhibitors as potential therapeutic strategy for halting the progression of neurological diseases.
Collapse
|
17
|
Sahoo AR, Buck M. Structural and Functional Insights into the Transmembrane Domain Association of Eph Receptors. Int J Mol Sci 2021; 22:ijms22168593. [PMID: 34445298 PMCID: PMC8395321 DOI: 10.3390/ijms22168593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/04/2022] Open
Abstract
Eph receptors are the largest family of receptor tyrosine kinases and by interactions with ephrin ligands mediate a myriad of processes from embryonic development to adult tissue homeostasis. The interaction of Eph receptors, especially at their transmembrane (TM) domains is key to understanding their mechanism of signal transduction across cellular membranes. We review the structural and functional aspects of EphA1/A2 association and the techniques used to investigate their TM domains: NMR, molecular modelling/dynamics simulations and fluorescence. We also introduce transmembrane peptides, which can be used to alter Eph receptor signaling and we provide a perspective for future studies.
Collapse
Affiliation(s)
- Amita R. Sahoo
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA;
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA;
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
18
|
Porębska N, Poźniak M, Matynia A, Żukowska D, Zakrzewska M, Otlewski J, Opaliński Ł. Galectins as modulators of receptor tyrosine kinases signaling in health and disease. Cytokine Growth Factor Rev 2021; 60:89-106. [PMID: 33863623 DOI: 10.1016/j.cytogfr.2021.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Receptor tyrosine kinases (RTKs) constitute a large group of cell surface proteins that mediate communication of cells with extracellular environment. RTKs recognize external signals and transfer information to the cell interior, modulating key cellular activities, like metabolism, proliferation, motility, or death. To ensure balanced stream of signals the activity of RTKs is tightly regulated by numerous mechanisms, including receptor expression and degradation, ligand specificity and availability, engagement of co-receptors, cellular trafficking of the receptors or their post-translational modifications. One of the most widespread post-translational modifications of RTKs is glycosylation of their extracellular domains. The sugar chains attached to RTKs form a new layer of information, so called glyco-code that is read by galectins, carbohydrate binding proteins. Galectins are family of fifteen lectins implicated in immune response, inflammation, cell division, motility and death. The versatility of cellular activities attributed to galectins is a result of their high abundance and diversity of their cellular targets. A various sugar specificity of galectins and the differential ability of galectin family members to form oligomers affect the spatial distribution and the function of their cellular targets. Importantly, galectins and RTKs are tightly linked to the development, progression and metastasis of various cancers. A growing number of studies points on the close cooperation between RTKs and galectins in eliciting specific cellular responses. This review focuses on the identified complexes between galectins and RTK members and discusses their relevance for the cell physiology both in healthy tissues and in cancer.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta Poźniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Matynia
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Dominika Żukowska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
19
|
Mangiagalli M, Barbiroli A, Santambrogio C, Ferrari C, Nardini M, Lotti M, Brocca S. The activity and stability of a cold-active acylaminoacyl peptidase rely on its dimerization by domain swapping. Int J Biol Macromol 2021; 181:263-274. [PMID: 33775759 DOI: 10.1016/j.ijbiomac.2021.03.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 01/07/2023]
Abstract
The study of enzymes from extremophiles arouses interest in Protein Science because of the amazing solutions these proteins adopt to cope with extreme conditions. Recently solved, the structure of the psychrophilic acyl aminoacyl peptidase from Sporosarcina psychrophila (SpAAP) pinpoints a mechanism of dimerization unusual for this class of enzymes. The quaternary structure of SpAAP relies on a domain-swapping mechanism involving the N-terminal A1 helix. The A1 helix is conserved among homologous mesophilic and psychrophilic proteins and its deletion causes the formation of a monomeric enzyme, which is inactive and prone to aggregate. Here, we investigate the dimerization mechanism of SpAAP through the analysis of chimeric heterodimers where a protomer lacking the A1 helix combines with a protomer carrying the inactivated catalytic site. Our results indicate that the two active sites are independent, and that a single A1 helix is sufficient to partially recover the quaternary structure and the activity of chimeric heterodimers. Since catalytically competent protomers are unstable and inactive unless they dimerize, SpAAP reveals as an "obligomer" for both structural and functional reasons.
Collapse
Affiliation(s)
- Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences, University of Milano, Via Celoria 2, 20133 Milano, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Cristian Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
20
|
Mészáros B, Hajdu-Soltész B, Zeke A, Dosztányi Z. Mutations of Intrinsically Disordered Protein Regions Can Drive Cancer but Lack Therapeutic Strategies. Biomolecules 2021; 11:biom11030381. [PMID: 33806614 PMCID: PMC8000335 DOI: 10.3390/biom11030381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Many proteins contain intrinsically disordered regions (IDRs) which carry out important functions without relying on a single well-defined conformation. IDRs are increasingly recognized as critical elements of regulatory networks and have been also associated with cancer. However, it is unknown whether mutations targeting IDRs represent a distinct class of driver events associated with specific molecular and system-level properties, cancer types and treatment options. Here, we used an integrative computational approach to explore the direct role of intrinsically disordered protein regions driving cancer. We showed that around 20% of cancer drivers are primarily targeted through a disordered region. These IDRs can function in multiple ways which are distinct from the functional mechanisms of ordered drivers. Disordered drivers play a central role in context-dependent interaction networks and are enriched in specific biological processes such as transcription, gene expression regulation and protein degradation. Furthermore, their modulation represents an alternative mechanism for the emergence of all known cancer hallmarks. Importantly, in certain cancer patients, mutations of disordered drivers represent key driving events. However, treatment options for such patients are currently severely limited. The presented study highlights a largely overlooked class of cancer drivers associated with specific cancer types that need novel therapeutic options.
Collapse
Affiliation(s)
- Bálint Mészáros
- Department of Biochemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary; (B.M.); (B.H.-S.)
- EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Borbála Hajdu-Soltész
- Department of Biochemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary; (B.M.); (B.H.-S.)
| | - András Zeke
- Institute of Enzymology, RCNS, P.O. Box 7, H-1518 Budapest, Hungary;
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary; (B.M.); (B.H.-S.)
