1
|
Gao H, Chen Z, Zhao L, Ji C, Xing F. Cellular functions, molecular signalings and therapeutic applications: Translational potential of deubiquitylating enzyme USP9X as a drug target in cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189099. [PMID: 38582329 DOI: 10.1016/j.bbcan.2024.189099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Protein ubiquitination, one of the most significant post-translational modifications, plays an important role in controlling the proteins activity in diverse cellular processes. The reversible process of protein ubiquitination, known as deubiquitination, has emerged as a critical mechanism for maintaining cellular homeostasis. The deubiquitinases (DUBs), which participate in deubiquitination process are increasingly recognized as potential candidates for drug discovery. Among these DUBs, ubiquitin-specific protease 9× (USP9X), a highly conserved member of the USP family, exhibits versatile functions in various cellular processes, including the regulation of cell cycle, protein endocytosis, apoptosis, cell polarity, immunological microenvironment, and stem cell characteristics. The dysregulation and abnormal activities of USP9X are influenced by intricate cellular signaling pathway crosstalk and upstream non-coding RNAs. The complex expression patterns and controversial clinical significance of USP9X in cancers suggest its potential as a prognostic biomarker. Furthermore, USP9X inhibitors has shown promising antitumor activity and holds the potential to overcome therapeutic resistance in preclinical models. However, a comprehensive summary of the role and molecular functions of USP9X in cancer progression is currently lacking. In this review, we provide a comprehensive delineation of USP9X participation in numerous critical cellular processes, complicated signaling pathways within the tumor microenvironment, and its potential translational applications to combat therapeutic resistance. By systematically summarizing the updated molecular mechanisms of USP9X in cancer biology, this review aims to contribute to the advancement of cancer therapeutics and provide essential insights for specialists and clinicians in the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
2
|
Maji A, Paul A, Sarkar A, Nahar S, Bhowmik R, Samanta A, Nahata P, Ghosh B, Karmakar S, Kumar Maity T. Significance of TRAIL/Apo-2 ligand and its death receptors in apoptosis and necroptosis signalling: Implications for cancer-targeted therapeutics. Biochem Pharmacol 2024; 221:116041. [PMID: 38316367 DOI: 10.1016/j.bcp.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The human immune defensesystem routinely expresses the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is the most prevalent element for antitumor immunity. TRAIL associates with its death receptors (DRs), DR4 (TRAIL-R1), and DR5 (TRAIL-R2), in cancer cells to initiate the intracellular apoptosis cascade. Accordingly, numerous academic institutions and pharmaceutical companies havetried to exploreTRAIL's capacity to kill tumourcells by producing recombinant versions of it (rhTRAIL) or TRAIL receptor agonists (TRAs) [monoclonal antibody (mAb), synthetic and natural compounds, etc.] and molecules that sensitize TRAIL signalling pathway for therapeutic applications. Recently, several microRNAs (miRs) have been found to activate or inhibit death receptor signalling. Therefore, pharmacological regulation of these miRs may activate or resensitize the TRAIL DRs signal, and this is a novel approach for developing anticancer therapeutics. In this article, we will discuss TRAIL and its receptors and molecular pathways by which it induces various cell death events. We will unravel potential innovative applications of TRAIL-based therapeutics, and other investigated therapeutics targeting TRAIL-DRs and summarize the current preclinical pharmacological studies and clinical trials. Moreover, we will also emphasizea few situations where future efforts may be addressed to modulate the TRAIL signalling pathway.
Collapse
Affiliation(s)
- Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Sourin Nahar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Ajeya Samanta
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Pankaj Nahata
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India.
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| |
Collapse
|
3
|
He J, Qiu W, Li Y, Wei C, Bai Z, Jia J, Cai H. Advances in the Application of Apoptotic Proteins and Alternative Splicing in Tumor Therapy: A Narrative Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:1311-1319. [PMID: 37593500 PMCID: PMC10430389 DOI: 10.18502/ijph.v52i7.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/18/2023] [Indexed: 08/19/2023]
Abstract
An apoptosis-resistant state determined by apoptotic protein expression is commonly seen in the initiation, progression, and treatment failure stages of human cancer, and anti-tumor drugs targeting apoptotic proteins have been increasingly developed over the past three decades. However, the frequently alternative splicing of apoptotic proteins diminished the ability of targeting drugs to bind to apoptotic proteins and, consequently, limit the drug efficacy. Currently, accumulating evidence has demonstrated that many alternative splicing events have been associated to apoptosis resistance in different cancers. Therefore, the intervention targeting alternative splicing for regulating tumor cell apoptosis is expected to become a new strategy and new direction of antitumor therapy. Here, we present well established alternative splicing events that occur in different apoptosis-related genes and their modification by several approaches with cancer therapeutic purposes.
Collapse
Affiliation(s)
- Jin He
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Weitao Qiu
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou 730050, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Chaojun Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Zhongtian Bai
- The Second Department of General Surgery, Lanzhou University First Hospital, Lanzhou 730000, China
| | - Jing Jia
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Hui Cai
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, China
| |
Collapse
|
4
|
Tuomela K, Ambrose AR, Davis DM. Escaping Death: How Cancer Cells and Infected Cells Resist Cell-Mediated Cytotoxicity. Front Immunol 2022; 13:867098. [PMID: 35401556 PMCID: PMC8984481 DOI: 10.3389/fimmu.2022.867098] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cytotoxic lymphocytes are critical in our immune defence against cancer and infection. Cytotoxic T lymphocytes and Natural Killer cells can directly lyse malignant or infected cells in at least two ways: granule-mediated cytotoxicity, involving perforin and granzyme B, or death receptor-mediated cytotoxicity, involving the death receptor ligands, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). In either case, a multi-step pathway is triggered to facilitate lysis, relying on active pro-death processes and signalling within the target cell. Because of this reliance on an active response from the target cell, each mechanism of cell-mediated killing can be manipulated by malignant and infected cells to evade cytolytic death. Here, we review the mechanisms of cell-mediated cytotoxicity and examine how cells may evade these cytolytic processes. This includes resistance to perforin through degradation or reduced pore formation, resistance to granzyme B through inhibition or autophagy, and resistance to death receptors through inhibition of downstream signalling or changes in protein expression. We also consider the importance of tumour necrosis factor (TNF)-induced cytotoxicity and resistance mechanisms against this pathway. Altogether, it is clear that target cells are not passive bystanders to cell-mediated cytotoxicity and resistance mechanisms can significantly constrain immune cell-mediated killing. Understanding these processes of immune evasion may lead to novel ideas for medical intervention.
Collapse
Affiliation(s)
| | | | - Daniel M. Davis
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Abstract
For over three decades, a mainstay and goal of clinical oncology has been the development of therapies promoting the effective elimination of cancer cells by apoptosis. This programmed cell death process is mediated by several signalling pathways (referred to as intrinsic and extrinsic) triggered by multiple factors, including cellular stress, DNA damage and immune surveillance. The interaction of apoptosis pathways with other signalling mechanisms can also affect cell death. The clinical translation of effective pro-apoptotic agents involves drug discovery studies (addressing the bioavailability, stability, tumour penetration, toxicity profile in non-malignant tissues, drug interactions and off-target effects) as well as an understanding of tumour biology (including heterogeneity and evolution of resistant clones). While tumour cell death can result in response to therapy, the selection, growth and dissemination of resistant cells can ultimately be fatal. In this Review, we present the main apoptosis pathways and other signalling pathways that interact with them, and discuss actionable molecular targets, therapeutic agents in clinical translation and known mechanisms of resistance to these agents.
