1
|
Stergiou IE, Papadakos SP, Karyda A, Tsitsilonis OE, Dimopoulos MA, Theocharis S. EPH/Ephrin Signaling in Normal Hematopoiesis and Hematologic Malignancies: Deciphering Their Intricate Role and Unraveling Possible New Therapeutic Targets. Cancers (Basel) 2023; 15:3963. [PMID: 37568780 PMCID: PMC10417178 DOI: 10.3390/cancers15153963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma receptors (EPHs) represent the largest family of receptor tyrosine kinases (RTKs). EPH interaction with ephrins, their membrane-bound ligands, holds a pivotal role in embryonic development, while, though less active, it is also implicated in various physiological functions during adult life. In normal hematopoiesis, different patterns of EPH/ephrin expression have been correlated with hematopoietic stem cell (HSC) maintenance and lineage-committed hematopoietic progenitor cell (HPC) differentiation, as well as with the functional properties of their mature offspring. Research in the field of hematologic malignancies has unveiled a rather complex involvement of the EPH/ephrinsignaling pathway in the pathophysiology of these neoplasms. Aberrations in genetic, epigenetic, and protein levels have been identified as possible players implicated both in tumor progression and suppression, while correlations have also been highlighted regarding prognosis and response to treatment. Initial efforts to therapeutically target the EPH/ephrin axis have been undertaken in the setting of hematologic neoplasia but are mainly confined to the preclinical level. To this end, deciphering the complexity of this signaling pathway both in normal and malignant hematopoiesis is necessary.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Anna Karyda
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| |
Collapse
|
2
|
Baggio C, Udompholkul P, Gambini L, Pellecchia M. Targefrin: A Potent Agent Targeting the Ligand Binding Domain of EphA2. J Med Chem 2022; 65:15443-15456. [PMID: 36331527 PMCID: PMC9706575 DOI: 10.1021/acs.jmedchem.2c01391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/06/2022]
Abstract
Overexpression of the receptor tyrosine kinase EphA2 is invariably associated with poor prognosis and development of aggressive metastatic cancers. Guided by our recently solved X-ray structure of the complex between an agonistic peptide and EphA2-LBD, we report on a novel agent, targefrin, that binds to EphA2-LBD with a 21 nM dissociation constant by isothermal titration calorimetry and presents an IC50 value of 10.8 nM in a biochemical assay. In cell-based assays, a dimeric version of the agent is as effective as the natural dimeric ligands (ephrinA1-Fc) in inducing cellular receptor internalization and degradation in several pancreatic cancer cell lines. When conjugated with chemotherapy, the agents can effectively deliver paclitaxel to pancreatic cancers in a mouse xenograft study. Given the pivotal role of EphA2 in tumor progression, we are confident that the agents reported could be further developed into innovative EphA2-targeting therapeutics.
Collapse
Affiliation(s)
| | | | - Luca Gambini
- Division of Biomedical Sciences,
School of Medicine, University of California
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences,
School of Medicine, University of California
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| |
Collapse
|
3
|
Lin J, Zeng C, Zhang J, Song Z, Qi N, Liu X, Zhang Z, Li A, Chen F. EFNA4 promotes cell proliferation and tumor metastasis in hepatocellular carcinoma through a PIK3R2/GSK3β/β-catenin positive feedback loop. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:328-341. [PMID: 34484860 PMCID: PMC8397841 DOI: 10.1016/j.omtn.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
Rapid tumor progression, metastasis, and diagnosis in advanced stages of disease are the main reasons for the short survival time and high mortality rate of patients with hepatocellular carcinoma (HCC). Ephrin A4 (EFNA4), the ligand of the EPH family, participates in the development of blood vessels and epithelium by regulating cell migration and rejection. In our study, based on bioinformatics analyses, we found that EFNA4 was highly expressed and led to poor prognosis in patients with HCC. We demonstrated that overexpression of EFNA4 significantly promoted HCC cell proliferation and migration in vivo or in vitro. In addition, knockdown of EFNA4 inhibited the proliferation and migration of HCC cells. Furthermore, EFNA4 was found to directly interact with EPHA2 and promote its phosphorylation at Ser897, followed by recruitment of phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) and activation of the glycogen synthase kinase-3beta (GSK3β)/β-catenin signaling pathway. Moreover, overexpression of β-catenin further promoted the expression of PIK3R2, which formed a positive feedback loop. The results revealed that abnormal expression of EFNA4 is the main switch of the PIK3R2/GSK3β/β-catenin loop that influenced the proliferation and migration of HCC cells and suggest that EFNA4 is a potential prognostic marker and a prospective therapeutic target in patients with HCC.