- Correspondence: ; Tel.: +36-1-372 2500/8537
| |
Collapse
|
21
|
Pawar AB, Sengupta D. Role of Cholesterol in Transmembrane Dimerization of the ErbB2 Growth Factor Receptor. J Membr Biol 2021; 254:301-310. [PMID: 33506276 DOI: 10.1007/s00232-021-00168-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/05/2021] [Indexed: 11/28/2022]
Abstract
The association of ErbB2 growth factor receptors is critical for cell growth and potentiates tumor proliferation in several cancer types. An important aspect in ErbB2 association is the role of lipids such as cholesterol, especially since their metabolism is often reprogrammed in cancer cells. Here, we have coupled metadynamics with coarse-grain simulations to identify cholesterol effects in the transmembrane dimerization of ErbB2 receptors. Overall, cholesterol interactions are observed with the receptor that directly tunes the association energetics. Several dimer conformations are identified both in the presence and absence of cholesterol, although the dimer regime appears to be more favorable in the presence of cholesterol. We observe an overall modulation of the underlying energy profile and the symmetric active and inactive conformational states are not distinguished in the presence of cholesterol. We show that cholesterol binds to the receptor transmembrane domain at a site (CRAC motif) that overlaps with the dimer interface (SmXXXSm motif). The competition between the transmembrane interactions and cholesterol interactions decides the final conformational landscape. Our work is an important step toward characterizing cholesterol effects in ErbB2 membrane receptor function.
Collapse
Affiliation(s)
- Aiswarya B Pawar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
22
|
Marensi V, Keeshan KR, MacEwan DJ. Pharmacological impact of FLT3 mutations on receptor activity and responsiveness to tyrosine kinase inhibitors. Biochem Pharmacol 2020; 183:114348. [PMID: 33242449 DOI: 10.1016/j.bcp.2020.114348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023]
Abstract
Acute myelogenous leukaemia (AML) is an aggressive blood cancer characterized by the rapid proliferation of immature myeloid blast cells, resulting in a high mortality rate. The 5-year overall survival rate for AML patients is approximately 25%. Circa 35% of all patients carry a mutation in the FLT3 gene which have a poor prognosis. Targeting FLT3 receptor tyrosine kinase has become a treatment strategy in AML patients possessing FLT3 mutations. The most common mutations are internal tandem duplications (ITD) within exon 14 and a single nucleotide polymorphism (SNP) that leads to a point mutation in the D835 of the tyrosine kinase domain (TKD). Variations in the ITD sequence and the occurrence of other point mutations that lead to ligand-independent FLT3 receptor activation create difficulties in developing personalized therapeutic strategies to overcome observed mutation-driven drug resistance. Midostaurin and quizartinib are tyrosine kinase inhibitors (TKIs) with inhibitory efficacy against FLT3-ITD, but exhibit limited clinical impact. In this review, we focus on the structural aspects of the FLT3 receptor and correlate those mutations with receptor activation and the consequences for molecular and clinical responsiveness towards therapies targeting FLT3-ITD positive AML.
Collapse
Affiliation(s)
- Vanessa Marensi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Karen R Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David J MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
23
|
Mamer SB, Wittenkeller A, Imoukhuede PI. VEGF-A splice variants bind VEGFRs with differential affinities. Sci Rep 2020; 10:14413. [PMID: 32879419 PMCID: PMC7468149 DOI: 10.1038/s41598-020-71484-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/04/2020] [Indexed: 12/29/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) and its binding to VEGFRs is an important angiogenesis regulator, especially the earliest-known isoform, VEGF-A165a. Yet several additional splice variants play prominent roles in regulating angiogenesis in health and in vascular disease, including VEGF-A121 and an anti-angiogenic variant, VEGF-A165b. Few studies have attempted to distinguish these forms from their angiogenic counterparts, experimentally. Previous studies of VEGF-A:VEGFR binding have measured binding kinetics for VEGFA165 and VEGF-A121, but binding kinetics of the other two pro- and all anti-angiogenic splice variants are not known. We measured the binding kinetics for VEGF-A165, -A165b, and -A121 with VEGFR1 and VEGF-R2 using surface plasmon resonance. We validated our methods by reproducing the known affinities between VEGF-A165a:VEGFR1 and VEGF-A165a:VEGFR2, 1.0 pM and 10 pM respectively, and validated the known affinity VEGF-A121:VEGFR2 as KD = 0.66 nM. We found that VEGF-A121 also binds VEGFR1 with an affinity KD = 3.7 nM. We further demonstrated that the anti-angiogenic variant, VEGF-A165b selectively prefers VEGFR2 binding at an affinity = 0.67 pM while binding VEGFR1 with a weaker affinity-KD = 1.4 nM. These results suggest that the - A165b anti-angiogenic variant would preferentially bind VEGFR2. These discoveries offer a new paradigm for understanding VEGF-A, while further stressing the need to take care in differentiating the splice variants in all future VEGF-A studies.
Collapse
Affiliation(s)
- Spencer B Mamer
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Ashley Wittenkeller
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P I Imoukhuede
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
24
|
Abstract
FMS-like tyrosine kinase 3 (FLT3) is mutated in ∼30% of patients that suffer from acute myeloid leukemia (AML). In about 25% of all AML patients, in-frame insertions are observed in the sequence. Most of those insertions are internal tandem duplications (ITDs) of a sequence from the protein. The characteristics of such mutations in terms of length, sequence, and location were hitherto studied in different populations, but not in a comprehensive mutation database. Here, in-frame insertions into the FLT3 gene were extracted from the Catalogue of Somatic Mutations in Cancer (COSMIC) database. These were analyzed with respect to the length, location, and sequence of the mutations. Furthermore, characteristic strings (sequences) of different lengths were identified. Mutations were shown to occur most often in the juxtamembrane zipper (JM-Z) domain of FLT3, followed by the hinge domain and first tyrosine kinase domain (TKD1), upstream of the phosphate-binding loop (P-loop). Interestingly, there are specific hot spot residues where insertions are more likely to occur. The insertions vary in length between one and 67 amino acids, with the largest insertions spanning the phosphate binding loop. Insertions that occur downstream of the P-loop are shorter. Our analysis further shows that acidic and aromatic residues are enriched in the insertions. Finally, molecular dynamics simulations were run for FLT3 with ITD insertions in the hinge and tyrosine kinase domains. On the basis of the findings, a mechanism is proposed for activation by ITDs, according to which there is no direct coupling between the length of the insertion and the activity of the mutated protein. The effect of insertions on the sensitivity of FLT3 to kinase inhibitors is discussed based on our findings.