Collapse
Affiliation(s)
| | - Wafik S El-Deiry
- The Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Wan Z, Zhang X, Yu X, Hou Y. Prognostic significance of serum soluble DR5 levels in small-cell lung cancer. Int J Med Sci 2019; 16:403-408. [PMID: 30911274 PMCID: PMC6428977 DOI: 10.7150/ijms.28814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
The death receptor 5 (DR5) is a member of the tumor necrosis factor receptor superfamily that can transduce the apoptosis signal in cells. This study assessed serum levels of soluble death receptor 5 (sDR5) in small-cell lung cancer (SCLC) patients compared with those in healthy controls. Clinicopathological features of patients, treatment responses, and overall survival of patients were also recorded and analyzed. The sDR5 levels were analyzed using ELISA in 50 healthy controls and 82 SCLC patients before and after first-line chemotherapy. The statistical data showed that pre-treatment levels of serum sDR5 in SCLC patients were higher than those of healthy controls (P<0.001). Pre-treatment levels of serum sDR5 were significantly associated with smoking history of patients, Veterans Administration Lung Study Group (VALSG) stage, tumor size, and lymph node (N) metastasis (P=0.028, 0.001, 0.028, and 0.01, respectively). After treatment with the first-line chemotherapy, the post-treatment levels of serum sDR5 were obviously decreased (P<0.001), and correlated with treatment responses (P<0.001), although there was no significant difference in their pretreatment sDR5 levels (P=0.62). Cox proportional hazard analysis demonstrated that the post-treatment levels of serum sDR5, VALSG stage, and PS status were all independent predictors for overall survival of patients. The results from the current study indicate that serum level of sDR5 could be further confirmed as a biomarker to predict treatment responses and survival of SCLC patients.
Collapse
Affiliation(s)
- Zhenfa Wan
- Department of Medical Imaging, The Fourth Hospital of Jinan City, Shandong, 250014, China
| | - Xiaoshan Zhang
- Department of Medical Imaging, Weihaiwei People's Hospital, Weihai, Shandong, 264200, China
| | - Xinshuang Yu
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, China
| | - Yong Hou
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, China
| |
Collapse
|
7
|
Liguori M, Buracchi C, Pasqualini F, Bergomas F, Pesce S, Sironi M, Grizzi F, Mantovani A, Belgiovine C, Allavena P. Functional TRAIL receptors in monocytes and tumor-associated macrophages: A possible targeting pathway in the tumor microenvironment. Oncotarget 2018; 7:41662-41676. [PMID: 27191500 PMCID: PMC5173086 DOI: 10.18632/oncotarget.9340] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/06/2016] [Indexed: 12/01/2022] Open
Abstract
Despite the accepted dogma that TRAIL kills only tumor cells and spares normal ones, we show in this study that mononuclear phagocytes are susceptible to recombinant TRAIL via caspase-dependent apoptosis. Human resting monocytes and in vitro-differentiated macrophages expressed substantial levels of the functional TRAIL receptors (TRAIL-R1 and TRAIL-R2), while neutrophils and lymphocytes mostly expressed the non-signaling decoy receptor (TRAIL-R3). Accordingly, exclusively monocytes and macrophages activated caspase-8 and underwent apoptosis upon recombinant TRAIL treatment. TRAIL-Rs were up-regulated by anti-inflammatory agents (IL-10, glucocorticoids) and by natural compounds (Apigenin, Quercetin, Palmitate) and their treatment resulted in increased TRAIL-induced apoptosis. In mice, the only signaling TRAIL-R (DR5) was preferentially expressed by blood monocytes rather than neutrophils or lymphocytes. In both mice and humans, Tumor-Associated Macrophages (TAM) expressed functional TRAIL-R, while resident macrophages in normal tissues did not. As a proof of principle, we treated mice bearing a murine TRAIL-resistant fibrosarcoma with recombinant TRAIL. We observed significant decrease of circulating monocytes and infiltrating TAM, as well as reduced tumor growth and lower metastasis formation. Overall, these findings demonstrate that human and murine monocytes/macrophages are, among leukocytes, uniquely susceptible to TRAIL-mediated killing. This differential susceptibility to TRAIL could be exploited to selectively target macrophages in tumors.
Collapse
Affiliation(s)
- Manuela Liguori
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Chiara Buracchi
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Fabio Pasqualini
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Francesca Bergomas
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Samantha Pesce
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Marina Sironi
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Alberto Mantovani
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy.,Humanitas University, 20089 Rozzano, Milano, Italy
| | - Cristina Belgiovine
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Paola Allavena
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy.,Humanitas University, 20089 Rozzano, Milano, Italy
| |
Collapse
|
8
|
Han H, Zhou H, Li J, Feng X, Zou D, Zhou W. TRAIL DR5-CTSB crosstalk participates in breast cancer autophagy initiated by SAHA. Cell Death Discov 2017; 3:17052. [PMID: 29018571 PMCID: PMC5629629 DOI: 10.1038/cddiscovery.2017.52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 01/03/2023] Open
Abstract
To investigate the ability of SAHA-induced TRAIL DR5-CTSB crosstalk to initiate the breast cancer autophagy, RTCA assay was performed to assess the effect of SAHA on breast cancer cells, and western blot and ELISA were used to verify the inductive effects on expression of CTSB. Breast cancer cells were transfected with TRAIL DR5 siRNA to block the function of TRAIL DR5. Cell viability and apoptosis of breast cancer cells were analyzed using a muse cell analyzer. The distribution of LC3-II in TRAIL DR5-silenced breast cancer cells treated with SAHA was observed by immunofluorescence microscopy, the mRNA levels of autophagy-related genes were detected by RNA microarray, and the activity of autophagy-related signaling pathways was screened by MAPK antibody array. Results indicated that SAHA did indeed repress the growth of breast cancer cell lines with inducing CTSB expression. Western blot and ELISA results indicated that TRAIL DR5 was involved in the expression of CTSB in SAHA-induced breast cancer cells. Cell viability and apoptosis assays showed that the inactivation of TRAIL DR5 can significantly inhibit the effects of SAHA. An immunofluorescence assay indicated that, with SAHA treatment, MDA-MB-231 and MCF-7 cells underwent apparent morphological changes. While SAHA was added in the TRAIL-DR5 blocked cells, the distribution of LC3-II signal was dispersed, the intensity of fluorescence signal was weaker than that of SAHA alone. RNA array indicated that SAHA significantly increased mRNA expression of autophagy marker LC3A/B whereas the change was significantly reversed in TRAIL DR5-silenced cells. The results of MAPK antibody array showed that SAHA and TRAIL DR5 could affect the activity of AKT1, AKT2, and TOR protein in breast cancer cells. These results provide more evidence that SAHA may stimulate TRAIL DR5-CTSB crosstalk, influence the activity of downstream TOR signalling pathway mainly through the AKTs pathway, and initiate the autophagy of breast cancer cells.
