1
|
Ueki A, Yoshida R, Kosaka T, Matsubayashi H. Clinical risk management of breast, ovarian, pancreatic, and prostatic cancers for BRCA1/2 variant carriers in Japan. J Hum Genet 2023; 68:517-526. [PMID: 37088789 DOI: 10.1038/s10038-023-01153-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Opportunities for genetic counseling and germline BRCA1/2 (BRCA) testing are increasing in Japan owing to cancer genomic profiling testing and companion diagnostics being covered by national health insurance for patients with BRCA-related cancers. These tests are useful not only to judge whether platinum agents and PARP inhibitors are indicated but also to reveal an autosomal-dominant inherited cancer syndrome: hereditary breast and ovarian cancer. In individuals with germline BRCA variants, risk of cancers of the breast, ovary, pancreas, and prostate is significantly increased at various ages of onset, but the stomach, uterus, biliary tract, and skin might also be at risk. For women with pathogenic BRCA variants, breast awareness and image analyses should be initiated in their 20s, and risk-reducing procedures such as mastectomy are recommended starting in their 30s, with salpingo-oophorectomy in their late 30s. For male BRCA pathogenic variant carriers, prostatic surveillance should be applied using serum prostate-specific antigen starting in their 40s. For both sexes, image examinations ideally using endoscopic ultrasound and magnetic resonance cholangiopancreatography and blood testing should begin in their 50s for pancreatic surveillance. Homologous recombination pathway-associated genes are also causative candidates. Variant pathogenicity needs to be evaluated every 6-12 months when results are uncertain for clinical significance. Genetic counseling needs to be offered to the blood relatives of the pathogenic variant carriers with suitable timing. We review the recommended cross-organ BRCA risk management in Japan.
Collapse
Affiliation(s)
- Arisa Ueki
- Department of Clinical Genetics, The Cancer Institute Hospital of JFCR, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Reiko Yoshida
- Institute for Clinical Genetics and Genomics, Showa University, 1-5-8 Hatanodai Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Matsubayashi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shimonagakubo, Nagaizumi, Suntogun, Shizuoka, 411-8777, Japan.
| |
Collapse
|
2
|
Paiella S, Azzolina D, Gregori D, Malleo G, Golan T, Simeone DM, Davis MB, Vacca PG, Crovetto A, Bassi C, Salvia R, Biankin AV, Casolino R. A systematic review and meta-analysis of germline BRCA mutations in pancreatic cancer patients identifies global and racial disparities in access to genetic testing. ESMO Open 2023; 8:100881. [PMID: 36822114 PMCID: PMC10163165 DOI: 10.1016/j.esmoop.2023.100881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Germline BRCA1 and BRCA2 mutations (gBRCAm) can inform pancreatic cancer (PC) risk and treatment but most of the available information is derived from white patients. The ethnic and geographic variability of gBRCAm prevalence and of germline BRCA (gBRCA) testing uptake in PC globally is largely unknown. MATERIALS AND METHODS We carried out a systematic review and prevalence meta-analysis of gBRCA testing and gBRCAm prevalence in PC patients stratified by ethnicity. The main outcome was the distribution of gBRCA testing uptake across diverse populations worldwide. Secondary outcomes included: geographic distribution of gBRCA testing uptake, temporal analysis of gBRCA testing uptake in ethnic groups, and pooled proportion of gBRCAm stratified by ethnicity. The study is listed under PROSPERO registration number #CRD42022311769. RESULTS A total of 51 studies with 16 621 patients were included. Twelve of the studies (23.5%) enrolled white patients only, 10 Asians only (19.6%), and 29 (56.9%) included mixed populations. The pooled prevalence of white, Asian, African American, and Hispanic patients tested per study was 88.7%, 34.8%, 3.6%, and 5.2%, respectively. The majority of included studies were from high-income countries (HICs) (64; 91.2%). Temporal analysis showed a significant increase only in white and Asians patients tested from 2000 to present (P < 0.001). The pooled prevalence of gBRCAm was: 3.3% in white, 1.7% in Asian, and negligible (<0.3%) in African American and Hispanic patients. CONCLUSIONS Data on gBRCA testing and gBRCAm in PC derive mostly from white patients and from HICs. This limits the interpretation of gBRCAm for treating PC across diverse populations and implies substantial global and racial disparities in access to BRCA testing in PC.
Collapse
Affiliation(s)
- S Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/Totuccio83
| | - D Azzolina
- Department of Environmental and Preventive Science, University of Ferrara, Ferrara
| | - D Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padova, Italy. https://twitter.com/gregoriDario
| | - G Malleo
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/gimalleo
| | - T Golan
- Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - D M Simeone
- Department of Surgery, New York University, New York; Perlmutter Cancer Center, New York University, New York. https://twitter.com/MadameSurgeon
| | - M B Davis
- Department of Surgery and Surgical Oncology, Weill Cornell University, New York; Englander Institute of Precision Medicine, Weill Cornell University, New York, USA. https://twitter.com/MeliD32
| | - P G Vacca
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/pvhdfm
| | - A Crovetto
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/crovetto_a
| | - C Bassi
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona
| | - R Salvia
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona. https://twitter.com/SalviaRobi
| | - A V Biankin
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK; Faculty of Medicine, South Western Sydney Clinical School, University of NSW, Liverpool, Australia.
| | - R Casolino
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow.
| |
Collapse
|
3
|
Lee CL, Holter S, Borgida A, Dodd A, Ramotar S, Grant R, Wasson K, Elimova E, Jang RW, Moore M, Kim TK, Khalili K, Moulton CA, Gallinger S, O’Kane GM, Knox JJ. Germline BRCA2 variants in advanced pancreatic acinar cell carcinoma: A case report and review of literature. World J Gastroenterol 2022; 28:6421-6432. [PMID: 36533108 PMCID: PMC9753052 DOI: 10.3748/wjg.v28.i45.6421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Pancreatic acinar cell carcinoma (PACC) is a rare tumor. Up to 45% of PACCs have alterations in the DNA damage repair pathway and 23% harbor rearrangements in the BRAF or RAF1 genes. We present a PACC case with a germline BRCA2 likely pathogenic variant (LPV) to highlight the impact of genomic testing on treatment decisions and patient outcomes. In our larger case series, we provide clinic-based information on additional 10 PACC patients treated in our center.
CASE SUMMARY A 70-year-old male was diagnosed with advanced PACC. At presentation, he was cachectic with severe arthralgia despite prednisolone and a skin rash that was later confirmed to be panniculitis. He was treated with modified FOLFIRINOX (mFFX) with the knowledge of the germline BRCA2 LPV. Following 11 cycles of mFFX, a computed tomography (CT) scan demonstrated significant tumor response in the pancreatic primary and hepatic metastases, totaling 70% from baseline as per Response Evaluation Criteria in Solid Tumors. Resolution of the skin panniculitis was also noted. We identified two additional PACCs with druggable targets in our case series. Our data contribute to practical evidence for the value of germline and somatic profiling in the management of rare diseases like PACC.
CONCLUSION This patient and others in our larger case series highlight the importance of genomic testing in PACC with potential utility in personalized treatment.