Collapse
Affiliation(s)
- Guido Todde
- Department of Chemistry and Biomedical Sciences, Linnæus University, 391 82 Kalmar, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, 391 82 Kalmar, Sweden
| |
Collapse
|
25
|
Paul MD, Grubb HN, Hristova K. Quantifying the strength of heterointeractions among receptor tyrosine kinases from different subfamilies: Implications for cell signaling. J Biol Chem 2020; 295:9917-9933. [PMID: 32467228 PMCID: PMC7380177 DOI: 10.1074/jbc.ra120.013639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Indexed: 01/09/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that control vital cell processes such as cell growth, survival, and differentiation. There is a growing body of evidence that RTKs from different subfamilies can interact and that these diverse interactions can have important biological consequences. However, these heterointeractions are often ignored, and their strengths are unknown. In this work, we studied the heterointeractions of nine RTK pairs, epidermal growth factor receptor (EGFR)-EPH receptor A2 (EPHA2), EGFR-vascular endothelial growth factor receptor 2 (VEGFR2), EPHA2-VEGFR2, EPHA2-fibroblast growth factor receptor 1 (FGFR1), EPHA2-FGFR2, EPHA2-FGFR3, VEGFR2-FGFR1, VEGFR2-FGFR2, and VEGFR2-FGFR3, using a FRET-based method. Surprisingly, we found that RTK heterodimerization and homodimerization strengths can be similar, underscoring the significance of RTK heterointeractions in signaling. We discuss how these heterointeractions can contribute to the complexity of RTK signal transduction, and we highlight the utility of quantitative FRET for probing multiple interactions in the plasma membrane.
Collapse
Affiliation(s)
- Michael D Paul
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hana N Grubb
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kalina Hristova
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Mamer SB, Page P, Murphy M, Wang J, Gallerne P, Ansari A, Imoukhuede PI. The Convergence of Cell-Based Surface Plasmon Resonance and Biomaterials: The Future of Quantifying Bio-molecular Interactions-A Review. Ann Biomed Eng 2020; 48:2078-2089. [PMID: 31811474 PMCID: PMC8637426 DOI: 10.1007/s10439-019-02429-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022]
Abstract
Cell biology is driven by complex networks of biomolecular interactions. Characterizing the kinetic and thermodynamic properties of these interactions is crucial to understanding their role in different physiological processes. Surface plasmon resonance (SPR)-based approaches have become a key tool in quantifying biomolecular interactions, however conventional approaches require isolating the interacting components from the cellular system. Cell-based SPR approaches have recently emerged, promising to enable precise measurements of biomolecular interactions within their normal biological context. Two major approaches have been developed, offering their own advantages and limitations. These approaches currently lack a systematic exploration of 'best practices' like those existing for traditional SPR experiments. Toward this end, we describe the two major approaches, and identify the experimental parameters that require exploration, and discuss the experimental considerations constraining the optimization of each. In particular, we discuss the requirements of future biomaterial development needed to advance the cell-based SPR technique.
Collapse
Affiliation(s)
- Spencer B Mamer
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | - Jiaojiao Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pierrick Gallerne
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Ecole Centrale de Lille, Villeneuve d'Ascq, Hauts-De-France, France
| | - Ali Ansari
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P I Imoukhuede
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
27
|
Tang FHF, Davis D, Arap W, Pasqualini R, Staquicini FI. Eph receptors as cancer targets for antibody-based therapy. Adv Cancer Res 2020; 147:303-317. [PMID: 32593404 DOI: 10.1016/bs.acr.2020.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Receptor tyrosine kinases (RTKs) are integral membrane sensors that govern cell differentiation, proliferation and mobility, and enable rapid communication between cells and their environment. Of the 20 RTK subfamilies currently known, Eph receptors are the largest group. Together with their corresponding ephrin ligands, Eph receptors regulate a diverse array of physiologic processes including axonal guidance, bone remodeling, and immune cell development and trafficking. Deregulation of Eph signaling pathways is linked to cancer and other proliferative diseases and, because RTKs play critical roles in cancer development, the specific targeting of these molecules in malignancies provides a promising treatment approach. Monoclonal antibodies targeting RTKs represent a potentially attractive modality for pharmaceutical development due to their relatively high target specificity and low off-target binding rates. Therefore, new technologies to generate antibodies able to target RTKs in their native in vivo context are likely to facilitate pre-clinical and clinical development of antibody-based therapies. Our group has recently reported a platform discovery methodology termed Selection of Phage-displayed Accessible Recombinant Targeted Antibodies (SPARTA). SPARTA is a novel and robust stepwise method, which combines the attributes of in vitro screenings of a naïve human recombinant antibody library against known tumor targets with those features of in vivo selections based on tumor-homing capabilities of a pre-enriched antibody pool. This unique approach overcomes several rate-limiting challenges to generate human monoclonal antibodies amenable to rapid translation into medical applications.
Collapse
Affiliation(s)
- Fenny H F Tang
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States; Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Deodate Davis
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States; Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States; Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States.
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States; Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States.
| | - Fernanda I Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States; Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States.
| |
Collapse
|
28
|
Rozbesky D, Monistrol J, Jain V, Hillier J, Padilla-Parra S, Jones EY. Drosophila OTK Is a Glycosaminoglycan-Binding Protein with High Conformational Flexibility. Structure 2020; 28:507-515.e5. [PMID: 32187531 PMCID: PMC7203548 DOI: 10.1016/j.str.2020.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 11/25/2022]
Abstract
The transmembrane protein OTK plays an essential role in plexin and Wnt signaling during Drosophila development. We have determined a crystal structure of the last three domains of the OTK ectodomain and found that OTK shows high conformational flexibility resulting from mobility at the interdomain interfaces. We failed to detect direct binding between Drosophila Plexin A (PlexA) and OTK, which was suggested previously. We found that, instead of PlexA, OTK directly binds semaphorin 1a. Our binding analyses further revealed that glycosaminoglycans, heparin and heparan sulfate, are ligands for OTK and thus may play a role in the Sema1a-PlexA axon guidance system.
