1
|
Peng J, Lin Y, Sheng X, Yuan C, Wang Y, Yin W, Zhou L, Lu J. Serum miRNA-1 may serve as a promising noninvasive biomarker for predicting treatment response in breast cancer patients receiving neoadjuvant chemotherapy. BMC Cancer 2024; 24:789. [PMID: 38956544 PMCID: PMC11221026 DOI: 10.1186/s12885-024-12500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND MicroRNA-1 (miR-1) is a tumour suppressor that can inhibit cell proliferation and invasion in several cancer types. In addition, miR-1 was found to be associated with drug sensitivity. Circulating miRNAs have been proven to be potential biomarkers with predictive and prognostic value. However, studies of miR-1 expression in the serum of breast cancer (BC) patients are relatively scarce, especially in patients receiving neoadjuvant chemotherapy (NAC). METHODS Serum samples from 80 patients were collected before chemotherapy, and RT-PCR was performed to detect the serum expression of miR-1. The correlation between miR-1 expression in serum and clinicopathological factors, including pathological complete response (pCR), was analyzed by the chi-squared test and logistic regression. KEGG and GSEA analysis were also performed to determine the biological processes and signalling pathways involved. RESULTS The miR-1 high group included more patients who achieved a pCR than did the miR-1 low group (p < 0.001). Higher serum miR-1 levels showed a strong correlation with decreased ER (R = 0.368, p < 0.001) and PR (R = 0.238, p = 0.033) levels. The univariate model of miR-1 for predicting pCR achieved an AUC of 0.705 according to the ROC curve. According to the interaction analysis, miR-1 interacted with Ki67 to predict the NAC response. According to the Kaplan-Meier plot, a high serum miR-1 level was related to better disease-free survival (DFS) in the NAC cohort. KEGG analysis and GSEA results indicated that miR-1 may be related to the PPAR signalling pathway and glycolysis. CONCLUSIONS In summary, our data suggested that miR-1 could be a potential biomarker for pCR and survival outcomes in patients with BC treated with NAC.
Collapse
Affiliation(s)
- Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Chenwei Yuan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China.
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
2
|
Ouellette MM, Zhou S, Yan Y. Cell Signaling Pathways That Promote Radioresistance of Cancer Cells. Diagnostics (Basel) 2022; 12:diagnostics12030656. [PMID: 35328212 PMCID: PMC8947583 DOI: 10.3390/diagnostics12030656] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Radiation therapy (RT) is a standard treatment for solid tumors and about 50% of patients with cancer, including pediatric cancer, receive RT. While RT has significantly improved the overall survival and quality of life of cancer patients, its efficacy has still been markedly limited by radioresistance in a significant number of cancer patients (intrinsic or acquired), resulting in failure of the RT control of the disease. Radiation eradicates cancer cells mainly by causing DNA damage. However, radiation also concomitantly activates multiple prosurvival signaling pathways, which include those mediated by ATM, ATR, AKT, ERK, and NF-κB that promote DNA damage checkpoint activation/DNA repair, autophagy induction, and/or inhibition of apoptosis. Furthermore, emerging data support the role of YAP signaling in promoting the intrinsic radioresistance of cancer cells, which occurs through its activation of the transcription of many essential genes that support cell survival, DNA repair, proliferation, and the stemness of cancer stem cells. Together, these signaling pathways protect cancer cells by reducing the magnitude of radiation-induced cytotoxicity and promoting radioresistance. Thus, targeting these prosurvival signaling pathways could potentially improve the radiosensitivity of cancer cells. In this review, we summarize the contribution of these pathways to the radioresistance of cancer cells.
Collapse
Affiliation(s)
- Michel M. Ouellette
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Correspondence:
| |
Collapse
|
3
|
Barakat HE, Hussein RRS, Elberry AA, Zaki MA, Elsherbiny Ramadan M. Factors influencing the anticancer effects of metformin on breast cancer outcomes: a systematic review and meta-analysis. Expert Rev Anticancer Ther 2022; 22:415-436. [PMID: 35259320 DOI: 10.1080/14737140.2022.2051482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Several clinical trials have attempted to find evidence that supports the use of metformin as an anticancer treatment. However, the observed effects on various breast cancer (BC) outcomes have been heterogeneous. AREAS COVERED Based on the outcomes of previous clinical trials, this review discusses the patients' characteristics, cancer intrinsic subtypes, cancer stage, and anticancer treatments that may influence the anticancer effect of metformin on BC outcomes. Additionally, the safety and tolerability of metformin addition to various anticancer regimens are reviewed. EXPERT OPINION Metformin is a challenging anticancer agent in BC cohorts, besides being safe and well-tolerated at antidiabetic doses. Survival benefits of metformin have been observed in BC patients with: hormone receptor-positive, human epidermal growth factor receptor-2 overexpression, and high insulin like growth factor-1 receptor expression on the tumor surface. Moreover, patients with diabetes receiving metformin experienced better survival outcomes compared to diabetic patients not receiving metformin. Additionally, metformin has anti-proliferative activity in patients with BC who have high insulin resistance and high body mass index. Besides, metformin has been shown to decrease metastatic events, and enhance the level of metabolic- and insulin-related biomarkers associated with carcinogenesis. Finally, most adverse events following metformin treatment were low-grade GIT toxicities.