Collapse
Affiliation(s)
- Han Han
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Hui Zhou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Jing Li
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Xiuyan Feng
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Dan Zou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Weiqiang Zhou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| |
Collapse
|
9
|
Tewary P, Gunatilaka AAL, Sayers TJ. Using natural products to promote caspase-8-dependent cancer cell death. Cancer Immunol Immunother 2017; 66:223-231. [PMID: 27286684 PMCID: PMC11029654 DOI: 10.1007/s00262-016-1855-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
Abstract
The selective killing of cancer cells without toxicity to normal nontransformed cells is an idealized goal of cancer therapy. Thus, there has been much interest in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a protein that appears to selectively kill cancer cells. TRAIL has been reported to trigger apoptosis and under some circumstances, an alternate death signaling pathway termed necroptosis. The relative importance of necroptosis for cell death induction in vivo is under intensive investigation. Nonetheless, many cancer cells (particularly those freshly isolated from cancer patients) are highly resistant to TRAIL-mediated cell death. Therefore, there is an underlying interest in identifying agents that can be combined with TRAIL to improve its efficacy. There are numerous reports in which combination of TRAIL with standard antineoplastic drugs has resulted in enhanced cancer cell death in vitro. However, many of these chemotherapeutic drugs are nonspecific and associated with adverse effects, which raise serious concerns for cancer therapy in patients. By contrast, natural products have been shown to be safer and efficacious alternatives. Recently, a number of studies have suggested that certain natural products when combined with TRAIL can enhance cancer cell death. In this review, we highlight molecular pathways that might be targeted by various natural products to promote cell death, and focus on our recent work with withanolides as TRAIL sensitizers. Finally, we will suggest synergistic approaches for combining active withanolides with various forms of immunotherapy to promote cancer cell death and an effective antitumor immune response.
Collapse
Affiliation(s)
- Poonam Tewary
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Frederick, MD, 21702, USA.
- Basic Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | - Thomas J Sayers
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Frederick, MD, 21702, USA.
- Basic Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
10
|
Xiao Q, Qian Z, Zhang W, Liu J, Hu E, Zhang J, Li M, Wang J, Kong F, Li Y, Wang R, Tan X, He D, Xiao X. Depletion of CABYR-a/b sensitizes lung cancer cells to TRAIL-induced apoptosis through YAP/p73-mediated DR5 upregulation. Oncotarget 2017; 7:9513-24. [PMID: 26843620 PMCID: PMC4891056 DOI: 10.18632/oncotarget.7069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/13/2016] [Indexed: 12/24/2022] Open
Abstract
Our previous study revealed that knockdown of CABYR-a/b increases the chemosensitivity of lung cancer cells through inactivation of Akt. Here, we demonstrated that depletion of CABYR-a/b significantly increased DR5 expression and sensitized lung cancer cells to TRAIL-induced apoptosis in vitro and/or in vivo. Importantly, treatment with AD5-10, a DR5-specific agonistic monoclonal antibody, was able to mimic TRAIL-induced apoptosis in CABYR-a/b-silenced cells. Strikingly, we identified that depletion of CABYR-a/b not only increased the expressions of p73 and DR5 but also decreased the phosphorylation of YAP S127. Loss- or gain-of-function studies of YAP and p73 revealed that double deletions of YAP and p73 effectively decreased the expression of DR5 and abolished TRAIL-induced apoptosis in CABYR-a/b knockdown cells. Conversely, the co-overexpression of YAP and p73 promoted the expression of DR5 and sensitized cells to TRAIL-induced apoptosis. Taken together, our results demonstrate that depletion of CABYR-a/b sensitizes lung cancer cells to TRAIL-induced apoptosis through YAP/p73-mediated DR5 upregulation.
Collapse
Affiliation(s)
- Qianqian Xiao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Zunlei Qian
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China.,College of Forensic Sciences, People's Public Security University of China, Beijing, China
| | - Weiqing Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Jin Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Enze Hu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Jinsan Zhang
- School of Pharmaceutical Sciences and Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingying Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China.,Center of Reproduction and Genetics, First People's Hospital of Yunnan Province, Kunming, China
| | - Junhao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Fei Kong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Yunguang Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Rui Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Xiaohua Tan
- School of Pharmaceutical Sciences and Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dacheng He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Xueyuan Xiao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Engineered adenovirus fiber shaft fusion homotrimer of soluble TRAIL with enhanced stability and antitumor activity. Cell Death Dis 2016; 7:e2274. [PMID: 27336718 PMCID: PMC5143403 DOI: 10.1038/cddis.2016.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/15/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
Abstract
Successful cancer therapies aim to induce selective apoptosis in neoplastic cells. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered an attractive anticancer agent due to its tumor cell-specific cytotoxicity. However, earlier studies with recombinant TRAIL revealed many shortcomings, including a short half-life, off-target toxicity and existence of TRAIL-resistant tumor cells. In this study, we developed a novel engineering strategy for recombinant soluble TRAIL by redesigning its structure with the adenovirus knobless fiber motif to form a stable homotrimer with improved antitumor activity. The result is a highly stable fiber-TRAIL fusion protein that could form homotrimers similar to natural TRAIL. The recombinant fusion TRAIL developed here displayed high specific activity in both cell-based assays in vitro and animal tests in vivo. This construct will serve as a foundation for a new generation of recombinant proteins suitable for use in preclinical and clinical studies and for effective combination therapies to overcome tumor resistance to TRAIL.
Collapse
|
12
|
Abstract
Several molecular pathways have been shown to play critical roles in the pathogenesis of odontogenic tumors. These neoplasms arise from the epithelial or mesenchymal cells of the dental apparatus in the jaw or oral mucosa. Next generation genomic sequencing has identified gene mutations or single nucleotide polymorphisms associated with many of these tumors. In this review, we focus on two of the most common odontogenic tumor subtypes: ameloblastoma and keratocystic odontogenic tumors. We highlight gene expression and protein immunohistological findings and known genetic alterations in the hedgehog, BRAF/Ras/MAPK, epidermal growth factor receptor, Wnt and Akt signaling pathways relevant to these tumors. These various pathways are explored to potentially target odontogenic tumors cells and prevent growth and recurrence of disease. Through an understanding of these signaling pathways and their crosstalk, molecular diagnostics may emerge as well as the ability to exploit identified molecular differences to develop novel molecular therapeutics for the treatment of odontogenic tumors.