Collapse
Affiliation(s)
- Cha Len Lee
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Spring Holter
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Ayelet Borgida
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Anna Dodd
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Stephanie Ramotar
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Robert Grant
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Kristy Wasson
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Elena Elimova
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Raymond W Jang
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Malcolm Moore
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Tae Kyoung Kim
- Department of Medical Imaging, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Korosh Khalili
- Department of Medical Imaging, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Carol-Anne Moulton
- Hepatobiliary/Pancreatic Surgical Program, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Steven Gallinger
- Hepatobiliary/Pancreatic Surgical Program, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Grainne M O’Kane
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| | - Jennifer J Knox
- Division of Medical Oncology and Hematology, Wallace McCain Center for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto M5G1Z5, ON, Canada
| |
Collapse
|
4
|
Abstract
Background It is estimated that about 10% of pancreatic cancer cases have a genetic background. People with a familial predisposition to pancreatic cancer can be divided into 2 groups. The first is termed hereditary pancreatic cancer, which occurs in individuals with a known hereditary cancer syndrome caused by germline single gene mutations (e.g., BRCA1/2, CDKN2A). The second is considered as familial pancreatic cancer, which is associated with several genetic factors responsible for the more common development of pancreatic cancer in certain families, but the precise single gene mutation has not been found. Aim This review summarizes the current state of knowledge regarding the risk of pancreatic cancer development in hereditary pancreatic cancer and familial pancreatic cancer patients. Furthermore, it gathers the latest recommendations from the three major organizations dealing with the prevention of pancreatic cancer in high-risk groups and explores recent guidelines of scientific societies on screening for pancreatic cancers in individuals at risk for hereditary or familial pancreatic cancer. Conclusions In order to improve patients’ outcomes, authors of current guidelines recommend early and intensive screening in patients with pancreatic cancer resulting from genetic background. The screening should be performed in excellence centers. The scope, extent and cost-effectiveness of such interventions requires further studies.
Collapse
|
5
|
Takai E, Nakamura H, Chiku S, Kubo E, Ohmoto A, Totoki Y, Shibata T, Higuchi R, Yamamoto M, Furuse J, Shimizu K, Takahashi H, Morizane C, Furukawa T, Yachida S. Whole-exome Sequencing Reveals New Potential Susceptibility Genes for Japanese Familial Pancreatic Cancer. Ann Surg 2022; 275:e652-e658. [PMID: 32826389 DOI: 10.1097/sla.0000000000004213] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The primary objective of this study was to identify novel genes that predispose people in the Japanese population to FPC. SUMMARY OF BACKGROUND DATA Familial history of pancreatic cancer is an important risk factor but, to date, few genes predisposing individuals to increased risk of developing FPC have been identified. METHODS We performed whole-exome sequencing of germline DNA from 81 Japanese FPC patients. We also investigated somatic gene alterations in 21 matched tumor tissues through whole-exome sequencing and copy number analysis. RESULTS Our germline variants identified previously known FPC susceptibility genes such as ATM and BRCA2, and several novel tumor suppressor genes with potentially deleterious variants for FPC. Interestingly, somatic whole-exome analysis demonstrated that most tumor samples with suspicious loss of heterozygosity of candidate genes were KRAS wild-types, implying that these cases may not have required KRAS activation as a driver event for carcinogenesis. CONCLUSIONS Our findings indicate that FPC patients harbor potentially deleterious causative germline variants in tumor suppressor genes, which are known to acquire somatic mutations in pancreatic cancer, and that somatic loss of heterozygosity of some FPC susceptibility genes may contribute to the development of FPC in the absence of somatic KRAS-activating mutation. Genetic testing for a wider variety of FPC-predisposition genes could provide better screening approach for high-risk groups of pancreatic cancer.
Collapse
Affiliation(s)
- Erina Takai
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Suenori Chiku
- Information and Communication Research Division, Mizuho Information and Research Institute, Tokyo, Japan
| | - Emi Kubo
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiro Ohmoto
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryota Higuchi
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junji Furuse
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Kyoko Shimizu
- Department of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideaki Takahashi
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Sunkara T, Bandaru SS, Boyilla R, Kunadharaju R, Kukkadapu P, Chennamadhavuni A. Poly Adenosine Diphosphate-Ribose Polymerase (PARP) Inhibitors in Pancreatic Cancer. Cureus 2022; 14:e22575. [PMID: 35228986 PMCID: PMC8879621 DOI: 10.7759/cureus.22575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic cancer is the third most common cause of cancer death in the United States and eleventh worldwide. The majority of patients present with advanced disease with five-year overall survival of less than 10%. Traditional chemotherapy has been the mainstay treatment for years, with limited improvement in survival. Relative success has been achieved with agents targeting the DNA damage repair (DDR) mechanisms with poly adenosine diphosphate-ribose polymerase (PARP) inhibitors. The initial benefit was observed in patients with germline breast cancer-associated (BRCA) mutations. Multiple trials are now underway exploring PARP inhibitors in other DDR mutations such as the ataxia-telangiectasia mutated (ATM) gene and the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene (familial atypical multiple mole and melanoma syndrome), mismatch repair genes (Lynch syndrome), and others. PARP inhibitors are being evaluated as a single agent or combination chemotherapy, immunotherapy, and maintenance after chemotherapy. Here, we review current clinical trials targeting various DDR mutations and treatment strategies.
Collapse
|
7
|
Kasuga A, Okamoto T, Udagawa S, Mori C, Mie T, Furukawa T, Yamada Y, Takeda T, Matsuyama M, Sasaki T, Ozaka M, Ueki A, Sasahira N. Molecular Features and Clinical Management of Hereditary Pancreatic Cancer Syndromes and Familial Pancreatic Cancer. Int J Mol Sci 2022; 23:1205. [PMID: 35163129 PMCID: PMC8835700 DOI: 10.3390/ijms23031205] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Hereditary pancreatic cancers are caused by several inherited genes. Familial pancreatic cancer is defined as pancreatic cancer arising in a patient with at least two first-degree relatives with pancreatic cancer in the absence of an identified genetic cause. Hereditary pancreatic cancer syndromes and familial pancreatic cancers account for about 10% of pancreatic cancer cases. Germline mutations in BRCA1, BRCA2, ATM, PALB2, CDKN2A, STK11, and TP53 and mismatch repair genes (MLH1, MSH2, MSH6, PMS2, and EPCAM) are among the well-known inherited susceptibility genes. Currently available targeted medications include poly (ADP-ribose) polymerase inhibitors (PARP) for cases with mutant BRCA and immune checkpoint inhibitors for cases with mismatch repair deficiency. Loss of heterozygosity of hereditary pancreatic cancer susceptibility genes such as BRCA1/2 plays a key role in carcinogenesis and sensitivity to PARP inhibitors. Signature 3 identified by whole genome sequencing is also associated with homologous recombination deficiency and sensitivity to targeted therapies. In this review, we summarize molecular features and treatments of hereditary pancreatic cancer syndromes and surveillance procedures for unaffected high-risk cases. We also review transgenic murine models to gain a better understanding of carcinogenesis in hereditary pancreatic cancer.