Collapse
Affiliation(s)
- Junhao Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Cancer Center, Southern Medical University, Guangzhou 510515, China
| | - Chunting Zeng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Cancer Center, Southern Medical University, Guangzhou 510515, China
| | - JiaKang Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Cancer Center, Southern Medical University, Guangzhou 510515, China
| | - Zhenghui Song
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Cancer Center, Southern Medical University, Guangzhou 510515, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Na Qi
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Department of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Xinhui Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Cancer Center, Southern Medical University, Guangzhou 510515, China
| | - Ziyan Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Cancer Center, Southern Medical University, Guangzhou 510515, China
| | - Aimin Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Cancer Center, Southern Medical University, Guangzhou 510515, China
| | - Fengsheng Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Cancer Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Udompholkul P, Baggio C, Gambini L, Sun Y, Zhao M, Hoffman RM, Pellecchia M. Effective Tumor Targeting by EphA2-Agonist-Biotin-Streptavidin Conjugates. Molecules 2021; 26:3687. [PMID: 34204178 PMCID: PMC8235110 DOI: 10.3390/molecules26123687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022] Open
Abstract
We recently reported on a potent synthetic agent, 135H11, that selectively targets the receptor tyrosine kinase, EphA2. While 135H11 possesses a relatively high binding affinity for the ligand-binding domain of EphA2 (Kd~130 nM), receptor activation in the cell required the synthesis of dimeric versions of such agent (namely 135H12). This was expected given that the natural ephrin ligands also need to be dimerized or clustered to elicit agonistic activity in cell. In the present report we investigated whether the agonistic activity of 135H11 could be enhanced by biotin conjugation followed by complex formation with streptavidin. Therefore, we measured the agonistic EphA2 activity of 135H11-biotin (147B5) at various agent/streptavidin ratios, side by side with 135H12, and a scrambled version of 147B5 in pancreatic- and breast-cancer cell lines. The (147B5)n-streptavidin complexes (when n = 2, 3, 4, but not when n = 1) induced a strong receptor degradation effect in both cell lines compared to 135H12 or the (scrambled-147B5)4-streptavidin complex as a control, indicating that multimerization of the targeting agent resulted in an increased ability to cause receptor clustering and internalization. Subsequently, we prepared an Alexa-Fluor-streptavidin conjugate to demonstrate that (147B5)4-AF-streptavidin, but not the scrambled equivalent complex, concentrates in pancreatic and breast cancers in orthotopic nude-mouse models. Hence, we conclude that these novel targeting agents, with proper derivatization with imaging reagents or chemotherapy, can be used as diagnostics, and/or to deliver chemotherapy selectively to EphA2-expressing tumors.
Collapse
Affiliation(s)
- Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (P.U.); (C.B.); (L.G.)
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (P.U.); (C.B.); (L.G.)
| | - Luca Gambini
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (P.U.); (C.B.); (L.G.)
| | - Yu Sun
- AntiCancer Inc., 7917 Ostrow St., San Diego, CA 92111, USA; (Y.S.); (M.Z.); (R.M.H.)
- Department of Surgery, University of California, 9300 Campus Point Dr #7220, La Jolla, San Diego, CA 92037, USA
| | - Ming Zhao
- AntiCancer Inc., 7917 Ostrow St., San Diego, CA 92111, USA; (Y.S.); (M.Z.); (R.M.H.)
| | - Robert M. Hoffman
- AntiCancer Inc., 7917 Ostrow St., San Diego, CA 92111, USA; (Y.S.); (M.Z.); (R.M.H.)