Collapse
|
13
|
hnRNPK inhibits GSK3β Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells. Sci Rep 2016; 6:22999. [PMID: 26972480 PMCID: PMC4789638 DOI: 10.1038/srep22999] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/26/2016] [Indexed: 11/08/2022] Open
Abstract
c-FLIP (cellular FLICE-inhibitory protein) is the pivotal regulator of TRAIL resistance in cancer cells, It is a short-lived protein degraded through the ubiquitin/proteasome pathway. The discovery of factors and mechanisms regulating its protein stability is important for the comprehension of TRAIL resistance by tumor cells. In this study, we show that, when H1299 lung adenocarcinoma cells are treated with TRAIL, hnRNPK is translocated from nucleus to cytoplasm where it interacts and co-localizes with GSK3β. We find that hnRNPK is able to inhibit the Ser9 phosphorylation of GSK3β by PKC. This has the effect of activating GSK3β and thereby stabilizing c-FLIP protein which contributes to the resistance to TRAIL in H1299 cells. Our immunohistochemical analysis using tissue microarray provides the clinical evidence of this finding by establishing a negative correlation between the level of hnRNPK expression and the Ser9 phosphorylation of GSK3β in both lung adenocarcinoma tissues and normal tissues. Moreover, in all cancer tissues examined, hnRNPK was found in the cytoplasm whereas it is exclusively nuclear in the normal tissues. Our study sheds new insights on the molecular mechanisms governing the resistance to TRAIL in tumor cells, and provides new clues for the combinatorial chemotherapeutic interventions with TRAIL.
Collapse
|
14
|
Ouyang W, Zhang S, Yang B, Yang C, Zhang J, Zhou F, Xie C. β-catenin is regulated by USP9x and mediates resistance to TRAIL-induced apoptosis in breast cancer. Oncol Rep 2015; 35:717-24. [PMID: 26717875 DOI: 10.3892/or.2015.4463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/04/2015] [Indexed: 01/29/2023] Open
Abstract
To investigate the regulatory mechanisms of decoy receptor expression in TRAIL-resistant breast cancer MCF-7 cells, cytotoxicity and apoptosis assays were applied to examine sensitivity to TRAIL in breast cancer cells. Immunofluorescence and immunoprecipitation were used to detect the co-localization and interaction of USP9x and β-catenin. Luciferase assay was used to examine activity of the DcR1/DcR2/OPG reporter. Overexpression/silencing of β-catenin was performed to confirm β-catenin mediated transcription of the decoy receptors. Additionally, silencing of USP9x was performed to prove that USP9X stabilizes β-catenin and mediates TRAIL-resistance. It was found that USP9x interacted with β-catenin and inhibited the degradation of β-catenin through the deubiquitination of β-catenin. Luciferase reporter assays showed induction of DcR1/DcR2/OPG reporter activity observed upon co-transfection of β-catenin and Tcf-4. The overexpression/silencing of β-catenin further confirmed the role of β-catenin in the regulation of transcription of the decoy receptors. Silencing of USP9x directly evidenced that USP9x affected the protein expression level of β-catenin, the transcription level of the decoy receptors, and reversed TRAIL-resistance of MCF-7 cells. In conclusion, USP9x interacted with and stabilized β-catenin through deubiquitination to mediate transcription of the decoy receptors in breast cancer cells. Our results offer new insights into the mechanisms of resistance to TRAIL, and USP9x could potentially be a therapeutic target for TRAIL-resistant breast cancers.
Collapse
Affiliation(s)
- Wen Ouyang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shimin Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Bo Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chunxu Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fuxiang Zhou
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
15
|
Fan J, Wang Z, Huang L, Shen Y. Efficient refolding of the bifunctional therapeutic fusion protein VAS-TRAIL by a triple agent solution. Protein Expr Purif 2015; 125:68-73. [PMID: 26358405 DOI: 10.1016/j.pep.2015.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 11/15/2022]
Abstract
VAS-TRAIL is a bifunctional fusion protein that combines anti-angiogenic activity with tumor-selective apoptotic activity for enhanced anti-tumor efficacy. VAS-TRAIL is expressed as inclusion body in Escherichia coli, but protein refolding is difficult to achieve and results in low yields of bioactive protein. In this study, we describe an efficient method for VAS-TRAIL refolding. The solubilization of aggregated VAS-TRAIL was achieved by a triple agent solution, which consists of an alkaline solution (pH 11.5) containing 0.4M l-arginine and 2M urea. The solubilized protein showed high purity and preserved secondary structure according to fluorescence properties. VAS-TRAIL refolding was performed through stepwise dialysis and resulted in more than 50% recovery of the soluble protein. The function of l-arginine was additive with alkaline pH, as shown by the significant improvement in refolding yield (≈30%) by l-arginine-containing solubilization solutions compared with alkaline solubilization solutions without l-arginine. The refolded VAS-TRAIL also showed β-sheet structures and the propensity for oligomerization. Bioassays showed that the refolded fusion protein exhibited the expected activities, including its apoptotic activities toward tumor and endothelial cells, which proposed its promising therapeutic potential.
Collapse
Affiliation(s)
- Jiying Fan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Zhanqing Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Liying Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
16
|
Hylander BL, Sen A, Beachy SH, Pitoniak R, Ullas S, Gibbs JF, Qiu J, Prey JD, Fetterly GJ, Repasky EA. Tumor priming by Apo2L/TRAIL reduces interstitial fluid pressure and enhances efficacy of liposomal gemcitabine in a patient derived xenograft tumor model. J Control Release 2015; 217:160-9. [PMID: 26342663 DOI: 10.1016/j.jconrel.2015.08.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/10/2015] [Accepted: 08/24/2015] [Indexed: 12/20/2022]
Abstract
Interstitial fluid pressure (IFP) is elevated in tumors and high IFP, a negative cancer prognosticator, is known to limit the uptake and efficacy of anti-tumor therapeutics. Approaches that alter the tumor microenvironment and enhance uptake of therapeutics are collectively referred to as tumor "priming". Here we show that the cytotoxic biological therapy Apo2L/TRAIL can prime the tumor microenvironment and significantly lower IFP in three different human tumor xenograft models (Colo205, MiaPaca-2 and a patient gastrointestinal adenocarcinoma tumor xenograft). We found that a single dose of Apo2L/TRAIL resulted in a wave of apoptosis which reached a maximum at 8h post-treatment. Apoptotic debris subsequently disappeared concurrent with an increase in macrophage infiltration. By 24h post-treatment, treated tumors appeared less condensed with widening of the stromal areas which increased at 48 and 72h. Analysis of tumor vasculature demonstrated a significant increase in overall vessel size at 48 and 72h although the number of vessels did not change. Notably, IFP was significantly reduced in these tumors by 48h after Apo2L/TRAIL treatment. Administration of gemcitabine at this time resulted in increased tumor uptake of both gemcitabine and liposomal gemcitabine and significantly improved anti-tumor efficacy of liposomal gemcitabine. These results suggest that Apo2L/TRAIL has a potential as a tumor priming agent and provides a rationale for developing a sequencing schema for combination therapy such that an initial dose of Apo2L/TRAIL would precede administration of gemcitabine or other therapies.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Dept. of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Arindam Sen
- Dept. of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sarah H Beachy
- Dept. of Cell Stress, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Rose Pitoniak
- Dept. of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Soumya Ullas
- Dept. of Cell Stress, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - John F Gibbs
- Dept. of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jingxin Qiu
- Dept. of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Joshua D Prey
- Dept. of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | |
Collapse
|
17
|
Fan J, Huang L, Sun J, Qiu Y, Zhou J, Shen Y. Strategy for linker selection to enhance refolding and bioactivity of VAS-TRAIL fusion protein based on inclusion body conformation and activity. J Biotechnol 2015; 209:16-22. [PMID: 26072465 DOI: 10.1016/j.jbiotec.2015.06.383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/06/2015] [Indexed: 11/25/2022]
Abstract
A bifunctional fusion protein, VAS-TRAIL, was designed for superior therapeutic efficacy by combining anti-angiogenesis activity with tumor-selective apoptosis activity. The protein was expressed as inclusion body (IB) in Escherichia coli. To enhance refolding yield and bioactivity, four fusions were constructed with different linkers (no linker, flexible linker, rigid linker, and helix-forming linker). A novel linker selection strategy based on IB conformational quality and activity was applied to predict the suitable linker. The conformational quality and activity of VAS-TRAIL IBs were analyzed by ATR-FTIR and cytotoxicity assay, respectively. Results demonstrated that aggregated VRT (fusion with rigid linker) contained the highest native-like β structure content and retained part of the expected activity, namely, cytotoxicity activity on tumor cells. This finding suggested that the rigid linker was the most suitable candidate. Further results of in vitro refolding and subsequent circular dichroism and activity assay of four refolded fusions were significantly correlated with the predictions. Refolding of VRT yielded more soluble proteins containing the expected secondary structure and the highest bioactivity compared with that of other fusions. Our research may offer an efficient method for the high-throughput design of aggregated-prone therapeutic fusion protein.