Collapse
Affiliation(s)
- Daniel Rozbesky
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| | - Jim Monistrol
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Vitul Jain
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - James Hillier
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Sergi Padilla-Parra
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Cellular imaging, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK; Randall Centre for Cell and Molecular Biology, King's College London, London SE1 1UL, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
29
|
Introducing a pyrazolopyrimidine as a multi-tyrosine kinase inhibitor, using multi-QSAR and docking methods. Mol Divers 2020; 25:949-965. [PMID: 32297121 DOI: 10.1007/s11030-020-10080-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/29/2020] [Indexed: 12/16/2022]
Abstract
In cancer disease, which is one of the problems of today's human societies, the expression of some tyrosine kinase receptors that are effective in the growth and proliferation of cancerous cells rises. Therefore, it is essential to develop and propose new drugs to target the receptors. Performing modeling calculations such as QSAR and docking makes the drug discovery process more efficient. Thus, backpropagation artificial neural network was used for multidimensional quantitative structure-activity relationship (QSAR) to identify essential features of pyrazolopyrimidine moiety, responsible for anticancer activity. The statistical parameters of the model show that multi-QSAR has sufficient validity and accuracy. According to the QSAR modeling, among 26 compounds, the interaction of eight candidates with EGFR, FGFR4, PDGFRA, and VEGFR2 was analyzed by docking modeling. The results showed that 1u compound binds to proteins in a more appropriate area (except FGFR4) with acceptable energy. The results of docking for VEGFR2 binding showed that 1u binds to the active site and binding site of receptor, and it was in the interaction with ten residues in the sites. Although the binding site of 1u molecule in the FGFR4 was not suitable, the binding free energy was excellent (- 9.22 kcal mol-1), which was less than those two anticancer drugs of gefitinib and regorafenib. Furthermore, the values of binding free energy were - 8.69, - 9.64, and - 9.19 kcal mol-1 for EGFR, PDGFRA, and VEGFR2, respectively. Therefore, this study introduces 1u as an anticancer agent that can inhibit the tyrosine kinase receptors.
Collapse
|
30
|
Franco ML, Nadezhdin KD, Goncharuk SA, Mineev KS, Arseniev AS, Vilar M. Structural basis of the transmembrane domain dimerization and rotation in the activation mechanism of the TRKA receptor by nerve growth factor. J Biol Chem 2020; 295:275-286. [PMID: 31801826 PMCID: PMC6952603 DOI: 10.1074/jbc.ra119.011312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
Tropomyosin-receptor kinases (TRKs) are essential for the development of the nervous system. The molecular mechanism of TRKA activation by its ligand nerve growth factor (NGF) is still unsolved. Recent results indicate that at endogenous levels most of TRKA is in a monomer-dimer equilibrium and that the binding of NGF induces an increase of the dimeric and oligomeric forms of this receptor. An unsolved issue is the role of the TRKA transmembrane domain (TMD) in the dimerization of TRKA and the structural details of the TMD in the active dimer receptor. Here, we found that the TRKA-TMD can form dimers, identified the structural determinants of the dimer interface in the active receptor, and validated this interface through site-directed mutagenesis together with functional and cell differentiation studies. Using in vivo cross-linking, we found that the extracellular juxtamembrane region is reordered after ligand binding. Replacement of some residues in the juxtamembrane region with cysteine resulted in ligand-independent active dimers and revealed the preferred dimer interface. Moreover, insertion of leucine residues into the TMD helix induced a ligand-independent TRKA activation, suggesting that a rotation of the TMD dimers underlies NGF-induced TRKA activation. Altogether, our findings indicate that the transmembrane and juxtamembrane regions of TRKA play key roles in its dimerization and activation by NGF.
Collapse
Affiliation(s)
- María L Franco
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València, Consejo Superior de Investigaciones Científicas, 46010 València, Spain
| | - Kirill D Nadezhdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation.
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València, Consejo Superior de Investigaciones Científicas, 46010 València, Spain.
| |
Collapse
|
31
|
Exploring receptor tyrosine kinases-inhibitors in Cancer treatments. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0035-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractBackgroundReceptor tyrosine kinases (RTKs) are signaling enzymes responsible for the transfer of Adenosine triphosphate (ATP) γ-phosphate to the tyrosine residues substrates. RTKs demonstrate essential roles in cellular growth, metabolism, differentiation, and motility. Anomalous expression of RTK customarily leads to cell growth dysfunction, which is connected to tumor takeover, angiogenesis, and metastasis. Understanding the structure, mechanisms of adaptive and acquired resistance, optimizing inhibition of RTKs, and eradicating cum minimizing the havocs of quiescence cancer cells is paramount.MainTextTyrosine kinase inhibitors (TKIs) vie with RTKs ATP-binding site for ATP and hitherto reduce tyrosine kinase phosphorylation, thus hampering the growth of cancer cells. TKIs can either be monoclonal antibodies that compete for the receptor’s extracellular domain or small molecules that inhibit the tyrosine kinase domain and prevent conformational changes that activate RTKs. Progression of cancer is related to aberrant activation of RTKs due to due to mutation, excessive expression, or autocrine stimulation.ConclusionsUnderstanding the modes of inhibition and structures of RTKs is germane to the design of novel and potent TKIs. This review shed light on the structures of tyrosine kinases, receptor tyrosine kinases, tyrosine kinase inhibitors, minimizing imatinib associated toxicities, optimization of tyrosine kinase inhibition in curtailing quiescence in cancer cells and the prospects of receptor tyrosine kinase based treatments.
Collapse
|
32
|
Paul MD, Hristova K. The transition model of RTK activation: A quantitative framework for understanding RTK signaling and RTK modulator activity. Cytokine Growth Factor Rev 2019; 49:23-31. [PMID: 31711797 PMCID: PMC6898792 DOI: 10.1016/j.cytogfr.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/10/2019] [Indexed: 01/15/2023]
Abstract
Here, we discuss the transition model of receptor tyrosine kinase (RTK) activation, which is derived from biophysical investigations of RTK interactions and signaling. The model postulates that (1) RTKs can interact laterally to form dimers even in the absence of ligand, (2) different unliganded RTK dimers have different stabilities, (3) ligand binding stabilizes the RTK dimers, and (4) ligand binding causes structural changes in the RTK dimer. The model is grounded in the principles of physical chemistry and provides a framework to understand RTK activity and to make predictions in quantitative terms. It can guide basic research aimed at uncovering the mechanism of RTK activation and, in the long run, can empower the search for modulators of RTK function.