- Department of Surgery, University of California, 9300 Campus Point Dr #7220, La Jolla, San Diego, CA 92037, USA
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (P.U.); (C.B.); (L.G.)
| |
Collapse
|
5
|
Salem AF, Gambini L, Udompholkul P, Baggio C, Pellecchia M. Therapeutic Targeting of Pancreatic Cancer via EphA2 Dimeric Agonistic Agents. Pharmaceuticals (Basel) 2020; 13:ph13050090. [PMID: 32397624 PMCID: PMC7281375 DOI: 10.3390/ph13050090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023] Open
Abstract
Recently, we reported on potent EphA2 targeting compounds and demonstrated that dimeric versions of such agents can exhibit remarkably increased agonistic activity in cellular assays compared to the monomers. Here we further characterize the activity of dimeric compounds at the structural, biochemical, and cellular level. In particular, we propose a structural model for the mechanism of receptor activation by dimeric agents and characterize the effect of most potent compounds in inducing EphA2 activation and degradation in a pancreatic cancer cell line. These cellular studies indicate that the pro-migratory effects induced by the receptor can be reversed in EphA2 knockout cells, by treatment with either a dimeric natural ligand (ephrinA1-Fc), or by our synthetic agonistic dimers. Based on these data we conclude that the proposed agents hold great potential as possible therapeutics in combination with standard of care, where these could help suppressing a major driver for cell migration and tumor metastases. Finally, we also found that, similar to ephrinA1-Fc, dimeric agents cause a sustained internalization of the EphA2 receptor, hence, with proper derivatizations, these could also be used to deliver chemotherapy selectively to pancreatic tumors.
Collapse
|
6
|
Darling TK, Lamb TJ. Emerging Roles for Eph Receptors and Ephrin Ligands in Immunity. Front Immunol 2019; 10:1473. [PMID: 31333644 PMCID: PMC6620610 DOI: 10.3389/fimmu.2019.01473] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022] Open
Abstract
Eph receptors are the largest family of receptor tyrosine kinases and mediate a myriad of essential processes in humans from embryonic development to adult tissue homeostasis through interactions with membrane-bound ephrin ligands. The ubiquitous expression of Eph receptors and ephrin ligands among the cellular players of the immune system underscores the importance of these molecules in orchestrating an optimal immune response. This review provides an overview of the various roles of Eph receptors and ephrin ligands in immune cell development, activation, and migration. We also discuss the role of Eph receptors in disease pathogenesis as well as the implications of Eph receptors as future immunotherapy targets. Given the diverse and critical roles of Eph receptors and ephrin ligands throughout the immune system during both resting and activated states, this review aims to highlight the critical yet underappreciated roles of this family of signaling molecules in the immune system.
Collapse
Affiliation(s)
- Thayer K Darling
- Immunology and Molecular Pathogenesis Program, Emory University Laney Graduate School, Atlanta, GA, United States.,Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Tracey J Lamb
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Evdokimov D, Kreß L, Dinkel P, Frank J, Sommer C, Üçeyler N. Pain-associated Mediators and Axon Pathfinders in Fibromyalgia Skin Cells. J Rheumatol 2019; 47:140-148. [DOI: 10.3899/jrheum.190248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 12/26/2022]
Abstract
Objective.To investigate whether the expression of cytokine, nociception-associated ion channel, and axon guidance genes in patients with skin cell fibromyalgia syndrome (FMS) differs from healthy controls, potentially contributing to pain and small-fiber degeneration in FMS.Methods.We prospectively recruited 128 patients and 26 healthy controls. All study participants underwent neurological examination, and a skin punch biopsy was obtained from the lateral calf and thigh. Skin samples were processed to histologically determine intraepidermal nerve fiber density (IENFD) and for primary fibroblast and keratinocyte cell cultures. Gene expression of selected pro- and antiinflammatory cytokines, nociception-associated ion channels, and axon guidance cues was assessed with quantitative real-time PCR.Results.In fibroblasts, transforming growth factor–ß1 (TGF-ß1) gene expression was higher in patients with FMS compared to controls (calf and thigh: p < 0.001). Also, expression was higher in patients than in controls for these variables: hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (calf: p < 0.01), ephrin-A4 (EFNA4; calf: p < 0.05, thigh: p < 0.001), and ephrin receptor-A4 (EPHA4; thigh: p < 0.05). In keratinocytes, interleukin 10 gene expression was higher in patients with FMS than in controls (thigh: p < 0.05). While no intergroup difference was found for nociception-associated ion channels, EFNA4 and EPHA4 (calf: p < 0.01 each) expression was higher in patients with FMS than in controls. Axon guide expression did not correlate with IENFD.Conclusion.In FMS, skin cells may contribute to cutaneous nociception by differentially expressing membrane-bound and soluble pain mediators and axon pathfinders.