Collapse
Affiliation(s)
- Jiying Fan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Liying Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Qiu
- Shanghai Gebaide Biotechnical Co., Ltd., Shanghai 201403, China
| | - Jinsong Zhou
- Shanghai Gebaide Biotechnical Co., Ltd., Shanghai 201403, China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
18
|
The pleiotropic profile of the indirubin derivative 6BIO overcomes TRAIL resistance in cancer. Biochem Pharmacol 2014; 91:157-67. [DOI: 10.1016/j.bcp.2014.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
|
19
|
Saturno G, Valenti M, De Haven Brandon A, Thomas GV, Eccles S, Clarke PA, Workman P. Combining trail with PI3 kinase or HSP90 inhibitors enhances apoptosis in colorectal cancer cells via suppression of survival signaling. Oncotarget 2014; 4:1185-98. [PMID: 23852390 PMCID: PMC3787150 DOI: 10.18632/oncotarget.1162] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
TRAIL has been shown to induce apoptosis in cancer cells, but in some cases they fail to respond to this ligand. We explored the ability of representative phosphatidylinositol-3-kinase (PI3 Kinase)/mTOR and HSP90 inhibitors to overcome TRAIL resistance by increasing apoptosis in colorectal cancer models. We determined the sensitivity of 27 human colorectal cancer and 2 non-transformed colon epithelial cell lines to TRAIL treatment. A subset of the cancer cell lines with a range of responses to TRAIL was selected from the panel for treatment with TRAIL combined with the PI3 Kinase/mTOR inhibitor PI-103 or the HSP90 inhibitor 17-AAG (tanespimycin). Two TRAIL-resistant cell lines were selected for in vivo combination studies with TRAIL and 17-AAG. We found that 13 colorectal cancer cell lines and the 2 non-transformed colon epithelial cell lines were resistant to TRAIL. We demonstrated that co-treatment of TRAIL and PI-103 or 17-AAG was synergistic or additive and significantly enhanced apoptosis in colorectal cancer cells. This was associated with decreased expression or activity of survival protein biomarkers such as ERBB2, AKT, IKKα and XIAP. In contrast, the effect of the combination treatments in non-transformed colon cells was minimal. We show here for the first time that co-treatment in vivo with TRAIL and 17-AAG in two TRAIL-resistant human colorectal cancer xenograft models resulted in significantly greater tumor growth inhibition compared to single treatments. We propose that combining TRAIL with PI3 Kinase/mTOR or HSP90 inhibitors has therapeutic potential in the treatment of TRAIL-resistant colorectal cancers.
Collapse
Affiliation(s)
- Grazia Saturno
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Amm HM, Buchsbaum DJ. Relationship between galectin-3 expression and TRAIL sensitivity in breast cancer. Expert Rev Anticancer Ther 2014; 11:1193-6. [DOI: 10.1586/era.11.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Bioactive heterocyclic natural products from actinomycetes having effects on cancer-related signaling pathways. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2014; 99:147-98. [PMID: 25296439 DOI: 10.1007/978-3-319-04900-7_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Beranova L, Pombinho AR, Spegarova J, Koc M, Klanova M, Molinsky J, Klener P, Bartunek P, Andera L. The plant alkaloid and anti-leukemia drug homoharringtonine sensitizes resistant human colorectal carcinoma cells to TRAIL-induced apoptosis via multiple mechanisms. Apoptosis 2013; 18:739-50. [PMID: 23456623 DOI: 10.1007/s10495-013-0823-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic ligand from the TNF-alpha family that is under consideration, along with agonistic anti-TRAIL receptor antibodies, as a potential anti-tumor agent. However, most primary human tumors are resistant to monotherapy with TRAIL apoptogens, and thus the potential applicability of TRAIL in anti-tumor therapy ultimately depends on its rational combination with drugs targeting these resistances. In our high-throughput screening for novel agents/drugs that could sensitize TRAIL-resistant colorectal cancer cells to TRAIL-induced apoptosis, we found homoharringtonine (HHT), a cephalotaxus alkaloid and tested anti-leukemia drug, to be a very effective, low nanomolar enhancer of TRAIL-mediated apoptosis/growth suppression of these resistant cells. Co-treatment of TRAIL-resistant RKO or HT-29 cells with HHT and TRAIL led to the effective induction of apoptosis and the complete elimination of the treated cells. HHT suppressed the expression of the anti-apoptotic proteins Mcl-1 and cFLIP and enhanced the TRAIL-triggered activation of JNK and p38 kinases. The shRNA-mediated down-regulation of cFLIP or Mcl-1 in HT-29 or RKO cells variably enhanced their TRAIL-induced apoptosis but it did not markedly sensitize them to TRAIL-mediated growth suppression. However, with the notable exception of RKO/sh cFLIP cells, the downregulation of cFLIP or Mcl-1 significantly lowered the effective concentration of HHT in HHT + TRAIL co-treatment. Combined HHT + TRAIL therapy also led to the strong suppression of HT-29 tumors implanted into immunodeficient mice. Thus, HHT represents a very efficient enhancer of TRAIL-induced apoptosis with potential application in TRAIL-based, anti-cancer combination therapy.
Collapse
Affiliation(s)
- Lenka Beranova
- Department of Cell Signaling & Apoptosis, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stuckey DW, Shah K. TRAIL on trial: preclinical advances in cancer therapy. Trends Mol Med 2013; 19:685-94. [PMID: 24076237 PMCID: PMC3880796 DOI: 10.1016/j.molmed.2013.08.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/26/2013] [Accepted: 08/28/2013] [Indexed: 01/14/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand, or TRAIL, is a promising anticancer agent as it can induce apoptosis in a wide range of cancers whilst generally sparing non-malignant cells. However, the translation of TRAIL into the clinic has been confounded by its short half-life, inadequate delivery methods, and TRAIL-resistant cancer cell populations. In this review, we discuss how TRAIL has been functionalized to diversify its traditional tumor-killing role and novel strategies to facilitate its effective deployment in preclinical cancer models. The successes and failures of the most recent clinical trials using TRAIL agonists are highlighted and we provide a perspective for improving its clinical implementation.