Collapse
|
4
|
Abrams SL, Duda P, Akula SM, Steelman LS, Follo ML, Cocco L, Ratti S, Martelli AM, Montalto G, Emma MR, Cervello M, Rakus D, Gizak A, McCubrey JA. Effects of the Mutant TP53 Reactivator APR-246 on Therapeutic Sensitivity of Pancreatic Cancer Cells in the Presence and Absence of WT-TP53. Cells 2022; 11:794. [PMID: 35269416 PMCID: PMC8909756 DOI: 10.3390/cells11050794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The TP53 tumor suppressor is mutated in ~75% of pancreatic cancers. The mutant TP53 protein in pancreatic ductal adenocarcinomas (PDAC) promotes tumor growth and metastasis. Attempts have been made to develop molecules that restore at least some of the properties of wild-type (WT) TP53. APR-246 is one such molecule, and it is referred to as a mutant TP53 reactivator. To understand the potential of APR-246 to sensitize PDAC cells to chemotherapy, we introduced a vector encoding WT-TP53 into two PDAC cell lines, one lacking the expression of TP53 (PANC-28) and one with a gain-of-function (GOF) mutant TP53 (MIA-PaCa-2). APR-246 increased drug sensitivity in the cells containing either a WT or mutant TP53 protein with GOF activity, but not in cells that lacked TP53. The introduction of WT-T53 into PANC-28 cells increased their sensitivity to the TP53 reactivator, chemotherapeutic drugs, and signal transduction inhibitors. The addition of WT-TP53 to PDAC cells with GOF TP53 also increased their sensitivity to the drugs and therapeutics, indicating that APR-246 could function in cells with WT-TP53 and GOF TP53. These results highlight the importance of knowledge of the type of TP53 mutation that is present in cancer patients before the administration of drugs which function through the reactivation of TP53.
Collapse
Affiliation(s)
- Stephen L. Abrams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (S.M.A.); (L.S.S.)
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland; (P.D.); (D.R.); (A.G.)
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (S.M.A.); (L.S.S.)
| | - Linda S. Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (S.M.A.); (L.S.S.)
| | - Matilde L. Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40139 Bologna, Italy; (M.L.F.); (L.C.); (S.R.); (A.M.M.)
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40139 Bologna, Italy; (M.L.F.); (L.C.); (S.R.); (A.M.M.)
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40139 Bologna, Italy; (M.L.F.); (L.C.); (S.R.); (A.M.M.)
| | - Alberto M. Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40139 Bologna, Italy; (M.L.F.); (L.C.); (S.R.); (A.M.M.)
| | - Giuseppe Montalto
- Department of Health Promotion, Maternal and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (M.C.)
| | - Maria Rita Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (M.C.)
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (M.C.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland; (P.D.); (D.R.); (A.G.)
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland; (P.D.); (D.R.); (A.G.)
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (S.M.A.); (L.S.S.)