Collapse
Affiliation(s)
- Akiyoshi Kasuga
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takeshi Okamoto
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Shohei Udagawa
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Chinatsu Mori
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takafumi Mie
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takaaki Furukawa
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Yuto Yamada
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Tsuyoshi Takeda
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Masato Matsuyama
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takashi Sasaki
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Masato Ozaka
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Arisa Ueki
- Department of Clinical Genetics, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Naoki Sasahira
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| |
Collapse
|
8
|
Astiazaran-Symonds E, Goldstein AM. A systematic review of the prevalence of germline pathogenic variants in patients with pancreatic cancer. J Gastroenterol 2021; 56:713-721. [PMID: 34255164 PMCID: PMC8475496 DOI: 10.1007/s00535-021-01806-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023]
Abstract
The genetics of pancreatic ductal adenocarcinoma (PDAC) is complex with patients reported to harbor germline pathogenic variants (PVs) in many different genes. PDAC patients with familial pancreatic cancer (FPC) are more likely to carry germline PVs but there is no consensus main gene involved in FPC. We performed a systematic review of publications from PubMed and Scopus reporting PVs in patients with FPC, sporadic pancreatic cancer (SPC) and unselected cohorts of PDAC patients undergoing genetic testing and calculated a cumulative prevalence of PVs for each gene evaluated across these three groups of patients. When available, variants in the selected publications were reclassified according to the American College of Medical Genetics and Genomics classification system and used for prevalence calculations if classified as pathogenic or likely pathogenic. We observed an increased prevalence of PVs in FPC compared to SPC or unselected PDAC patients for most of the 41 genes reported. The genes with the highest prevalence of carriers of PVs in FPC were ATM, BRCA2, and CDKN2A. BRCA2 and ATM showed the highest prevalence of PVs in both SPC and unselected PDAC cohorts. Several genes with the highest prevalence of PVs are involved in breast and ovarian cancer suggesting strong overlap with underlying genetics in these disorders but no single gene was predominant. More research is needed to further understand the risk of PDAC associated with these many diverse genes.
Collapse
Affiliation(s)
- Esteban Astiazaran-Symonds
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA,National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA
| |
Collapse
|
9
|
Monroy-Iglesias MJ, Dolly S, Sarker D, Thillai K, Van Hemelrijck M, Santaolalla A. Pancreatic Cancer Exposome Profile to Aid Early Detection and Inform Prevention Strategies. J Clin Med 2021; 10:1665. [PMID: 33924591 PMCID: PMC8069449 DOI: 10.3390/jcm10081665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PCa) is associated with a poor prognosis and high mortality rate. The causes of PCa are not fully elucidated yet, although certain exposome factors have been identified. The exposome is defined as the sum of all environmental factors influencing the occurrence of a disease during a life span. The development of an exposome approach for PCa has the potential to discover new disease-associated factors to better understand the carcinogenesis of PCa and help with early detection strategies. Our systematic review of the literature identified several exposome factors that have been associated with PCa alone and in combination with other exposures. A potential inflammatory signature has been observed among the interaction of several exposures (i.e., smoking, alcohol consumption, diabetes mellitus, obesity, and inflammatory markers) that further increases the incidence and progression of PCa. A large number of exposures have been identified such as genetic, hormonal, microorganism infections and immune responses that warrant further investigation. Future early detection strategies should utilize this information to assess individuals' risk for PCa.
Collapse
Affiliation(s)
- Maria J. Monroy-Iglesias
- Translational Oncology & Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK; (M.J.M.-I.); (M.V.H.)
| | - Saoirse Dolly
- Department of Medical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (S.D.); (D.S.); (K.T.)
| | - Debashis Sarker
- Department of Medical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (S.D.); (D.S.); (K.T.)
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
| | - Kiruthikah Thillai
- Department of Medical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (S.D.); (D.S.); (K.T.)
| | - Mieke Van Hemelrijck
- Translational Oncology & Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK; (M.J.M.-I.); (M.V.H.)
| | - Aida Santaolalla
- Translational Oncology & Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK; (M.J.M.-I.); (M.V.H.)
| |
Collapse
|
10
|
Gentiluomo M, Canzian F, Nicolini A, Gemignani F, Landi S, Campa D. Germline genetic variability in pancreatic cancer risk and prognosis. Semin Cancer Biol 2020; 79:105-131. [DOI: 10.1016/j.semcancer.2020.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
|
11
|
Matsubayashi H, Takaori K, Morizane C, Kiyozumi Y. Familial Pancreatic Cancer and Surveillance of High-Risk Individuals. Gut Liver 2020; 13:498-505. [PMID: 30917631 PMCID: PMC6743804 DOI: 10.5009/gnl18449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022] Open
Abstract
Family history of pancreatic cancer (PC) is a risk factor for PC development, and the risk level correlates with the number of affected families. A case of PC with ≥1 PC cases in the first-degree relative is broadly defined as familial pancreatic cancer (FPC) and accounts for 5% to 10% of total PC cases. FPC possesses several epidemiological, genetic and clinicopathological aspects that are distinct from those of conventional PCs. In Western countries, FPC registries have been established since the 1990s, and high-risk individuals are screened to detect early PCs. For the pharmacotherapy of FPC, especially in cases with germline pathogenic BRCA mutations, regimens using platinum and poly (ADP-ribose) polymerase inhibitor have recently been studied for their effectiveness. To date, the concept of FPC has prevailed in Western countries, and it has begun to infiltrate into Eastern countries. As the genetic background and environmental conditions vary in association with ethnicity and living area, we need to establish our own FPC registries and accumulate data in Asian countries.
Collapse
Affiliation(s)
- Hiroyuki Matsubayashi
- Divisions of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan.,Divisions of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kyoichi Takaori
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chigusa Morizane
- Division of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshimi Kiyozumi
- Divisions of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
12
|
Matsubayashi H, Kiyozumi Y, Ishiwatari H, Uesaka K, Kikuyama M, Ono H. Surveillance of Individuals with a Family History of Pancreatic Cancer and Inherited Cancer Syndromes: A Strategy for Detecting Early Pancreatic Cancers. Diagnostics (Basel) 2019; 9:E169. [PMID: 31683730 PMCID: PMC6963266 DOI: 10.3390/diagnostics9040169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
A family history of pancreatic cancer (PC) is a risk factor of PC, and risk levels increase as affected families grow in number and/or develop PC at younger ages. Familial pancreatic cancer (FPC) is defined as a client having at least two PC cases in a first degree relatives. In the narrow sense, FPC does not include some inherited cancer syndromes that are known to increase the risks of PC, such as Peutz-Jeghers syndrome (PJS), hereditary pancreatitis (HP), hereditary breast ovarian cancer syndrome (HBOC), and so on. FPC accounts for 5%-10% of total PC diagnoses and is marked by several features in genetic, epidemiological, and clinicopathological findings that are similar to or distinct from conventional PC. Recent advances in genetic medicine have led to an increased ability to identify germline variants of cancer-associated genes. To date, high-risk individuals (HRIs) in many developed countries, including FPC kindreds and inherited cancer syndromes, are screened clinically to detect and treat early-stage PC. This article highlights the concept of FPC and the most recent data on its detection.
Collapse
Affiliation(s)
- Hiroyuki Matsubayashi
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
| | - Yoshimi Kiyozumi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
| | | | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
| | - Masataka Kikuyama
- Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-0021, Japan.
| | - Hiroyuki Ono
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
| |
Collapse
|
13
|
Ohmoto A, Yachida S, Morizane C. Genomic Features and Clinical Management of Patients with Hereditary Pancreatic Cancer Syndromes and Familial Pancreatic Cancer. Int J Mol Sci 2019; 20:E561. [PMID: 30699894 PMCID: PMC6387417 DOI: 10.3390/ijms20030561] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most devastating malignancies; it has a 5-year survival rate of only 9%, and novel treatment strategies are urgently needed. While most PC cases occur sporadically, PC associated with hereditary syndromes or familial PC (FPC; defined as an individual having two or more first-degree relatives diagnosed with PC) accounts for about 10% of cases. Hereditary cancer syndromes associated with increased risk for PC include Peutz-Jeghers syndrome, hereditary pancreatitis, familial atypical multiple mole melanoma, familial adenomatous polyposis, Lynch syndrome and hereditary breast and ovarian cancer syndrome. Next-generation sequencing of FPC patients has uncovered new susceptibility genes such as PALB2 and ATM, which participate in homologous recombination repair, and further investigations are in progress. Previous studies have demonstrated that some sporadic cases that do not fulfil FPC criteria also harbor similar mutations, and so genomic testing based on family history might overlook some susceptibility gene carriers. There are no established screening procedures for high-risk unaffected cases, and it is not clear whether surveillance programs would have clinical benefits. In terms of treatment, poly (ADP-ribose) polymerase inhibitors for BRCA-mutated cases or immune checkpoint inhibitors for mismatch repair deficient cases are promising, and clinical trials of these agents are underway.