Collapse
|
8
|
Gambini L, Salem AF, Udompholkul P, Tan XF, Baggio C, Shah N, Aronson A, Song J, Pellecchia M. Structure-Based Design of Novel EphA2 Agonistic Agents with Nanomolar Affinity in Vitro and in Cell. ACS Chem Biol 2018; 13:2633-2644. [PMID: 30110533 DOI: 10.1021/acschembio.8b00556] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
EphA2 overexpression is invariably associated with poor prognosis and development of aggressive metastatic cancers in pancreatic, prostate, lung, ovarian, and breast cancers and melanoma. Recent efforts from our laboratories identified a number of agonistic peptides targeting the ligand-binding domain of the EphA2 receptor. The individual agents, however, were still relatively weak in affinities (micromolar range) that precluded detailed structural studies on the mode of action. Using a systematic optimization of the 12-mer peptide mimetic 123B9, we were able to first derive an agent that displayed a submicromolar affinity for the receptor. This agent enabled cocrystallization with the EphA2 ligand-binding domain providing for the first time the structural basis for their agonistic mechanism of action. In addition, the atomic coordinates of the complex enabled rapid iterations of structure-based optimizations that resulted in a novel agonistic agent, named 135H11, with a nanomolar affinity for the receptor, as demonstrated by in vitro binding assays (isothermal titration calorimetry measurements), and a biochemical displacement assay. As we have recently demonstrated, the cellular activity of these agents is further increased by synthesizing dimeric versions of the compounds. Hence, we report that a dimeric version of 135H11 is extremely effective at low nanomolar concentrations to induce cellular receptor activation, internalization, and inhibition of cell migration in a pancreatic cancer cell line. Given the pivotal role of EphA2 in tumor growth, angiogenesis, drug resistance, and metastasis, these agents, and the associated structural studies, provide significant advancements in the field for the development of novel EphA2-targeting therapeutics or diagnostics.
Collapse
Affiliation(s)
- Luca Gambini
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ahmed F. Salem
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Xiao-Feng Tan
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Neh Shah
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Alexander Aronson
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jikui Song
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
9
|
Salem AF, Wang S, Billet S, Chen JF, Udompholkul P, Gambini L, Baggio C, Tseng HR, Posadas EM, Bhowmick NA, Pellecchia M. Reduction of Circulating Cancer Cells and Metastases in Breast-Cancer Models by a Potent EphA2-Agonistic Peptide-Drug Conjugate. J Med Chem 2018; 61:2052-2061. [PMID: 29470068 PMCID: PMC5907794 DOI: 10.1021/acs.jmedchem.7b01837] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
EphA2
overexpression has been associated with metastasis in multiple
cancer types, including melanomas and ovarian, prostate, lung, and
breast cancers. We have recently proposed the development of peptide–drug
conjugates (PDCs) using agonistic EphA2-targeting agents, such as
the YSA peptide or its optimized version, 123B9. Although our studies
indicated that YSA– and 123B9–drug conjugates can selectively
deliver cytotoxic drugs to cancer cells in vivo, the relatively low
cellular agonistic activities (i.e., the high micromolar concentrations
required) of the agents toward the EphA2 receptor remained a limiting
factor to the further development of these PDCs in the clinic. Here,
we report that a dimeric version of 123B9 can induce receptor activation
at nanomolar concentrations. Furthermore, we demonstrated that the
conjugation of dimeric 123B9 with paclitaxel is very effective at
targeting circulating tumor cells and inhibiting lung metastasis in
breast-cancer models. These studies represent an important step toward
the development of effective EphA2-targeting PDCs.