Collapse
Affiliation(s)
- Daniel W Stuckey
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
24
|
Macintosh RL, Ryan KM. Autophagy in tumour cell death. Semin Cancer Biol 2013; 23:344-51. [PMID: 23774296 DOI: 10.1016/j.semcancer.2013.05.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/23/2013] [Accepted: 05/21/2013] [Indexed: 02/08/2023]
Abstract
In every moment of a cell's existence one key question is always asked, "To be or not to be"? Cells constantly weigh up signals from their environment against their own integrity and metabolic status and decide whether to live or die. Such cell death decisions are central to the progression and treatment of cancer. The term autophagy describes three processes that deliver cytoplasmic macromolecules and organelles to lysosomes for degradation, the difference between each form being the method of delivery. The most extensively studied form is macroautophagy (hereafter referred to as autophagy) where cytosolic components are engulfed by double membraned autophagosomes. Autophagosomes fuse with lysosomes to form structures called autolysosomes, within which organelles, proteins and other macromolecules are degraded by catabolic enzymes in the acidic lysosome environment. Autophagy, which normally occurs at low levels in unstressed cells, is widely regarded as having a positive effect on cell health as potentially harmful protein aggregates and damaged organelles can be recycled. During periods of nutrient shortage autophagy is enhanced to provide, albeit temporarily, an internal energy source. Autophagy is also enhanced by other stresses encountered by tumour cells and this may protect the cell or aid its demise. In this review we examine the effect of autophagy on cell death decisions in tumour cells.
Collapse
Affiliation(s)
- Robin L Macintosh
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | |
Collapse
|
25
|
Abstract
Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 or G2 using cytotoxic drugs, phase-specific inhibitors or RNA interference against cyclinB and E. Biochemical or molecular arrest at any point of the cell cycle increased TRAIL-induced apoptosis. Accordingly, when cell cycle arrest was disabled by addition of caffeine, the antitumor activity of TRAIL was reduced. Most important for clinical translation, tumor cells from three children with B precursor or T cell acute lymphoblastic leukemia showed increased TRAIL-induced apoptosis upon knockdown of either cyclinB or cyclinE, arresting the cell cycle in G2 or G1, respectively. Taken together and in contrast to most conventional cytotoxic drugs, TRAIL exerts enhanced antitumor activity against cell cycle-arrested tumor cells. Therefore, TRAIL might represent an interesting drug to treat static-tumor disease, for example, during minimal residual disease.
Collapse
|
26
|
Chen JJ, Shen HCJ, Rivera Rosado LA, Zhang Y, Di X, Zhang B. Mislocalization of death receptors correlates with cellular resistance to their cognate ligands in human breast cancer cells. Oncotarget 2013; 3:833-42. [PMID: 22909995 PMCID: PMC3478460 DOI: 10.18632/oncotarget.542] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Multiple clinical trials are ongoing to evaluate the potential antitumor activity of human TNF variants, Fas ligand (FasL), TNF-related apoptosis inducing ligand (TRAIL) and its agonistic antibodies. These drug products act through the death receptors (DRs) TNF receptor 1 (TNFR1), Fas/CD95, DR4 (TRAIL-R1) and/or DR5 (TRAIL-R2), respectively. Therefore, characterization of the level and localization of DR expression in cancer cells is important for DR-targeted therapy. In this study, we examined the subcellular distribution of the four DRs in a panel of 10 human breast cancer cell lines by western blots and flow cytometry and 50 human breast tumors by immunohistochemistry. Despite their total protein expressions, the DRs were found to be absent on the surface of some cell lines. Consistent with this result, all four DRs were found to be mostly expressed in the cytoplasm and/or the nucleus of primary breast tumors (n=50). We further determined the growth inhibition activity (GI50) of the death ligands, recombinant human TNFα, FasL and TRAIL, and found a correlation with the subcellular localization of the corresponding DRs. These results demonstrate an aberrant expression of the death receptors in breast cancer cells, and suggest that the lack of surface DRs appears to be predictive of tumor resistance to DR-targeted therapies.
Collapse
Affiliation(s)
- Jun-Jie Chen
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States
| | | | | | | | | | | |
Collapse
|
27
|
Shi Y, Mellier G, Huang S, White J, Pervaiz S, Tucker-Kellogg L. Computational modelling of LY303511 and TRAIL-induced apoptosis suggests dynamic regulation of cFLIP. ACTA ACUST UNITED AC 2012; 29:347-54. [PMID: 23239672 PMCID: PMC3562069 DOI: 10.1093/bioinformatics/bts702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION TRAIL has been widely studied for the ability to kill cancer cells selectively, but its clinical usefulness has been hindered by the development of resistance. Multiple compounds have been identified that sensitize cancer cells to TRAIL-induced apoptosis. The drug LY303511 (LY30), combined with TRAIL, caused synergistic (greater than additive) killing of multiple cancer cell lines. We used mathematical modelling and ordinary differential equations to represent how LY30 and TRAIL individually affect HeLa cells, and to predict how the combined treatment achieves synergy. RESULTS Model-based predictions were compared with in vitro experiments. The combination treatment model was successful at mimicking the synergistic levels of cell death caused by LY30 and TRAIL combined. However, there were significant failures of the model to mimic upstream activation at early time points, particularly the slope of caspase-8 activation. This flaw in the model led us to perform additional measurements of early caspase-8 activation. Surprisingly, caspase-8 exhibited a transient decrease in activity after LY30 treatment, prior to strong activation. cFLIP, an inhibitor of caspase-8 activation, was up-regulated briefly after 30 min of LY30 treatment, followed by a significant down-regulation over prolonged exposure. A further model suggested that LY30-induced fluctuation of cFLIP might result from tilting the ratio of two key species of reactive oxygen species (ROS), superoxide and hydrogen peroxide. Computational modelling extracted novel biological implications from measured dynamics, identified time intervals with unexplained effects, and clarified the non-monotonic effects of the drug LY30 on cFLIP during cancer cell apoptosis.
Collapse
Affiliation(s)
- Yuan Shi
- Singapore-MIT Alliance, E4-04-10, 4 Engineering Drive 3, Singapore
| | | | | | | | | | | |
Collapse
|
28
|
Slipicevic A, Øy GF, Rosnes AKR, Stakkestad Ø, Emilsen E, Engesæter B, Mælandsmo GM, Flørenes VA. Low-dose anisomycin sensitizes melanoma cells to TRAIL induced apoptosis. Cancer Biol Ther 2012. [PMID: 23192275 DOI: 10.4161/cbt.22953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis in malignant cells while leaving normal cells unharmed, making it a desirable anticancer target. In the present study, metastatic melanoma cell lines were treated with lexatumumab (Human Genome Sciences, Inc.) a high-affinity monoclonal antibody agonistic to TRAIL receptor 2 (DR5). Binding of the antibody to the receptor led to activation of the extrinsic apoptosis pathway in approximately 20% of the treated cells. However, by combining subtoxic concentrations of the protein translation inhibitor anisomycin with lexatumumab, we obtained synergistic effects on cell viability compared with single agent treatment. Even the low doses of anisomycin could inhibit protein synthesis in melanoma cells with up to 30%, which might result in the shift in the levels of the proteins involved in apoptosis. Co-treatment with anisomycin increased activation of caspases and cleavage of the anti-apoptotic protein Livin, leading to formation of truncated p30-Livin α and p28-Livin β proteins with potential pro-apoptotic functions. Furthermore, ansiomcycin treatment decreased levels of antiapototic XIAP. In summary our results suggest that combinational treatment with anicomycin and lexatumumab represents a novel therapeutic strategy in the treatment of melanoma.