Collapse
Affiliation(s)
- Akihiro Ohmoto
- Laboratory of Clinical Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan.
| | - Shinichi Yachida
- Laboratory of Clinical Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan.
- Department of Cancer Genome Informatics, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka 5650871, Japan.
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan.
| |
Collapse
|
14
|
Abstract
Introduction: Both breast and pancreatic cancers have high mortality rates. Breast cancer is the second leading cause of cancer death in females, while pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer death. Almost 4-16 % of individuals with pancreatic cancer have a family history of the disease. Intra-ductal papillary mucinous neoplasms (IPMNs) are cystic lesions that received more attention lately due to their associations with PDAC and other solid organ tumors, such as breast cancer. Aim: The purpose of this article is to discuss the association of the familiar pancreatic cancer (FPC), sporadic pancreatic cancer, and IPMNs with the breast cancer. Results: Mutations in BRCA2, BRCA1, p16 and PALB2 play a major role in the genetic etiologies of familial pancreatic cancer. In familial and sporadic pancreatic cancers, mutations in BRCA2 are associated with a high incidence of PDAC, while mutations in BRCA1have shown inconsistent results. Data is insufficient to prove an association between IPMNs and breast cancer. Conclusion: The familial clustering of PDAC is not well understood. Further studies are required for greater comprehension of the genetic basis of PDAC and the association between IPMNs and breast cancer.
Collapse
Affiliation(s)
- Mary Barbara
- Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Adrianne Tsen
- Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Laura Tenner
- Department of Hematology and Oncology, UT Health San Antonio, San Antonio, Tx, USA
| | - Laura Rosenkranz
- Department of Gastroenterology, UT Health San Antonio San Antonio, TX, USA
| |
Collapse
|
15
|
Sikdar N, Saha G, Dutta A, Ghosh S, Shrikhande SV, Banerjee S. Genetic Alterations of Periampullary and Pancreatic Ductal Adenocarcinoma: An Overview. Curr Genomics 2018; 19:444-463. [PMID: 30258276 PMCID: PMC6128383 DOI: 10.2174/1389202919666180221160753] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic Ductal AdenoCarcinoma (PDAC) is one of the most lethal malignancies of all solid cancers. Precancerous lesions for PDAC include PanIN, IPMNs and MCNs. PDAC has a poor prognosis with a 5-year survival of approximately 6%. Whereas Periampulary AdenoCarcinoma (PAC) having four anatomic subtypes, pancreatic, Common Bile Duct (CBD), ampullary and duodenum shows relative better prognosis. The highest incidence of PDAC has been reported with black with respect to white population. Similarly, incidence rate of PAC also differs with different ethnic populations. Several lifestyle, environmental and occupational exposures including long-term diabetes, obesity, and smoking, have been linked to PDAC, however, for PAC the causal risk factors were poorly described. It is now clear that PDAC and PAC are a multi-stage process resulting from the accumulation of genomic alterations in the somatic DNA of normal cells as well as inherited mutations. Approximately 10% of PDAC have a familial inheritance. Germline mutations in CDKN2A, BRCA2, STK11, PALB2, PRSS1, etc., as well as certain syndromes have been well associated with predisposition to PDAC. KRAS, CDKN2A, TP53 and SMAD4 are the 4 "mountains" (high-frequency driver genes) which have been known to earliest somatic alterations for PDAC while relatively less frequent in PAC. Our understanding of the molecular carcinogenesis has improved in the last few years due to extensive research on PDAC which was not well explored in case of PAC. The genetic alterations that have been identified in PDAC and different subgroups of PAC are important implications for the development of genetic screening test, early diagnosis, and prognostic genetic markers. The present review will provide a brief overview of the incidence and prevalence of PDAC and PAC, mainly, increased risk in India, the several kinds of risk factors associated with the diseases as well as required genetic alterations for disease initiation and progression.
Collapse
Affiliation(s)
- Nilabja Sikdar
- Address correspondence to this author at the Human Genetics Unit, Indian Statistical Institute, 203, B.T. Road Kolkata 700108, India; Tel (1): +91-33
-25773240 (L); (2): +91-9830780397 (M); Fax: +91 33 35773049;, E-mail:
| | | | | | | | | | | |
Collapse
|
16
|
Windon AL, Loaiza-Bonilla A, Jensen CE, Randall M, Morrissette JJD, Shroff SG. A KRAS wild type mutational status confers a survival advantage in pancreatic ductal adenocarcinoma. J Gastrointest Oncol 2018; 9:1-10. [PMID: 29564165 DOI: 10.21037/jgo.2017.10.14] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The KRAS oncogene is a driver mutation and is present in greater than 90% of pancreatic ductal adenocarcinomas (PDAC). A subset of these tumors, however, do not harbor mutations in KRAS (wild type KRAS). Studies have shown that patients with mutated KRAS have a poorer survival on first-line gemcitabine-based chemotherapy compared to wild type KRAS. In this study, we examined a cohort of patients with PDAC at our institution who were either wild type or mutant for the KRAS gene and assessed for differences in survival and response to different chemotherapeutic regimens. Methods We examined clinical records of patients treated at the Abramson Cancer Center of the University of Pennsylvania from 2013 to 2017. Patients with a pancreatic mass and a histologic diagnosis of pancreatic or pancreaticobiliary adenocarcinoma were identified. Thirty-nine patients with PDAC who underwent tumor sequencing at Penn Medicine's Center for Personalized Diagnostics (CPD) were selected for further study. Twelve patients were identified whose tumors were KRAS wild type. Twenty-seven patients with PDAC whose tumors harbored KRAS mutations were selected as controls (KRAS mutant). Results We noted a longer overall survival (OS) among KRAS wild type patients compared to KRAS mutant patients (P=0.026). This was independent of the age at diagnosis, patient gender, stage of diagnosis, tumor morphology, mismatch repair (MMR) status, and chemotherapeutic regimen. Conclusions Similar to previously reported studies, PDAC with a KRAS wild type mutational profile has a better prognosis with a longer OS. This improved prognosis is independent of the protocol utilized in therapy for these patients. Our findings suggest that future clinical trials in pancreatic cancer should take into consideration the presence of KRAS mutations in their pre-planned analysis when assessing the efficacy of a novel therapeutic approach. This may be a crucial factor in trial concepts and outcomes.
Collapse
Affiliation(s)
- Annika L Windon
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Christopher E Jensen
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Randall
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J D Morrissette
- Center for Personalized Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stuti G Shroff
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Carrera S, Sancho A, Azkona E, Azkuna J, Lopez-Vivanco G. Hereditary pancreatic cancer: related syndromes and clinical perspective. Hered Cancer Clin Pract 2017; 15:9. [PMID: 28670351 PMCID: PMC5490219 DOI: 10.1186/s13053-017-0069-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a very aggressive disease with a poor prognosis. The majority of them are attributed to sporadic causes, especially to many modifiable risk factors such as tobacco or alcohol abuse. The principal histologic subtype of pancreatic cancer is ductal adenocarcinoma. Pancreatic neuroendocrine tumors, which constitute a more indolent entity, represent second type of pancreatic cancer in terms of incidence. Individuals with a family history of pancreatic cancer carry an increased risk of developing the disease, which may be related to an underlying hereditary component. Unfortunately, in the majority of these families the suspected germline genetic cause responsible of the disease will not be identified, but approximately in a 20% of the cases a hereditary cancer predisposition syndrome with increased risk of pancreatic cancer development can be recognized. This review will be focused on the leading hereditary cancer syndromes related to pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors. Additionally, we will try to explain clinical aspects related to the identification of germline mutations in pancreatic cancer patients and their potential implications in oncologic treatment decisions.