Collapse
Affiliation(s)
- Ahmed F Salem
- Division of Biomedical Sciences, School of Medicine , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States
| | - Si Wang
- Sanford-Burnham-Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Sandrine Billet
- Department of Medicine , Cedars-Sinai Medical Center , 8700 Beverly Boulevard , Los Angeles , California 90048 , United States
| | - Jie-Fu Chen
- Department of Medicine , Cedars-Sinai Medical Center , 8700 Beverly Boulevard , Los Angeles , California 90048 , United States
| | - Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States
| | - Luca Gambini
- Division of Biomedical Sciences, School of Medicine , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States
| | - Hsian-Rong Tseng
- Department of Molecular & Medical Pharmacology , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
| | - Edwin M Posadas
- Department of Medicine , Cedars-Sinai Medical Center , 8700 Beverly Boulevard , Los Angeles , California 90048 , United States
| | - Neil A Bhowmick
- Department of Medicine , Cedars-Sinai Medical Center , 8700 Beverly Boulevard , Los Angeles , California 90048 , United States.,Department of Research , Greater Los Angeles Veterans Administration , Los Angeles , California 90073 , United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States
| |
Collapse
|
10
|
Flores MA, Fortea P, Trinidad EM, García D, Soler G, Ortuño FJ, Zapata AG, Alonso-Colmenar LM. EphrinA4 plays a critical role in α4 and αL mediated survival of human CLL cells during extravasation. Oncotarget 2018; 7:48481-48500. [PMID: 27374180 PMCID: PMC5217033 DOI: 10.18632/oncotarget.10311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/08/2016] [Indexed: 11/25/2022] Open
Abstract
A role of endothelial cells in the survival of CLL cells during extravasation is presently unknown. Herein we show that CLL cells but not normal B cells can receive apoptotic signals through physical contact with TNF-α activated endothelium impairing survival in transendothelial migration (TEM) assays. In addition, the CLL cells of patients having lymphadenopathy (LApos) show a survival advantage during TEM that can be linked to increased expression of α4 and αL integrin chains. Within this context, ephrinA4 expressed on the surface of CLL cells sequestrates integrins and inactivates them resulting in reduced adhesion and inhibition of apoptotic/survival signals through them. In agreement, ephrinA4 silencing resulted in increased survival of CLL cells of LApos patients but not LA neg patients. Similarly was observed when a soluble ephrinA4 isoform was added to TEM assays strongly suggesting that accumulation of this isoform in the serum of LApos patients could contribute to CLL cells dissemination and survival in vivo. In supporting, CLL lymphadenopathies showed a preferential accumulation of apoptotic CLL cells around high endothelial venules lacking ephrinA4. Moreover, soluble ephrinA4 isolated from sera of patients increased the number and viability of CLL cells recovered from the lymph nodes of adoptively transferred mice. Finally, we present evidence suggesting that soluble ephrinA4 mediated survival during TEM could enhance a transcellular TEM route of the CLL cells. Together these findings point to an important role of ephrinA4 in the nodal dissemination of CLL cells governing extravasation and survival.
Collapse
Affiliation(s)
- Miguel A Flores
- Cytometry and Fluorescence Microscopy Research Center, Universidad Complutense de Madrid, 28040 Madrid, Spain.,Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, José Antonio Nováis, 2, 28040 Madrid, Spain
| | - Paula Fortea
- Cytometry and Fluorescence Microscopy Research Center, Universidad Complutense de Madrid, 28040 Madrid, Spain.,Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, José Antonio Nováis, 2, 28040 Madrid, Spain
| | - Eva M Trinidad
- Transformation and Metastasis Group, Cancer Epigenetic and Molecular Biology Program (PEBC), IDIBELL, 08908 Barcelona, Spain
| | - Dolores García
- Hematology and Medical Oncology Department, HGU Morales Meseguer, Marqués de los Velez, 30008 Murcia, Spain
| | - Gloria Soler
- Hematology and Medical Oncology Department, HGU Morales Meseguer, Marqués de los Velez, 30008 Murcia, Spain
| | - Francisco J Ortuño
- Hematology and Medical Oncology Department, HGU Morales Meseguer, Marqués de los Velez, 30008 Murcia, Spain
| | - Agustín G Zapata
- Cytometry and Fluorescence Microscopy Research Center, Universidad Complutense de Madrid, 28040 Madrid, Spain.,Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, José Antonio Nováis, 2, 28040 Madrid, Spain
| | - Luis M Alonso-Colmenar
- Cytometry and Fluorescence Microscopy Research Center, Universidad Complutense de Madrid, 28040 Madrid, Spain.,Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, José Antonio Nováis, 2, 28040 Madrid, Spain
| |
Collapse
|
11
|
Targeted therapies in hematological malignancies using therapeutic monoclonal antibodies against Eph family receptors. Exp Hematol 2017; 54:31-39. [PMID: 28751189 DOI: 10.1016/j.exphem.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022]
Abstract
The use of monoclonal antibodies (mAbs) and molecules derived from them has achieved considerable attention and success in recent years, establishing this mode of therapy as an important therapeutic strategy in many cancers, in particular hematological tumors. mAbs recognize cell surface antigens expressed on target cells and mediate their function through various mechanisms such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, or immune system modulation. The efficacy of mAb therapy can be improved when they are conjugated to a highly potent payloads, including cytotoxic drugs and radiolabeled isotopes. The Eph family of proteins has received considerable attention in recent years as therapeutic targets for treatment of both solid and hematological cancers. High expression of Eph receptors on cancer cells compared with low expression levels in normal adult tissues makes them an attractive candidate for cancer immunotherapy. In this review, we detail the modes of action of antibody-based therapies with a focus on the Eph family of proteins as potential targets for therapy in hematological malignancies.