Collapse
Affiliation(s)
- Michael D Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, United States.
| |
Collapse
|
33
|
Diwanji D, Thaker T, Jura N. More than the sum of the parts: Toward full-length receptor tyrosine kinase structures. IUBMB Life 2019; 71:706-720. [PMID: 31046201 PMCID: PMC6531341 DOI: 10.1002/iub.2060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/20/2019] [Indexed: 01/01/2023]
Abstract
Intercellular communication governs complex physiological processes ranging from growth and development to the maintenance of cellular and organ homeostasis. In nearly all metazoans, receptor tyrosine kinases (RTKs) are central players in these diverse and fundamental signaling processes. Aberrant RTK signaling is at the root of many developmental diseases and cancers and it remains a key focus of targeted therapies, several of which have achieved considerable success in patients. These therapeutic advances in targeting RTKs have been propelled by numerous genetic, biochemical, and structural studies detailing the functions and molecular mechanisms of regulation and activation of RTKs. The latter in particular have proven to be instrumental for the development of new drugs, selective targeting of mutant forms of RTKs found in disease, and counteracting ensuing drug resistance. However, to this day, such studies have not yet yielded high-resolution structures of intact RTKs that encompass the extracellular and intracellular domains and the connecting membrane-spanning transmembrane domain. Technically challenging to obtain, these structures are instrumental to complete our understanding of the mechanisms by which RTKs are activated by extracellular ligands and of the effect of pathological mutations that do not directly reside in the catalytic sites of tyrosine kinase domains. In this review, we focus on the recent progress toward obtaining such structures and the insights already gained by structural studies of the subdomains of the receptors that belong to the epidermal growth factor receptor, insulin receptor, and platelet-derived growth factor receptor RTK families. © 2019 IUBMB Life, 71(6):706-720, 2019.
Collapse
Affiliation(s)
- Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tarjani Thaker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
34
|
Mapping Tyrosine Kinase Receptor Dimerization to Receptor Expression and Ligand Affinities. Processes (Basel) 2019. [DOI: 10.3390/pr7050288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tyrosine kinase receptor (RTK) ligation and dimerization is a key mechanism for translating external cell stimuli into internal signaling events. This process is critical to several key cell and physiological processes, such as in angiogenesis and embryogenesis, among others. While modulating RTK activation is a promising therapeutic target, RTK signaling axes have been shown to involve complicated interactions between ligands and receptors both within and across different protein families. In angiogenesis, for example, several signaling protein families, including vascular endothelial growth factors and platelet-derived growth factors, exhibit significant cross-family interactions that can influence pathway activation. Computational approaches can provide key insight to detangle these signaling pathways but have been limited by the sparse knowledge of these cross-family interactions. Here, we present a framework for studying known and potential non-canonical interactions. We constructed generalized models of RTK ligation and dimerization for systems of two, three and four receptor types and different degrees of cross-family ligation. Across each model, we developed parameter-space maps that fully determine relative pathway activation for any set of ligand-receptor binding constants, ligand concentrations and receptor concentrations. Therefore, our generalized models serve as a powerful reference tool for predicting not only known ligand: Receptor axes but also how unknown interactions could alter signaling dimerization patterns. Accordingly, it will drive the exploration of cross-family interactions and help guide therapeutic developments across processes like cancer and cardiovascular diseases, which depend on RTK-mediated signaling.
Collapse
|
35
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
36
|
Guidolin D, Marcoli M, Tortorella C, Maura G, Agnati LF. Receptor-Receptor Interactions as a Widespread Phenomenon: Novel Targets for Drug Development? Front Endocrinol (Lausanne) 2019; 10:53. [PMID: 30833931 PMCID: PMC6387912 DOI: 10.3389/fendo.2019.00053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
The discovery of receptor-receptor interactions (RRI) has expanded our understanding of the role that G protein-coupled receptors (GPCRs) play in intercellular communication. The finding that GPCRs can operate as receptor complexes, and not only as monomers, suggests that several different incoming signals could already be integrated at the plasma membrane level via direct allosteric interactions between the protomers that form the complex. Most research in this field has focused on neuronal populations and has led to the identification of a large number of RRI. However, RRI have been seen to occur not only in neurons but also in astrocytes and, outside the central nervous system, in cells of the cardiovascular and endocrine systems and in cancer cells. Furthermore, RRI involving the formation of macromolecular complexes are not limited to GPCRs, being also observed in other families of receptors. Thus, RRI appear as a widespread phenomenon and oligomerization as a common mechanism for receptor function and regulation. The discovery of these macromolecular assemblies may well have a major impact on pharmacology. Indeed, the formation of receptor complexes significantly broadens the spectrum of mechanisms available to receptors for recognition and signaling, which may be implemented through modulation of the binding sites of the adjacent protomers and of their signal transduction features. In this context, the possible appearance of novel allosteric sites in the receptor complex structure may be of particular relevance. Thus, the existence of RRI offers the possibility of new therapeutic approaches, and novel pharmacological strategies for disease treatment have already been proposed. Several challenges, however, remain. These include the accurate characterization of the role that the receptor complexes identified so far play in pathological conditions and the development of ligands specific to given receptor complexes, in order to efficiently exploit the pharmacological properties of these complexes.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy
- *Correspondence: Diego Guidolin
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | | | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Jang B, Jung H, Hong H, Oh ES. Syndecan transmembrane domain modulates intracellular signaling by regulating the oligomeric status of the cytoplasmic domain. Cell Signal 2018; 52:121-126. [PMID: 30195038 DOI: 10.1016/j.cellsig.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 11/19/2022]
Abstract
Cell surface receptors must specifically recognize an extracellular ligand and then trigger an appropriate response within the cell. Their general structure enables this, as it comprises an extracellular domain that can bind an extracellular ligand, a cytoplasmic domain that can transduce a signal inside the cell to produce an appropriate response, and a transmembrane domain that links the two and is responsible for accurately delivering specific information on a binding event from the extracellular domain to the cytoplasmic domain, to trigger the proper response. A vast body of research has focused on elucidating the specific mechanisms responsible for regulating extracellular binding events and the subsequent interactions of the cytoplasmic domain with intracellular signaling. In contrast, far less work has focused on examining how the transmembrane domain links these domains and delivers the necessary information. In this review, we propose the importance of the transmembrane domain as a signal regulator. We highlight the cell adhesion receptor, syndecan, as a special case, and propose that the transmembrane domain-mediated oligomerization of the syndecan cytoplasmic domain is a unique regulatory mechanism in syndecan signaling.