Collapse
Affiliation(s)
- Sergio Carrera
- Hereditary Cancer Genetic Counseling Unit- Medical Oncology Department, Cruces University Hospital, Plaza de Cruces s/n. 48903, Baracaldo, Bizkaia Spain
| | - Aintzane Sancho
- Medical Oncology Department, Cruces University Hospital, Baracaldo, Spain
| | - Eider Azkona
- Medical Oncology Department, Cruces University Hospital, Baracaldo, Spain
| | - Josune Azkuna
- Medical Oncology Department, Cruces University Hospital, Baracaldo, Spain
| | | |
Collapse
|
18
|
|
19
|
Abstract
Hereditary pancreatic cancer can be diagnosed through family history and/or a personal history of pancreatitis or clinical features suggesting one of the known pancreatic cancer predisposition syndromes. This chapter describes the currently known hereditary pancreatic cancer predisposition syndromes, including Peutz-Jeghers syndrome, familial atypical multiple mole melanoma, hereditary breast and ovarian cancer, Li-Fraumeni syndrome, hereditary non-polyposis colon cancer and familial adenomatous polyposis. Strategies for genetic testing for hereditary pancreatic cancer and the appropriate options for surveillance and cancer risk reduction are discussed. Finally, ongoing research and future directions in the diagnosis and management of hereditary pancreatic cancer will be considered.
Collapse
Affiliation(s)
- Jeremy L Humphris
- The Kinghorn Cancer Centre, Cancer Research Program, 370 Victoria St., Darlinghurst, NSW, 2010, Australia.
| | - Andrew V Biankin
- The Kinghorn Cancer Centre, Cancer Research Program, 370 Victoria St., Darlinghurst, NSW, 2010, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, Bearsden, G61 1BD, United Kingdom
| |
Collapse
|
20
|
Luo G, Lu Y, Jin K, Cheng H, Guo M, Liu Z, Long J, Liu C, Ni Q, Yu X. Pancreatic cancer: BRCA mutation and personalized treatment. Expert Rev Anticancer Ther 2015; 15:1223-31. [PMID: 26402249 DOI: 10.1586/14737140.2015.1086271] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The highly heterozygous nature of pancreatic cancer is partially responsible for its therapeutic ineffectiveness and resistance. Therefore, the ability to identify subgroups of pancreatic cancer with unique biological characteristics and treatment response is urgently needed. In addition to breast and ovarian cancer, pancreatic cancer is the third most common cancer type that is related to the early onset (BRCA) gene mutation in breast cancer. Mounting evidence has demonstrated that BRCA1/2-mutant breast and ovarian cancers are highly sensitive to DNA damage-related treatment, including poly(ADP-ribose) polymerase inhibitors (PARPi) and platinum-based agents. Preliminary evidence also showed promising results for DNA damage-related treatment in BRCA1/2-mutant pancreatic cancer. Importantly, several prospective clinical trials of PARPi-based regimens are underway for BRCA1/2-mutated pancreatic cancer. Pancreatic cancer with a BRCA1/2 mutation is a small subgroup with a promising therapeutic strategy.
Collapse
|
21
|
Abstract
Despite decades of scientific and clinical research, pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy. The clinical and pathologic features of PDAC, specifically the known environmental and genetic risk factors, are reviewed here with special emphasis on the hereditary pancreatic cancer (HPC) syndromes. For these latter conditions, strategies are described for their identification, for primary and secondary prevention in unaffected carriers, and for disease management in affected carriers. Nascent steps have been made toward personalized medicine based on the rational use of screening, tumor subtyping, and targeted therapies; these have been guided by growing knowledge of HPC syndromes in PDAC.
Collapse
Affiliation(s)
- Ashton A Connor
- Division of General Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- Division of General Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Cavanagh H, Rogers KMA. The role of BRCA1 and BRCA2 mutations in prostate, pancreatic and stomach cancers. Hered Cancer Clin Pract 2015; 13:16. [PMID: 26236408 PMCID: PMC4521499 DOI: 10.1186/s13053-015-0038-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023] Open
Abstract
The association of germline mutations in the breast cancer susceptibility gene 1 (BRCA1) and the breast cancer susceptibility gene 2 (BRCA2) with the development of breast and ovarian cancers have been widely researched and recognised. It is known that these genes function at multiple sites in the body. Research has subsequently evolved into the connection of BRCA1/2 with cancers at other sites within the body. This review examines the association of BRCA1/2 germline gene mutations with prostate, pancreatic and stomach cancers. An extensive literature search revealed conflicting findings regarding the association of BRCA1/2 gene mutations with these cancers. Most studies suggest that there is an association between BRCA1/2 mutations and carcinoma of the prostate, pancreas and stomach, but some reports propose that such a correlation may be due to factors other than possessing a mutated BRCA1/2 gene, and other associations may be revealed as further epidemiological information becomes available. The review concludes that as more knowledge arises about the mechanisms of BRCA1/2 gene mutations, it should pave the way for future screening programmes to be applied effectively.
Collapse
Affiliation(s)
- Helen Cavanagh
- School of Nursing and Midwifery, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL N. Ireland
| | - Katherine M A Rogers
- School of Nursing and Midwifery, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL N. Ireland
| |
Collapse
|
23
|
Gall TMH, Wasan H, Jiao LR. Pancreatic cancer: current understanding of molecular and genetic aetiologies. Postgrad Med J 2015; 91:594-600. [PMID: 26124188 DOI: 10.1136/postgradmedj-2014-133161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/11/2015] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the few cancers where prognosis has not improved over the past few decades. However, there have been several advances in our understanding of the disease leading to earlier detection and targeted therapeutic treatment. It is now understood that specific somatic and germline mutations lead to the development of the disease, and the risk factors associated with this are clearer. Further, several precursor lesions have been identified which, with early detection and surveillance, allows treatment before the development of carcinoma. PDAC can now be diagnosed with a high sensitivity and specificity following advances in radiology, and treatment can be commenced at an earlier stage of the disease. With continued research we are hopeful that the next decade will see an improved survival rate for all patients with pancreatic cancer.