Collapse
|
12
|
Alfaro D, García-Ceca J, Farias-de-Oliveira DA, Terra-Granado E, Montero-Herradón S, Cotta-de-Almeida V, Savino W, Zapata A. EphB2 and EphB3 play an important role in the lymphoid seeding of murine adult thymus. J Leukoc Biol 2015; 98:883-96. [DOI: 10.1189/jlb.1hi1114-568r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/09/2015] [Indexed: 11/24/2022] Open
|
13
|
Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, Lackmann M, Boyd AW. Eph/Ephrin signaling in injury and inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1493-503. [PMID: 23021982 DOI: 10.1016/j.ajpath.2012.06.043] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/28/2012] [Indexed: 12/20/2022]
Abstract
The Eph/ephrin receptor-ligand system plays an important role in embryogenesis and adult life, principally by influencing cell behavior through signaling pathways, resulting in modification of the cell cytoskeleton and cell adhesion. There are 10 EphA receptors, and six EphB receptors, distinguished on sequence difference and binding preferences, that interact with the six glycosylphosphatidylinositol-linked ephrin-A ligands and the three transmembrane ephrin-B ligands, respectively. The Eph/ephrin proteins, originally described as developmental regulators that are expressed at low levels postembryonically, are re-expressed after injury to the optic nerve, spinal cord, and brain in fish, amphibians, rodents, and humans. In rodent spinal cord injury, the up-regulation of EphA4 prevents recovery by inhibiting axons from crossing the injury site. Eph/ephrin proteins may be partly responsible for the phenotypic changes to the vascular endothelium in inflammation, which allows fluid and inflammatory cells to pass from the vascular space into the interstitial tissues. Specifically, EphA2/ephrin-A1 signaling in the lung may be responsible for pulmonary inflammation in acute lung injury. A role in T-cell maturation and chronic inflammation (heart failure, inflammatory bowel disease, and rheumatoid arthritis) is also reported. Although there remains much to learn about Eph/ephrin signaling in human disease, and specifically in injury and inflammation, this area of research raises the exciting prospect that novel therapies will be developed that precisely target these pathways.
Collapse
Affiliation(s)
- Mark G Coulthard
- Academic Discipline of Paediatrics and Child Health, University of Queensland, Royal Children's Hospital, Herston, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mendes-da-Cruz DA, Stimamiglio MA, Muñoz JJ, Alfaro D, Terra-Granado E, Garcia-Ceca J, Alonso-Colmenar LM, Savino W, Zapata AG. Developing T-cell migration: role of semaphorins and ephrins. FASEB J 2012; 26:4390-9. [PMID: 22815386 DOI: 10.1096/fj.11-202952] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell migration is a crucial event for normal T-cell development, and various ligand/receptor pairs have been implicated. Most of them, including chemokines and extracellular matrix proteins, have attractant properties on thymocytes. We discuss herein two further groups of ligand/receptor pairs, semaphorins/neuropilins and ephs/ephrins, which are constitutively expressed by thymocytes and thymic microenvironmental cells. Evidence shows that the corresponding interactions are relevant for developing T-cell migration, including the entry of bone marrow progenitor cells, migration of CD4/CD8-defined thymocyte subpopulations triggered by chemokines and/or extracellular matrix proteins, and thymocyte export. Conceptually, the data summarized here show that thymocyte migration results from a complex network of molecular interactions, which generate not only attraction, but also repulsion of migrating T-cell precursors.