Collapse
Affiliation(s)
- Ana Slipicevic
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Park MH, Jo M, Won D, Song HS, Song MJ, Hong JT. Snake venom toxin from Vipera lebetina turanica sensitizes cancer cells to TRAIL through ROS- and JNK-mediated upregulation of death receptors and downregulation of survival proteins. Apoptosis 2012; 17:1316-26. [DOI: 10.1007/s10495-012-0759-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
YAO RUYONG, SUI AIHUA, WANG ZHENLI, LIU SHIHAI, ZHOU QUAN, LIU XIANGPING, ZHANG HAIPING. Induction of non-small cell lung carcinoma apoptosis using soluble RGD-TRAIL by targeting the integrin receptor of tumor cells. Mol Med Rep 2012; 6:1355-60. [DOI: 10.3892/mmr.2012.1071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/29/2012] [Indexed: 11/06/2022] Open
|
31
|
Pintzas A, Zhivotovsky B, Workman P, Clarke PA, Linardopoulos S, Martinou JC, Lacal JC, Robine S, Nasioulas G, Andera L. Sensitization of (colon) cancer cells to death receptor related therapies: a report from the FP6-ONCODEATH research consortium. Cancer Biol Ther 2012; 13:458-66. [PMID: 22406997 DOI: 10.4161/cbt.19600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The objective of the ONCODEATH consortium [EU Research Consortium "ONCODEATH" (2006-2010)] was to achieve sensitization of solid tumor cells to death receptor related therapies using rational mechanism-based drug combinations of targeted therapies. In this collaborative effort, during a period of 42 mo, cell and animal model systems of defined oncogenes were generated. Exploitation of generated knowledge and tools enabled the consortium to achieve the following research objectives: (1) elucidation of tumor components which confer sensitivity or resistance to TRAIL-induced cell death; (2) providing detailed knowledge on how small molecule Hsp90, Aurora, Choline kinase, BRAF inhibitors, DNA damaging agents, HDAC and DNMT inhibitors affect the intrinsic apoptotic amplification and execution machineries; (3) optimization of combined action of TRAIL with these therapeutics for optimum effects with minimum concentrations and toxicity in vivo. These findings provide mechanistic basis for a pharmacogenomic approach, which could be exploited further therapeutically, in order to reach novel personalized therapies for cancer patients.
Collapse
Affiliation(s)
- Alexander Pintzas
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Targosz-Korecka M, Biedron R, Szczygiel AM, Brzezinka G, Szczerbinski J, Zuk A. Stiffness changes of tumor HEp2 cells correlates with the inhibition and release of TRAIL-induced apoptosis pathways. J Mol Recognit 2012; 25:299-308. [DOI: 10.1002/jmr.2192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Rafal Biedron
- Chair of Immunology, Medical College; Jagiellonian University; Czysta 18; 31-121; Krakow; Poland
| | | | - Grzegorz Brzezinka
- Institute of Physics; Jagiellonian University; Reymonta 4; 30-059; Krakow; Poland
| | - Jacek Szczerbinski
- Institute of Physics; Jagiellonian University; Reymonta 4; 30-059; Krakow; Poland
| | - Anna Zuk
- Institute of Physics; Jagiellonian University; Reymonta 4; 30-059; Krakow; Poland
| |
Collapse
|
33
|
Siegemund M, Pollak N, Seifert O, Wahl K, Hanak K, Vogel A, Nussler AK, Göttsch D, Münkel S, Bantel H, Kontermann RE, Pfizenmaier K. Superior antitumoral activity of dimerized targeted single-chain TRAIL fusion proteins under retention of tumor selectivity. Cell Death Dis 2012; 3:e295. [PMID: 22495350 PMCID: PMC3358007 DOI: 10.1038/cddis.2012.29] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/13/2022]
Abstract
Although targeting of the death receptors (DRs) DR4 and DR5 still appears a suitable antitumoral strategy, the limited clinical responses to recombinant soluble TNF-related apoptosis inducing ligand (TRAIL) necessitate novel reagents with improved apoptotic activity/tumor selectivity. Apoptosis induction by a single-chain TRAIL (scTRAIL) molecule could be enhanced >10-fold by generation of epidermal growth factor receptor (EGFR)-specific scFv-scTRAIL fusion proteins. By forcing dimerization of scFv-scTRAIL based on scFv linker modification, we obtained a targeted scTRAIL composed predominantly of dimers (Db-scTRAIL), exceeding the activity of nontargeted scTRAIL ∼100-fold on Huh-7 hepatocellular and Colo205 colon carcinoma cells. Increased activity of Db-scTRAIL was also demonstrated on target-negative cells, suggesting that, in addition to targeting, oligomerization equivalent to an at least dimeric assembly of standard TRAIL per se enhances apoptosis signaling. In the presence of apoptosis sensitizers, such as the proteasomal inhibitor bortezomib, Db-scTRAIL was effective at picomolar concentrations in vitro (EC(50) ∼2 × 10(-12) M). Importantly, in vivo, Db-scTRAIL was well tolerated and displayed superior antitumoral activity in mouse xenograft (Colo205) tumor models. Our results show that both targeting and controlled dimerization of scTRAIL fusion proteins provides a strategy to enforce apoptosis induction, together with retained tumor selectivity and good in vivo tolerance.
Collapse
Affiliation(s)
- M Siegemund
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - N Pollak
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - O Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - K Wahl
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - K Hanak
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - A Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - A K Nussler
- Department of Trauma Surgery, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - D Göttsch
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - S Münkel
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - H Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - R E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - K Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| |
Collapse
|
34
|
Hwang MK, Ryu BJ, Kim SH. AW00179 potentiates TRAIL-mediated death of human lung cancer H1299 cells through ROS-JNK-c-Jun-mediated up-regulation of DR5 and down-regulation of anti-apoptotic molecules. Amino Acids 2012; 43:1679-87. [PMID: 22354145 DOI: 10.1007/s00726-012-1249-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 02/09/2012] [Indexed: 12/11/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in tumor cells, but when used alone, it is not effective at treating TRAIL-resistant tumors. This resistance is challenging for TRAIL-based anti-cancer therapies. In this study, we found that 1-(4-trifluoromethoxy-phenyl)-3-[4-(5-trifluoromethyl-2,5-dihydro-pyrazol-1-yl)-phenyl]-urea (AW00179) sensitized human lung cancer H1299 cells to TRAIL-mediated apoptosis. Even in the absence of TRAIL, AW00179 strongly induced DR5 expression and decreased the expression of anti-apoptotic proteins, suggesting that the sensitizing effect of AW00179 on TRAIL-mediated apoptosis is due to increased levels of DR5 protein and decreased anti-apoptotic molecules. AW00179 also induced the activation of c-Jun and ERK; however, a pharmacologic inhibition study revealed that JNK-c-Jun signaling is involved in the induction of DR5 expression. In addition, reactive oxygen species (ROS) appear to be involved in AW00179 activity. In conclusion, AW00179 has the potential to sensitize H1299 cells to TRAIL-mediated apoptosis through two distinct mechanisms: ROS-JNK-c-Jun-mediated up-regulation of DR5, and down-regulation of anti-apoptotic molecules.