Collapse
Affiliation(s)
- Tamara M H Gall
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital, London, UK
| | | | - Long R Jiao
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital, London, UK
| |
Collapse
|
24
|
Grant RC, Selander I, Connor AA, Selvarajah S, Borgida A, Briollais L, Petersen GM, Lerner-Ellis J, Holter S, Gallinger S. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology 2015; 148:556-64. [PMID: 25479140 PMCID: PMC4339623 DOI: 10.1053/j.gastro.2014.11.042] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/20/2014] [Accepted: 11/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS We investigated the prevalence of germline mutations in APC, ATM, BRCA1, BRCA2, CDKN2A, MLH1, MSH2, MSH6, PALB2, PMS2, PRSS1, STK11, and TP53 in patients with pancreatic cancer. METHODS The Ontario Pancreas Cancer Study enrolls consenting participants with pancreatic cancer from a province-wide electronic pathology database; 708 probands were enrolled from April 2003 through August 2012. To improve the precision of BRCA2 prevalence estimates, 290 probands were selected from 3 strata, based on family history of breast and/or ovarian cancer, pancreatic cancer, or neither. Germline DNA was analyzed by next-generation sequencing using a custom multiple-gene panel. Mutation prevalence estimates were calculated from the sample for the entire cohort. RESULTS Eleven pathogenic mutations were identified: 3 in ATM, 1 in BRCA1, 2 in BRCA2, 1 in MLH1, 2 in MSH2, 1 in MSH6, and 1 in TP53. The prevalence of mutations in all 13 genes was 3.8% (95% confidence interval, 2.1%-5.6%). Carrier status was associated significantly with breast cancer in the proband or first-degree relative (P < .01), and with colorectal cancer in the proband or first-degree relative (P < .01), but not family history of pancreatic cancer, age at diagnosis, or stage at diagnosis. Of patients with a personal or family history of breast and colorectal cancer, 10.7% (95% confidence interval, 4.4%-17.0%) and 11.1% (95% confidence interval, 3.0%-19.1%) carried pathogenic mutations, respectively. CONCLUSIONS A small but clinically important proportion of pancreatic cancer is associated with mutations in known predisposition genes. The heterogeneity of mutations identified in this study shows the value of using a multiple-gene panel in pancreatic cancer.
Collapse
Affiliation(s)
- Robert C Grant
- Ontario Institute for Cancer Research, Canada; Department of Medicine, University of Toronto, Canada
| | - Iris Selander
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Canada
| | - Ashton A Connor
- Division of General Surgery, Department of Surgery, University Health Network, University of Toronto, Canada
| | | | - Ayelet Borgida
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Canada
| | - Laurent Briollais
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Canada
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jordan Lerner-Ellis
- Ontario Institute for Cancer Research, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Canada
| | - Spring Holter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Canada; Division of General Surgery, Department of Surgery, University Health Network, University of Toronto, Canada.
| |
Collapse
|
25
|
ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 2015; 110:223-62; quiz 263. [PMID: 25645574 PMCID: PMC4695986 DOI: 10.1038/ajg.2014.435] [Citation(s) in RCA: 1025] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
This guideline presents recommendations for the management of patients with hereditary gastrointestinal cancer syndromes. The initial assessment is the collection of a family history of cancers and premalignant gastrointestinal conditions and should provide enough information to develop a preliminary determination of the risk of a familial predisposition to cancer. Age at diagnosis and lineage (maternal and/or paternal) should be documented for all diagnoses, especially in first- and second-degree relatives. When indicated, genetic testing for a germline mutation should be done on the most informative candidate(s) identified through the family history evaluation and/or tumor analysis to confirm a diagnosis and allow for predictive testing of at-risk relatives. Genetic testing should be conducted in the context of pre- and post-test genetic counseling to ensure the patient's informed decision making. Patients who meet clinical criteria for a syndrome as well as those with identified pathogenic germline mutations should receive appropriate surveillance measures in order to minimize their overall risk of developing syndrome-specific cancers. This guideline specifically discusses genetic testing and management of Lynch syndrome, familial adenomatous polyposis (FAP), attenuated familial adenomatous polyposis (AFAP), MUTYH-associated polyposis (MAP), Peutz-Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, serrated (hyperplastic) polyposis syndrome, hereditary pancreatic cancer, and hereditary gastric cancer.
Collapse
|
26
|
BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genet Med 2014; 17:569-77. [PMID: 25356972 PMCID: PMC4439391 DOI: 10.1038/gim.2014.153] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/24/2014] [Indexed: 12/13/2022] Open
Abstract
Purpose Familial Pancreatic Cancer (FPC) kindreds contain at least two affected first-degree relatives (FDR). Comprehensive data are needed to assist clinical risk assessment and genetic testing. Methods Germline DNA samples from 727 unrelated probands with positive family history (521 met criteria for FPC) were CLIA-tested for mutations in BRCA1 and BRCA2 (including analysis of deletions and rearrangements), PALB2, and CDKN2A. We compared prevalence of deleterious mutations between FPC probands and non-FPC probands (kindreds containing at least two affected biologic relatives, but not FDR). We also examined the impact of family history of breast and ovarian cancer and melanoma. Results Prevalence of deleterious mutations (excluding variants of unknown significance) among FPC probands was: BRCA1, 1.2%; BRCA2, 3.7%; PALB2, 0.6%; CDKN2A, 2.5%. Four novel deleterious mutations were detected. FPC probands carry more mutations in the four genes (8.0%) than non-FPC probands (3.5%) (odds ratio=2.40, 95% CI=(1.06, 5.44), p=0.03). The probability of testing positive for deleterious mutations in any of the four genes ranges up to 10.4%, depending upon family history of cancers. BRCA2 and CDKN2A account for the majority of mutations in FPC. Conclusion Genetic testing of multiple relevant genes in probands with a positive family history is warranted, particularly for FPC.
Collapse
|
27
|
Lucas AL, Frado L, Hwang C, Kumar S, Khanna LG, Levinson E, Chabot JA, Chung WK, Frucht H. BRCA1 and BRCA2 germline mutations are frequently demonstrated in both high-risk pancreatic cancer screening and pancreatic cancer cohorts. Cancer 2014; 120:1960-7. [PMID: 24737347 PMCID: PMC5494829 DOI: 10.1002/cncr.28662] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/22/2014] [Accepted: 02/05/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Approximately 10% of pancreatic ductal adenocarcinoma (PDAC) is due to a genetic predisposition, including the breast and ovarian cancer syndrome germline mutations BRCA1 and BRCA2. Knowledge of specific genetic mutations predisposing to PDAC may enable risk stratification, early detection, and the development of effective screening and surveillance programs. In the current study, the authors attempted to determine the diagnostic yield of testing for BRCA1/2 germline mutations in a PDAC screening cohort and a PDAC cohort referred for genetic testing. METHODS Patients in a high-risk PDAC prevention and genetics program or those with a personal history of PDAC who were referred for genetic evaluation underwent testing for BRCA1/2 germline mutations. Clinical BRCA1/2 genetic testing included testing for the 3 Ashkenazi Jewish founder mutations or BRCA1/2 comprehensive testing. RESULTS A total of 37 patients without PDAC underwent BRCA1/2 testing at the study institution. Genetic testing identified 7 patients who were BRCA1/2 carriers for a yield of 18.9%. Six patients carried Ashkenazi Jewish founder mutations (3 with BRCA1 and 3 with BRCA2), and 1 patient was found to have a BRCA2 mutation on comprehensive testing. Thirty-two patients with PDAC underwent BRCA1/2 genetic testing. Five patients had Ashkenazi Jewish founder mutations (2 with BRCA1 and 3 with BRCA2), and 2 patients were found to have BRCA2 mutations on comprehensive testing. The diagnostic yield was 7 of 32 patients (21.9%). CONCLUSIONS BRCA1/2 testing is useful in PDAC risk stratification and alters risk assignment and screening recommendations for mutation-positive patients and their families. Clinical BRCA1/2 testing should be considered in patients of Ashkenazi Jewish descent with a personal history or family history of PDAC, even in the absence of a family history of breast and ovarian cancer.