Collapse
|
15
|
Miao H, Wang B. EphA receptor signaling--complexity and emerging themes. Semin Cell Dev Biol 2011; 23:16-25. [PMID: 22040915 DOI: 10.1016/j.semcdb.2011.10.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/17/2011] [Indexed: 01/09/2023]
Abstract
The impact of Eph and ephrin signaling on cell behavior is complex and highly context dependent. Forward signaling initiated by Eph receptor activation and reverse signaling initiated by ephrin activation often mediate opposite effects. The apparent ligand-independent functions of Eph receptors recognized recently add another layer of complexity. This review will attempt to sort out the information generated recently on signaling by the A subfamily of Eph receptors and ephrin ligands. We will focus on EphA/ephrin-A signaling in the context of several physiological and disease processes, where new progresses have been made lately and unifying themes are emerging amid previous confusions. For more comprehensive survey of literature on Eph/ephrin signaling pathways and networks, readers are referred to outstanding reviews both in this volume and in other recent publications.
Collapse
Affiliation(s)
- Hui Miao
- Rammelkamp Center for Research, MetroHealth Campus, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| | | |
Collapse
|
16
|
Wang P, Wang L, Ding ZL, Zeng KF, Jin HL, Zhu H, Shi RH. Expression of EphA2 under hypoxia promotes vasculogenic mimicry in esophageal squamous cell carcinoma cells. Shijie Huaren Xiaohua Zazhi 2011; 19:996-1000. [DOI: 10.11569/wcjd.v19.i10.996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of expression of Eph receptor tyrosine kinase A2 (EphA2) under normoxia and hypoxia on vasculogenic mimicry in esophageal squamous cell carcinoma cells.
METHODS: The expression of EphA2 mRNA and protein was measured by RT-PCR and Western blot in two esophageal cancer cell lines Eca109 and TE13 incubated under normoxia and hypoxia. Eca109 and TE13 cells were then transfected with a plasmid harboring small interfering RNA (siRNA) targeting EphA2. Tubular network formation in Eca109 and TE13 cells before and after siRNA transfection was analyzed using the three-dimensional Matrigel culture system under normoxia and hypoxia.
RESULTS: The expression of EphA2 in Eca109 and TE13 cells was obviously enhanced under hypoxia (P < 0.05). The numbers of tubular networks remarkably increased in both Eca109 and TE13 cells under hypoxia (P < 0.05). Although the numbers of tubules obviously increased under both hypoxia and normoxia, the increase was more significant under hypoxia (P < 0.01). Tubule-forming ability of cells transfected with a plasmid harboring small interfering RNA targeting EphA2 was significantly reduced.
CONCLUSION: Enhanced expression of EphA2 under hypoxia can increase the numbers of tubular networks in esophageal squamous cell carcinoma cells. Tubule-forming ability of cells transfected with a plasmid harboring siRNA targeting EphA2 was significantly inhibited. EphA2 may play an essential role in the formation of vasculogenic mimicry under hypoxia.
Collapse
|
17
|
Muñoz JJ, Cejalvo T, Alonso-Colmenar LM, Alfaro D, Garcia-Ceca J, Zapata A. Eph/Ephrin-mediated interactions in the thymus. Neuroimmunomodulation 2011; 18:271-80. [PMID: 21952679 DOI: 10.1159/000329490] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In the present study, we review available information on the relevance of Eph and ephrins in numerous processes occurring in the thymus that regulate not only T cell differentiation but also thymic epithelial cell (TEC) development and organization. Eph/ephrins are a large family of receptors and ligands involved in organogenesis and homeostasis of adult tissues. They are extensively expressed in the thymus and seem to be involved in the colonization of lymphoid progenitor cells and their migration throughout the thymic parenchyma necessary to provide an adequate topological location of developing thymocytes in the epithelial network that ensures their correct differentiation. In addition, EphB2 and EphB3 play a cell-autonomous role in regulating the transitions of double-negative to double-positive cells and of double-positive to single-positive thymocytes and the lack of these molecules or their ligands ephrin B1 and ephrin B2 induces profound alterations of the TEC maturation and in the arrangement of epithelial network. We emphasize that these results are largely reflecting the role played by this family of molecules in controlling thymocyte-TEC interactions within the thymus.
Collapse
Affiliation(s)
- Juan Jose Muñoz
- Cytometry and Fluorescence Microscopy Center, Faculty of Biology, Complutense University, Madrid, Spain
| | | | | | | | | | | |
Collapse
|