Collapse
Affiliation(s)
- Bohee Jang
- Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hyejung Jung
- Skin QC Institute of Dermatological Sciences, Seoul, 03759, Republic of Korea
| | - Heejeong Hong
- Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eok-Soo Oh
- Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea; Skin QC Institute of Dermatological Sciences, Seoul, 03759, Republic of Korea.
| |
Collapse
|
38
|
Leopold AV, Chernov KG, Verkhusha VV. Optogenetically controlled protein kinases for regulation of cellular signaling. Chem Soc Rev 2018; 47:2454-2484. [PMID: 29498733 DOI: 10.1039/c7cs00404d] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinases are involved in the regulation of many cellular processes including cell differentiation, survival, migration, axon guidance and neuronal plasticity. A growing set of optogenetic tools, termed opto-kinases, allows activation and inhibition of different protein kinases with light. The optogenetic regulation enables fast, reversible and non-invasive manipulation of protein kinase activities, complementing traditional methods, such as treatment with growth factors, protein kinase inhibitors or chemical dimerizers. In this review, we summarize the properties of the existing optogenetic tools for controlling tyrosine kinases and serine-threonine kinases. We discuss how the opto-kinases can be applied for studies of spatial and temporal aspects of protein kinase signaling in cells and organisms. We compare approaches for chemical and optogenetic regulation of protein kinase activity and present guidelines for selection of opto-kinases and equipment to control them with light. We also describe strategies to engineer novel opto-kinases on the basis of various photoreceptors.
Collapse
Affiliation(s)
- Anna V Leopold
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | | | | |
Collapse
|
39
|
Koehler Leman J, Bonneau R. A Novel Domain Assembly Routine for Creating Full-Length Models of Membrane Proteins from Known Domain Structures. Biochemistry 2017; 57:1939-1944. [PMID: 29185719 DOI: 10.1021/acs.biochem.7b00995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Membrane proteins composed of soluble and membrane domains are often studied one domain at a time. However, to understand the biological function of entire protein systems and their interactions with each other and drugs, knowledge of full-length structures or models is required. Although few computational methods exist that could potentially be used to model full-length constructs of membrane proteins, none of these methods are perfectly suited for the problem at hand. Existing methods require an interface or knowledge of the relative orientations of the domains or are not designed for domain assembly, and none of them are developed for membrane proteins. Here we describe the first domain assembly protocol specifically designed for membrane proteins that assembles intra- and extracellular soluble domains and the transmembrane domain into models of the full-length membrane protein. Our protocol does not require an interface between the domains and samples possible domain orientations based on backbone dihedrals in the flexible linker regions, created via fragment insertion, while keeping the transmembrane domain fixed in the membrane. For five examples tested, our method mp_domain_assembly, implemented in RosettaMP, samples domain orientations close to the known structure and is best used in conjunction with experimental data to reduce the conformational search space.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Department of Biology and Center for Genomics and Systems Biology , New York University , New York , New York 10003 , United States.,Center for Computational Biology, Flatiron Institute , Simons Foundation , 162 Fifth Avenue , New York , New York 10010 , United States
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute , Simons Foundation , 162 Fifth Avenue , New York , New York 10010 , United States.,Center for Data Science , New York University , New York , New York 10011 , United States
| |
Collapse
|
40
|
Transcriptional mechanisms that control expression of the macrophage colony-stimulating factor receptor locus. Clin Sci (Lond) 2017; 131:2161-2182. [DOI: 10.1042/cs20170238] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/22/2017] [Accepted: 06/11/2017] [Indexed: 12/17/2022]
Abstract
The proliferation, differentiation, and survival of cells of the macrophage lineage depends upon signals from the macrophage colony-stimulating factor (CSF) receptor (CSF1R). CSF1R is expressed by embryonic macrophages and induced early in adult hematopoiesis, upon commitment of multipotent progenitors to the myeloid lineage. Transcriptional activation of CSF1R requires interaction between members of the E26 transformation-specific family of transcription factors (Ets) (notably PU.1), C/EBP, RUNX, AP-1/ATF, interferon regulatory factor (IRF), STAT, KLF, REL, FUS/TLS (fused in sarcoma/ranslocated in liposarcoma) families, and conserved regulatory elements within the mouse and human CSF1R locus. One element, the Fms-intronic regulatory element (FIRE), within intron 2, is conserved functionally across all the amniotes. Lineage commitment in multipotent progenitors also requires down-regulation of specific transcription factors such as MYB, FLI1, basic leucine zipper transcriptional factor ATF-like (BATF3), GATA-1, and PAX5 that contribute to differentiation of alternative lineages and repress CSF1R transcription. Many of these transcription factors regulate each other, interact at the protein level, and are themselves downstream targets of CSF1R signaling. Control of CSF1R transcription involves feed–forward and feedback signaling in which CSF1R is both a target and a participant; and dysregulation of CSF1R expression and/or function is associated with numerous pathological conditions. In this review, we describe the regulatory network behind CSF1R expression during differentiation and development of cells of the mononuclear phagocyte system.
Collapse
|
41
|
Yan Q, Jiang D, Qian L, Zhang Q, Zhang W, Zhou W, Mi K, Guddat L, Yang H, Rao Z. Structural Insight into the Activation of PknI Kinase from M. tuberculosis via Dimerization of the Extracellular Sensor Domain. Structure 2017; 25:1286-1294.e4. [PMID: 28712808 DOI: 10.1016/j.str.2017.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/27/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
Abstract
Protein kinases play central roles in the survival of Mycobacterium tuberculosis within host. Here we report the individual high-resolution crystal structures of the sensor domain (in both monomer and dimer forms) and the kinase domain of PknI, a transmembrane protein member of the serine/threonine protein kinases (STPKs) family. PknI is the first STPK identified whose sensor domain exists in a monomer-dimer equilibrium. Inspection of the two structures of the sensor domain (PknI_SD) revealed conformational changes upon dimerization, with an arm region of critical importance for dimer formation identified. Rapamycin-induced dimerization of unphosphorylated fusions of PknI juxtamembrane and the kinase domain, intended to mimic the dimerization effect presumably imposed by PknI_SD, was observed to be able to activate auto-phosphorylation activity of the kinase domain. In vivo experiments using an M. bovis model suggested PknI functions as a dimer in the regulation of M. tuberculosis growth.