Collapse
Affiliation(s)
- Mi-Kyung Hwang
- Laboratory of Chemical Genomics, Pharmacology Research Center, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon, 305-600, Korea
| | | | | |
Collapse
|
35
|
Garimella SV, Rocca A, Lipkowitz S. WEE1 inhibition sensitizes basal breast cancer cells to TRAIL-induced apoptosis. Mol Cancer Res 2011; 10:75-85. [PMID: 22112940 DOI: 10.1158/1541-7786.mcr-11-0500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
TRAIL is a member of the TNF super family and has been shown to induce apoptosis in many cancer cell lines but not in normal cells. Breast cancers can be divided into different subgroups on the basis of the expression of estrogen and progesterone receptors, HER-2 amplification, or the lack of these three markers (known as triple-negative or basal-type breast cancer). Our group and others have shown previously that triple-negative breast cancer cell lines are sensitive to TRAIL whereas others are relatively resistant. In an earlier study, we reported that inhibition of WEE1, a cell-cycle checkpoint regulator, causes increased cell death in breast cancer cell lines. In this study, we tested the effects of WEE1 inhibition on TRAIL-mediated apoptosis in breast cancer cell lines. Pretreatment with WEE1 inhibitor or knockdown of WEE1 increased the toxicity of TRAIL in the basal/triple-negative breast cancer cell lines compared with WEE1 inhibitor or TRAIL treatment alone. The enhanced cell death is attributed to increased surface expression of death receptors, increased caspase activation which could be blocked by the pan-caspase inhibitor, Z-VAD-FMK, thereby rescuing cells from caspase-mediated apoptosis. The cell death was initiated primarily by caspase-8 because knockdown of caspase-8 and not of any other initiator caspases (i.e., caspase-2, -9, or -10) rescued cells from WEE1 inhibitor-sensitized TRAIL-induced cell death. Taken together, the data suggest that the combination of WEE1 inhibitor and TRAIL could provide a novel combination for the treatment of basal/triple-negative breast cancer.
Collapse
Affiliation(s)
- Sireesha V Garimella
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
36
|
Oliver PG, LoBuglio AF, Zhou T, Forero A, Kim H, Zinn KR, Zhai G, Li Y, Lee CH, Buchsbaum DJ. Effect of anti-DR5 and chemotherapy on basal-like breast cancer. Breast Cancer Res Treat 2011; 133:417-26. [PMID: 21901385 DOI: 10.1007/s10549-011-1755-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 12/27/2022]
Abstract
The purpose is to evaluate sensitivity of basal-like breast cancer to treatment with anti-DR5 alone and in combination with chemotherapy. Cytotoxicity of TRA-8 anti-DR5 alone and in combination with doxorubicin or paclitaxel was examined. The role of a DR5-associated molecule (DDX3) in the regulation of apoptosis by recruitment of cIAP1 to the DR5/DDX3 complex was studied. SUM159 and 2LMP orthotopic xenografts were treated with TRA-8 alone and in combination with Abraxane or doxorubicin, and tumor growth inhibition determined. Diffusion-weighted magnetic resonance imaging was used to monitor early tumor response. The majority (12/15) of basal-like cell lines were very sensitive to TRA-8-induced cytotoxicity (IC(50) values of 1.0-49 ng/ml). In contrast, 8/11 luminal or HER2-positive cell lines were resistant (IC(50) > 1,000 ng/ml). Enhanced killing of basal-like cell lines was produced by combination treatment with TRA-8 and doxorubicin. Majority of basal cell lines expressed lower levels of DR5-associated DDX3 and cIAP1 than luminal and HER2-positive cell lines. TRA-8 inhibited growth of basal xenografts and produced 20% complete 2LMP tumor regressions. TRA-8 and chemotherapy produced greater 2LMP growth inhibition than either alone. An increase in apparent diffusion coefficient in 2LMP tumors was measured in a week of therapy with TRA-8 and Abraxane. Basal-like cell lines were more sensitive to TRA-8-mediated cytotoxicity than HER2-over-expressing and luminal cell lines, and chemotherapy enhanced cytotoxicity. High sensitivity of basal cells to TRA-8 correlated with low expression of DR5/DDX3/cIAP1 complex. Treatment with TRA-8 and chemotherapy may be an effective therapy for basal-like breast cancer.
Collapse
Affiliation(s)
- Patsy G Oliver
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Huang Z, Saluja A, Dudeja V, Vickers S, Buchsbaum D. Molecular targeted approaches for treatment of pancreatic cancer. Curr Pharm Des 2011; 17:2221-38. [PMID: 21777178 PMCID: PMC3422746 DOI: 10.2174/138161211796957427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/20/2011] [Indexed: 02/07/2023]
Abstract
Human pancreatic cancer remains a highly malignant disease with almost similar incidence and mortality despite extensive research. Many targeted therapies are under development. However, clinical investigation showed that single targeted therapies and most combined therapies were not able to improve the prognosis of this disease, even though some of these therapies had excellent anti-tumor effects in pre-clinical models. Cross-talk between cell proliferation signaling pathways may be an important phenomenon in pancreatic cancer, which may result in cancer cell survival even though some pathways are blocked by targeted therapy. Pancreatic cancer may possess different characteristics and targets in different stages of pathogenesis, maintenance and metastasis. Sensitivity to therapy may also vary for cancer cells at different stages. The unique pancreatic cancer structure with abundant stroma creates a tumor microenvironment with hypoxia and low blood perfusion rate, which prevents drug delivery to cancer cells. In this review, the most commonly investigated targeted therapies in pancreatic cancer treatment are discussed. However, how to combine these targeted therapies and/or combine them with chemotherapy to improve the survival rate of pancreatic cancer is still a challenge. Genomic and proteomic studies using pancreatic cancer samples obtained from either biopsy or surgery are recommended to individualize tumor characters and to perform drug sensitivity study in order to design a tailored therapy with minimal side effects. These studies may help to further investigate tumor pathogenesis, maintenance and metastasis to create cellular expression profiles at different stages. Integration of the information obtained needs to be performed from multiple levels and dimensions in order to develop a successful targeted therapy.
Collapse
Affiliation(s)
- Z.Q. Huang
- Department of Radiation Oncology, University of Alabama at Birmingham USA
| | - A.K. Saluja
- Department of Surgery, University of Minnesota, USA
| | - V. Dudeja
- Department of Surgery, University of Minnesota, USA
| | - S.M. Vickers
- Department of Surgery, University of Minnesota, USA
| | - D.J. Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham USA
| |
Collapse
|