Collapse
Affiliation(s)
- Aimee L. Lucas
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Frado
- Muzzi Mirza Pancreatic Cancer Prevention and Genetics Program, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University, New York, NY, USA
| | - Caroline Hwang
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sheila Kumar
- Department of Medicine, Stanford University, Palo Alto, California, USA
| | - Lauren G. Khanna
- Muzzi Mirza Pancreatic Cancer Prevention and Genetics Program, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University, New York, NY, USA
| | - Elana Levinson
- Muzzi Mirza Pancreatic Cancer Prevention and Genetics Program, Columbia University Medical Center, New York, NY, USA
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - John A. Chabot
- Muzzi Mirza Pancreatic Cancer Prevention and Genetics Program, Columbia University Medical Center, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Wendy K. Chung
- Muzzi Mirza Pancreatic Cancer Prevention and Genetics Program, Columbia University Medical Center, New York, NY, USA
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Harold Frucht
- Muzzi Mirza Pancreatic Cancer Prevention and Genetics Program, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University, New York, NY, USA
| |
Collapse
|
28
|
Reznik R, Hendifar AE, Tuli R. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma. Front Physiol 2014; 5:87. [PMID: 24624093 PMCID: PMC3939680 DOI: 10.3389/fphys.2014.00087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/13/2014] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided.
Collapse
Affiliation(s)
- Robert Reznik
- Department of Radiation Oncology, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Andrew E Hendifar
- Department of Radiation Oncology, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center Los Angeles, CA, USA
| |
Collapse
|
29
|
Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, Hruban RH. Recent progress in pancreatic cancer. CA Cancer J Clin 2013; 63:318-48. [PMID: 23856911 PMCID: PMC3769458 DOI: 10.3322/caac.21190] [Citation(s) in RCA: 658] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is currently one of the deadliest of the solid malignancies. However, surgery to resect neoplasms of the pancreas is safer and less invasive than ever, novel drug combinations have been shown to improve survival, advances in radiation therapy have resulted in less toxicity, and enormous strides have been made in the understanding of the fundamental genetics of pancreatic cancer. These advances provide hope but they also increase the complexity of caring for patients. It is clear that multidisciplinary care that provides comprehensive and coordinated evaluation and treatment is the most effective way to manage patients with pancreatic cancer.
Collapse
Affiliation(s)
- Christopher L. Wolfgang
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
| | - Joseph M. Herman
- Department of Radiation Oncology & Molecular Radiation Sciences, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
| | - Daniel A. Laheru
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
| | - Alison P. Klein
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
- Department of Epidemiology, the Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Michael A. Erdek
- Department of Anesthesiology and Critical Care Medicine, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
| | - Elliot K. Fishman
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
| | - Ralph H. Hruban
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine
| |
Collapse
|
30
|
Abstract
Pancreatic cancer remains one of the most challenging of all cancers. Genetic risk factors are believed to play a major role, but other than genes coding for blood group, genetic risks for sporadic cases remain elusive. However, several germline mutations have been identified that lead to hereditary pancreatic cancer, familial pancreatic cancer, and increased risk for pancreatic cancer as part of a familial cancer syndrome. The most important genes with variants increasing risk for pancreatic cancer include BRCA1, BRCA2, PALB2, ATM, CDKN2A, APC, MLH1, MSH2, MSH6, PMS2, PRSS1, and STK11. Recognition of members of high-risk families is important for understanding pancreatic cancer biology, for recommending risk reduction strategies and, in some cases, initiating cancer surveillance programs. Because the best methods for surveillance have not been established, the recommendation to refer at-risk patients to centers with ongoing research programs in pancreatic cancer surveillance is supported.
Collapse
|
31
|
Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, Hruban RH. Recent progress in pancreatic cancer. CA Cancer J Clin 2013. [PMID: 23856911 DOI: 10.1002/caac.21190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is currently one of the deadliest of the solid malignancies. However, surgery to resect neoplasms of the pancreas is safer and less invasive than ever, novel drug combinations have been shown to improve survival, advances in radiation therapy have resulted in less toxicity, and enormous strides have been made in the understanding of the fundamental genetics of pancreatic cancer. These advances provide hope but they also increase the complexity of caring for patients. It is clear that multidisciplinary care that provides comprehensive and coordinated evaluation and treatment is the most effective way to manage patients with pancreatic cancer.
Collapse
Affiliation(s)
- Christopher L Wolfgang
- Associate Professor, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD; Associate Professor, Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD; Associate Professor, Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
It is estimated that 5% to 10% of pancreatic cancer is familial. Although there is evidence of a major pancreatic cancer susceptibility gene, the majority of families with multiple cases of pancreatic cancer do not have an identifiable causative gene or syndrome. However, a subset of pancreatic cancer is attributable to known inherited cancer predisposition syndromes, including several hereditary breast cancer genes (BRCA1, BRCA2, and PALB2), CDKN2A, hereditary pancreatitis, hereditary nonpolyposis colorectal cancer, and Peutz-Jeghers syndrome. In addition to explaining a proportion of familial pancreatic cancer, individuals with these conditions are at increased risk for pancreatic cancer. Relatives from familial pancreatic cancer kindreds without one of these identifiable syndromes may have as high as a 32-fold risk of pancreatic cancer, depending on the number of affected first-degree relatives. Such high-risk individuals may benefit from increased surveillance, and strategies for early detection of pancreatic cancer are under evaluation.
Collapse
|
33
|
Abstract
Pancreatic cancer is a leading cause of cancer death, and it has the poorest prognosis of any major tumour type. Familial pancreatic cancer registries are important for investigating the genetic aetiology of this devastating disease. Using data from our familial pancreatic cancer registry and other registries, this Review discusses the usefulness of family registries in the study of pancreatic and other cancers, and also how such registries provide a unique opportunity for laboratory, population and clinical research.
Collapse
Affiliation(s)
- Alison P Klein
- Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA.
| |
Collapse
|
34
|
Roberts NJ, Klein AP. Genome-wide sequencing to identify the cause of hereditary cancer syndromes: with examples from familial pancreatic cancer. Cancer Lett 2012. [PMID: 23196058 DOI: 10.1016/j.canlet.2012.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advances in our understanding of the human genome and next-generation technologies have facilitated the use of genome-wide sequencing to decipher the genetic basis of Mendelian disease and hereditary cancer syndromes. However, the application of genome-wide sequencing in hereditary cancer syndromes has had mixed success, in part, due to complex nature of the underlying genetic architecture. In this review we discuss the use of genome-wide sequencing in both Mendelian diseases and hereditary cancer syndromes, highlighting the potential and challenges of this approach using familial pancreatic cancer as an example.
Collapse
Affiliation(s)
- Nicholas J Roberts
- Ludwig Center for Cancer Genetics and Therapeutics, The Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA
| | | |
Collapse
|
35
|
Amin S, McBride R, Kline J, Mitchel EB, Lucas AL, Neugut AI, Frucht H. Incidence of subsequent pancreatic adenocarcinoma in patients with a history of nonpancreatic primary cancers. Cancer 2012; 118:1244-51. [PMID: 21887676 PMCID: PMC3677019 DOI: 10.1002/cncr.26414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 05/31/2011] [Accepted: 06/06/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Several environmental risk factors are known to predispose individuals to pancreatic cancer, and up to 15% of pancreatic cancers have an inherited component. Understanding metachronous cancer associations can modify pancreas cancer risk. The objective of this study was to investigate the association of nonpancreatic cancers with subsequent pancreatic adenocarcinoma. METHODS The authors used data from the US Surveillance, Epidemiology, and End Results (SEER) registries to identify 1,618,834 individuals who had a primary malignancy and subsequent pancreatic adenocarcinoma (n = 4013). Standardized incidence ratios were calculated as an approximation of relative risk (RR) for the occurrence of pancreatic adenocarcinoma after another primary malignancy. RESULTS Among patients who were diagnosed with a first primary malignancy at ages 20 to 49 years, the risk of subsequent pancreatic adenocarcinoma was increased among patients who had cancers of the ascending colon (relative risk [RR], 4.62; 95% confidence interval [CI], 1.86-9.52), hepatic flexure (RR, 5.42; 95% CI, 1.12-15.84), biliary system (RR, 13.14; 95% CI, 4.27-30.66), breast (RR, 1.32; 95% CI, 1.09-1.59), uterine cervix (RR, 1.61; 95% CI, 1.02-2.41), testes (RR, 2.78; 95% CI, 1.83-4.05), and hematopoietic system (RR, 1.83; 95% CI, 1.28-2.53). Among patients who had a first malignancy at ages 50 to 64 years, the risk was increased after cancers of the stomach (RR, 1.88; 95% CI, 1.13-2.93), hepatic flexure (RR, 2.25; 95% CI, 1.08-4.13), lung and bronchus (RR, 1.46; 95% CI, 1.16-1.82), pharynx (RR, 2.26; 95% CI, 1.13-4.04), and bladder (RR, 1.24; 95% CI, 1.03-1.48). Among patients who had a primary cancer after age 65 years, the risk was increased after cancers of the stomach (RR, 1.79; 95% CI, 1.23-2.53), hepatic flexure (RR, 1.76; 95% CI, 1.06-2.75), biliary system (RR, 2.35; 95% CI, 1.17-4.20), and uterus (RR, 1.23; 95% CI, 1.03-1.47). CONCLUSIONS The results from the current population-based data set suggested that pancreatic adenocarcinoma is associated with certain primary cancers. Genetic predisposition and common environmental and behavioral risk factors all may contribute to this observation. Specific tumor associations will guide future risk-stratification efforts.