Collapse
Affiliation(s)
- Qiaoling Yan
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dunquan Jiang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lanfang Qian
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qingqing Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weihong Zhou
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kaixia Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China
| | - Luke Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haitao Yang
- College of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zihe Rao
- College of Life Sciences, Nankai University, Tianjin 300071, China; National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China; Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
42
|
Ajmal M, Mir A, Shoaib M, Malik SA, Nasir M. Identification and in silico characterization of p.G380R substitution in FGFR3, associated with achondroplasia in a non-consanguineous Pakistani family. Diagn Pathol 2017; 12:47. [PMID: 28679403 PMCID: PMC5499044 DOI: 10.1186/s13000-017-0642-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 06/29/2017] [Indexed: 12/03/2022] Open
Abstract
Background The dimerization efficiency of FGFR3 transmembrane domain plays a critical role in the formation of a normal skeleton through the negative regulation of bone development. Recently, gain-of-function mutations in the transmembrane domain of FGFR3 has been described associated with an aberrant negative regulation, leading to the development of achondroplasia-group disorders, including achondroplasia (ACH), hypochondroplasia (HCH) and thanatophoric dysplasia (TD). Here, we describe a non-consanguineous Pakistani family with achondroplasia to explain hereditary basis of the disease. Methods PCR-based linkage analysis using microsatellite markers was employed to localize the disease gene. Gene specific intronic primers were used to amplify the genomic DNA from all affected as well as phenotypically healthy individuals. Amplified PCR products were then subjected to Sanger sequencing and RFLP analysis to identify a potentially pathogenic mutation. The impact of identified mutation on FGFR3 protein’s structure and stability was highlighted through different bioinformatics tools. Results Genetic screening of the family revealed a previously reported heterozygous c.1138 G > A (p.G380R) mutation in the coding exon 8 of FGFR3 gene. Identified genetic variation was confirmed in all affected individuals while healthy individuals and controls were found genotypically normal. The results were further validated by RFLP analysis as c.1138 G > A substitution generates a unique recognition site for SfcI endonuclease. Following SfcI digestion, the electrophoretic pattern of three bands/DNA fragments for each patient is indicative of heterozygous status of the disease allele. In silico studies of the mutant FGFR3 protein predicted to adversely affect the stability of FGFR3 protein. Conclusions Mutation in the transmembrane domain may adversely affect the dimerization efficiency and overall stability of the FGFR3, leading to a constitutively active protein. As a result, an uncontrolled intracellular signaling or negative bone growth regulation leads to achondroplasia. Our findings support the fact that p.G380R is a common mutation among diverse population of the world and like other countries, can be used as a molecular diagnosis marker for achondroplasia in Pakistan. Electronic supplementary material The online version of this article (doi:10.1186/s13000-017-0642-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Ajmal
- Institute of Biomedical and Genetic Engineering, 24-Mauve area, G-9/1, Islamabad, 44000, Pakistan
| | - Asif Mir
- Department of Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Muhammad Shoaib
- KRL General Hospital, Orthopedic Department, 24-Mauve area, G-9/1, Islamabad, 44000, Pakistan
| | - Salman Akbar Malik
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 44000, Pakistan
| | - Muhammad Nasir
- Institute of Biomedical and Genetic Engineering, 24-Mauve area, G-9/1, Islamabad, 44000, Pakistan.
| |
Collapse
|
43
|
78495111110.3390/cancers9050052" />
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
|
44
|
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel) 2017; 9:cancers9050052. [PMID: 28513565 PMCID: PMC5447962 DOI: 10.3390/cancers9050052] [Citation(s) in RCA: 1096] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Ping Wee
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
45
|
Bocharov EV, Bragin PE, Pavlov KV, Bocharova OV, Mineev KS, Polyansky AA, Volynsky PE, Efremov RG, Arseniev AS. The Conformation of the Epidermal Growth Factor Receptor Transmembrane Domain Dimer Dynamically Adapts to the Local Membrane Environment. Biochemistry 2017; 56:1697-1705. [DOI: 10.1021/acs.biochem.6b01085] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eduard V. Bocharov
- Department of Structural Biology, Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| | - Pavel E. Bragin
- Department of Structural Biology, Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| | - Konstantin V. Pavlov
- Department of Structural Biology, Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| | - Olga V. Bocharova
- Department of Structural Biology, Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| | - Konstantin S. Mineev
- Department of Structural Biology, Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| | - Anton A. Polyansky
- Department of Structural Biology, Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
- Department of Structural and Computational
Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna
Biocenter 5, Vienna AT-1030, Austria
| | - Pavel E. Volynsky
- Department of Structural Biology, Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| | - Roman G. Efremov
- Department of Structural Biology, Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
- Higher School of Economics, Myasnitskaya ul. 20, Moscow 101000, Russian Federation
| | - Alexander S. Arseniev
- Department of Structural Biology, Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
46
|
King C, Raicu V, Hristova K. Understanding the FRET Signatures of Interacting Membrane Proteins. J Biol Chem 2017; 292:5291-5310. [PMID: 28188294 DOI: 10.1074/jbc.m116.764282] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/07/2017] [Indexed: 12/30/2022] Open
Abstract
FRET is an indispensable experimental tool for studying membrane proteins. Currently, two models are available for researchers to determine the oligomerization state of membrane proteins in a static quenching FRET experiment: the model of Veatch and Stryer, derived in 1977, and the kinetic theory-based model for intraoligomeric FRET, derived in 2007. Because of confinement in two dimensions, a substantial amount of FRET is generated by energy transfer between fluorophores located in separate oligomers in the two-dimensional bilayer. This interoligomeric FRET (also known as stochastic, bystander, or proximity FRET) is not accounted for in either model. Here, we use the kinetic theory formalism to describe the dependence of the FRET efficiency measured in an experiment (i.e. the "total apparent FRET efficiency") on the interoligomeric FRET due to random proximity within the bilayer and the intraoligomeric FRET resulting from protein-protein interactions. We find that data analysis with both models without consideration of the proximity FRET leads to incorrect conclusions about the oligomeric state of the protein. We show that knowledge of the total surface densities of fluorophore-labeled membrane proteins is essential for correctly interpreting the measured total apparent FRET efficiency. We also find that bulk, two-color, static quenching FRET experiments are best suited for the study of monomeric, dimerizing, or dimeric proteins but have limitations in discerning the order of larger oligomers. The theory and methodology described in this work will allow researchers to extract meaningful parameters from static quenching FRET measurements in biological membranes.