Collapse
Affiliation(s)
- Sunil Amin
- College of Physicians and Surgeons, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Muzzi Mirza Pancreatic Cancer Prevention & Genetics Program, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
| | - Russell McBride
- Department of Epidemiology, Mailman School of Public Health
- Herbert Irving Comprehensive Cancer Center
| | - Jennie Kline
- Sergievsky Center, Columbia University, New York, NY and the New York State Psychiatric Institute, New York, NY
- Department of Epidemiology, Mailman School of Public Health
| | - Elana B. Mitchel
- College of Physicians and Surgeons, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Muzzi Mirza Pancreatic Cancer Prevention & Genetics Program, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
| | - Aimee L. Lucas
- Muzzi Mirza Pancreatic Cancer Prevention & Genetics Program, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Division of Digestive and Liver Diseases, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Department of Medicine, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
| | - Alfred I. Neugut
- Department of Medicine, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Herbert Irving Comprehensive Cancer Center
| | - Harold Frucht
- Muzzi Mirza Pancreatic Cancer Prevention & Genetics Program, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Division of Digestive and Liver Diseases, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Department of Medicine, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Herbert Irving Comprehensive Cancer Center
| |
Collapse
|
36
|
Abstract
Pancreatic cancer is the fourth leading cause of cancer death in both men and women in the United States. However, it has the poorest prognosis of any major tumor type, with a 5-yr survival rate of approximately 5%. Cigarette smoking, increased body mass index, heavy alcohol consumption, and a diagnosis of diabetes mellitus have all been demonstrated to increase risk of pancreatic cancer. A family history of pancreatic cancer has also been associated with increased risk suggesting inherited genetic factors also play an important role, with approximately 5-10% of pancreatic cancer patients reporting family history of pancreatic cancer. While the genetic basis for the majority of the familial clustering of pancreatic cancer remains unclear, several important pancreatic cancer genes have been identified. These consist of high penetrance genes including BRCA2 or PALB2, to more common genetic variation associated with a modest increase risk of pancreatic cancer such as genetic variation at the ABO blood group locus. Recent advances in genotyping and genetic sequencing have accelerated the rate at which novel pancreatic cancer susceptibility genes have been identified with several genes identified within the past few years. This review addresses our current understanding of the familial aggregation of pancreatic cancer, established pancreatic cancer susceptablity genes and how this knowledge informs risk assessment and screening for high-risk families.
Collapse
Affiliation(s)
- Alison P Klein
- Department of Oncology and Pathology, Sol Goldman Pancreatic Cancer Research Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| |
Collapse
|
37
|
Miller-Samuel S, Rosenberg A, Berger A, Gomella L, Loren D, Morris GJ. BRCA1 and BRCA2 variants of uncertain significance. Part two: medical management. Semin Oncol 2011; 38:605-11. [PMID: 21943665 DOI: 10.1053/j.seminoncol.2011.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Susan Miller-Samuel
- Thomas Jefferson University Hospital, Jefferson Breast Care Center, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
38
|
Stadler ZK, Salo-Mullen E, Patil SM, Pietanza MC, Vijai J, Saloustros E, Hansen NAL, Kauff ND, Kurtz RC, Kelsen DP, Offit K, Robson ME. Prevalence of BRCA1 and BRCA2 mutations in Ashkenazi Jewish families with breast and pancreatic cancer. Cancer 2011; 118:493-9. [PMID: 21598239 DOI: 10.1002/cncr.26191] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/16/2011] [Accepted: 03/24/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Germline mutations in the BRCA2 cancer susceptibility gene are associated with an increased risk of pancreatic cancer (PC). Breast-pancreas cancer families with BRCA1 mutations have also been observed. The influence of a family history (FH) of PC on BRCA mutation prevalence in patients with breast cancer (BC) is unknown. METHODS A clinical database review (2000-2009) identified 211 Ashkenazi Jewish (AJ) BC probands who 1) underwent BRCA1/2 mutation analysis by full gene sequencing or directed testing for Ashkenazi founder mutations (BRCA1: 185delAG and 5382insC; BRCA2: 6174delT) and 2) had a FH of PC in a first-, second-, or third-degree relative. For each proband, the pretest probability of identifying a BRCA1/2 mutation was estimated using the Myriad II model. The observed-to-expected (O:E) mutation prevalence was calculated for the entire group. RESULTS Of the 211 AJ BC probands with a FH of PC, 30 (14.2%) harbored a BRCA mutation. Fourteen (47%) of the mutations were in BRCA1 and 16 (53%) were in BRCA2. Patients diagnosed with BC at age ≤ 50 years were found to have a higher BRCA1/2 mutation prevalence than probands with BC who were diagnosed at age > 50 years (21.1% vs 6.9%; P = .003). In patients with a first-, second-, or third-degree relative with PC, mutation prevalences were 15.4%, 15.3%, and 8.6%, respectively (P = .58). In the overall group, the observed BRCA1/2 mutation prevalence was 14.2% versus an expected prevalence of 11.8% (O:E ratio, 1.21; P = .15). CONCLUSIONS BRCA1 and BRCA2 mutations are observed with nearly equal distribution in AJ breast-pancreas cancer families, suggesting that both genes are associated with PC risk. In this population, a FH of PC was found to have a limited effect on mutation prevalence.
Collapse
Affiliation(s)
- Zsofia K Stadler
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 401 North Broadway, Weinberg 2242, Baltimore, MD 21231, USA.
| | | | | | | | | |
Collapse
|
40
|
Klein AP, Borges M, Griffith M, Brune K, Hong SM, Omura N, Hruban RH, Goggins M. Absence of deleterious palladin mutations in patients with familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2009; 18:1328-30. [PMID: 19336541 DOI: 10.1158/1055-9965.epi-09-0056] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It has been reported that germline mutations in the palladin gene (PALLD) cause the familial aggregation of pancreatic cancer, but the evidence is weak and controversial. We sequenced the coding regions of PALLD in 48 individuals with familial pancreatic cancer. We did not find any deleterious mutations and find no evidence to implicate mutations in PALLD as a cause of familial pancreatic cancer.
Collapse
Affiliation(s)
- Alison P Klein
- Department of Pathology, The John Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|