Collapse
Affiliation(s)
- Christopher King
- the Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218 and
| | - Valerica Raicu
- the Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53211
| | - Kalina Hristova
- the Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218 and .,From the Department of Materials Science and Engineering and
| |
Collapse
|
47
|
Qureshi T, Goto NK. Impact of Differential Detergent Interactions on Transmembrane Helix Dimerization Affinities. ACS OMEGA 2016; 1:277-285. [PMID: 31457129 PMCID: PMC6640775 DOI: 10.1021/acsomega.6b00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/18/2016] [Indexed: 06/10/2023]
Abstract
Interactions between transmembrane (TM) helices play a critical role in the fundamental processes required for cells to communicate and exchange materials with their surroundings. Our understanding of the factors that promote TM helix interactions has greatly benefited from our ability to study these interactions in the solution phase through the use of membrane-mimetic micelles. However, less is known about the potential influence of juxtamembrane regions flanking the interacting TM helices that may modulate dimerization affinities, even when the interacting surface itself is not altered. To investigate this question, we used solution NMR to quantitate the dimerization affinity of the major coat protein from the M13 bacteriophage in sodium dodecyl sulfate (SDS), a well-characterized model of a single-spanning self-associating TM protein. Here, we showed that a shorter construct lacking the N-terminal amphipathic helix has a higher dimerization affinity relative to that of the full-length protein, with no change in the helical structure between the monomeric and dimeric states in both cases. Although this translated into a 0.6 kcal/mol difference in free energy when the SDS solvent was approximated as a continuous phase, there were deviations from this model at high protein to detergent ratios. Instead, the equilibria were better fit to a model that treats the empty micelle as an active participant in the reaction, giving rise to standard free energies of association that were the same for both full-length and TM-segment constructs. According to this model, the higher apparent affinity of the shorter peptide could be completely explained by the enhanced detergent binding by the monomer relative to that bound by the dimer. Therefore, differential detergent binding between the monomeric and dimeric states provides a mechanism by which TM helix interactions can be modulated by noninteracting juxtamembrane regions.
Collapse
|
48
|
Wang X. CBT profiles of cabozantinib approved for advanced renal cell carcinomas. Cell Biol Toxicol 2016; 32:259-61. [DOI: 10.1007/s10565-016-9349-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/27/2022]
|
49
|
Koschut D, Richert L, Pace G, Niemann HH, Mély Y, Orian-Rousseau V. Live cell imaging shows hepatocyte growth factor-induced Met dimerization. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:1552-8. [PMID: 27094128 DOI: 10.1016/j.bbamcr.2016.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/01/2016] [Accepted: 04/15/2016] [Indexed: 12/24/2022]
Abstract
The canonical model of receptor tyrosine kinase (RTK) activation assumes that ligand-induced dimerization of inactive receptor monomers is a prerequisite for autophosphorylation. For several RTK families, recent results of fluorescence microscopy provided evidence for preformed receptor dimers that may or may not require ligand binding for kinase activity. Here we report, for the first time, the application of advanced quantitative fluorescence microscopy techniques to study changes in the oligomerization state of the RTK Met in response to stimulation by its endogenous ligand hepatocyte growth factor (HGF). We used inducible C-terminal fusions between Met and enhanced green fluorescent protein (EGFP) or red fluorescent protein (RFP) in combination with fluorescence resonance energy transfer (FRET)-based fluorescence-lifetime imaging microscopy (FLIM) and fluorescence correlation spectroscopy (FCS). A small fraction of HGF-independent Met dimers appeared to be present in cells even at low receptor density. At high receptor density, both the fraction of Met dimers and the level of Met autophosphorylation increased in the absence of HGF. Stimulation with HGF at low receptor density significantly increased the fraction of Met dimers on live cells. We found no indications of Met oligomers larger than dimers. Our findings thus confirm a model of Met activation through HGF-induced dimerization and at the same time they support previous reports of Met dimers in unstimulated cells. The tools established in this work will be useful to further characterize the mechanism of Met activation and to define the contribution of co-receptors.
Collapse
Affiliation(s)
- David Koschut
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Postfach 3640, 76021 Karlsruhe, Germany
| | - Ludovic Richert
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie 74 route du Rhin, 67401 Illkirch, France
| | - Giuseppina Pace
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Postfach 3640, 76021 Karlsruhe, Germany
| | - Hartmut H Niemann
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Yves Mély
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie 74 route du Rhin, 67401 Illkirch, France
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Postfach 3640, 76021 Karlsruhe, Germany.
| |
Collapse
|
50
|
Sarabipour S, Ballmer-Hofer K, Hristova K. VEGFR-2 conformational switch in response to ligand binding. eLife 2016; 5:e13876. [PMID: 27052508 PMCID: PMC4829425 DOI: 10.7554/elife.13876] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/09/2016] [Indexed: 01/02/2023] Open
Abstract
VEGFR-2 is the primary regulator of angiogenesis, the development of new blood vessels from pre-existing ones. VEGFR-2 has been hypothesized to be monomeric in the absence of bound ligand, and to undergo dimerization and activation only upon ligand binding. Using quantitative FRET and biochemical analysis, we show that VEGFR-2 forms dimers also in the absence of ligand when expressed at physiological levels, and that these dimers are phosphorylated. Ligand binding leads to a change in the TM domain conformation, resulting in increased kinase domain phosphorylation. Inter-receptor contacts within the extracellular and TM domains are critical for the establishment of the unliganded dimer structure, and for the transition to the ligand-bound active conformation. We further show that the pathogenic C482R VEGFR-2 mutant, linked to infantile hemangioma, promotes ligand-independent signaling by mimicking the structure of the ligand-bound wild-type VEGFR-2 dimer.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, United States
| | - Kurt Ballmer-Hofer
- Laboratory of Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, United States
| |
Collapse
|