| |
Collapse
|
5
|
Gu M, He T, Yuan Y, Duan S, Li X, Shen C. Single-Cell RNA Sequencing Reveals Multiple Pathways and the Tumor Microenvironment Could Lead to Chemotherapy Resistance in Cervical Cancer. Front Oncol 2021; 11:753386. [PMID: 34900703 PMCID: PMC8662819 DOI: 10.3389/fonc.2021.753386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
Background Cervical cancer is one of the most common gynecological cancers worldwide. The tumor microenvironment significantly influences the therapeutic response and clinical outcome. However, the complex tumor microenvironment of cervical cancer and the molecular mechanisms underlying chemotherapy resistance are not well studied. This study aimed to comprehensively analyze cells from pretreated and chemoresistant cervical cancer tissues to generate a molecular census of cell populations. Methods Biopsy tissues collected from patients with cervical squamous cell carcinoma, cervical adenocarcinoma, and chronic cervicitis were subjected to single-cell RNA sequencing using the 10× Genomics platform. Unsupervised clustering analysis of cells was performed to identify the main cell types, and important cell clusters were reclustered into subpopulations. Gene expression profiles and functional enrichment analysis were used to explore gene expression and functional differences between cell subpopulations in cervicitis and cervical cancer samples and between chemoresistant and chemosensitive samples. Results A total of 24,371 cells were clustered into nine separate cell types, including immune and non-immune cells. Differentially expressed genes between chemoresistant and chemosensitive patients enriched in the phosphoinositide 3-kinase (PI3K)/AKT pathway were involved in tumor development, progression, and apoptosis, which might lead to chemotherapy resistance. Conclusions Our study provides a comprehensive overview of the cancer microenvironment landscape and characterizes its gene expression and functional difference in chemotherapy resistance. Consequently, our study deepens the insights into cervical cancer biology through the identification of gene markers for diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ti He
- Department of Scientific Research & Industrial Application, Beijing Microread Genetics Co., Ltd., Beijing, China
| | - Yuncong Yuan
- College of Life Sciences, Wuhan University, Wuhan, China.,China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Suling Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xin Li
- Department of Gynecology 2, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan, China.,China Center for Type Culture Collection, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Neamati D, Khedri A, Aberomand M, Hemmati AA, Mohammadzadeh M, Akbari Baghbani K, Mohammadzadeh G. Metformin synergistically increases the anticancer effects of lapatinib through induction of apoptosis and modulation of Akt/AMPK pathway in SK-BR3 breast cancer cell line. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1529-1537. [PMID: 35317106 PMCID: PMC8917838 DOI: 10.22038/ijbms.2021.58825.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/18/2021] [Indexed: 11/06/2022]
Abstract
Objectives Combination chemotherapy is a beneficial intervention for breast cancer, versus single therapy. We investigated the effect of Metformin (Met) on Lapatinib (Lap)-induced apoptosis in SK-BR3 cells. Materials and Methods Toxic effect of Met and Lap on SK-BR3 cells was measured using MTT assay. Flow cytometry was used to measure the co-treatment effect of Met on lapatinib-induced apoptosis. The relative expression of Bax, Bcl2, and P21 was measured using a real-time PCR. The activity of caspase 3 and 9 was measured using an ELISA kit. The protein level of AMPK and Akt was determined using Western blot analysis. Results Metformin and lapatinib alone and combined form showed significant time- and dose-dependent toxic effects on SK-BR3 cell viability. The greatest synergistic inhibitory effect on the cell viability [combination index (CI) = 0.51] was remarkable at Met 100 mM combined with Lap 100 nM. The combination has a stronger apoptotic death (46%) versus lapatinib alone. The combination considerably increased the mRNA expression of Bax and P21, and caspase 3 and 9 activity, while, decreasing the mRNA expression of Bcl2. Additionally, the combination significantly up-regulated and down-regulated the protein levels of AMPK and Akt, respectively. Conclusion The metformin-lapatinib combination can induce more potent apoptotic death versus each compound individually. The combination may be suggested as a valuable therapeutic intervention in patients with breast cancer. However, additional in vivo studies are necessary to evaluate the clinical use of the combination for induction of apoptosis and its antitumor effects.
Collapse
Affiliation(s)
- Davood Neamati
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences,Ahvaz, Iran
| | - Azam Khedri
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences,Ahvaz, Iran
| | - Mohammad Aberomand
- Toxicology Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali-Asghar Hemmati
- Medicinal Plant Research Center, Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Mohammadzadeh
- Translational Ophthalmology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghorban Mohammadzadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Corresponding author: Ghorban Mohammadzadeh. Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Tel: +98-0911-3436812; Fax: +98-611-3332036; Email :
| |
Collapse
|
7
|
Effect of Wnt5a on drug resistance in estrogen receptor-positive breast cancer. Breast Cancer 2021; 28:1062-1071. [PMID: 34047951 PMCID: PMC8354951 DOI: 10.1007/s12282-021-01241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/13/2021] [Indexed: 11/06/2022]
Abstract
Background Previously, we reported that Wnt5a-positive breast cancer can be classified as estrogen receptor (ER)-positive breast cancer; its prognosis is worse than that of Wnt5a-negative breast cancer. This study aimed to investigate the mechanisms underlying the poor prognosis in Wnt5a-positive breast cancer patients. Methods In total, 151 consecutive ER-positive breast cancer patients who underwent resection between January 2011 and February 2014 were enrolled. DNA microarray and pathway analyses were conducted using MCF-7 cells stably expressing Wnt5a [MCF-7/Wnt5a (+)]. Based on the outcomes, cell viability/drug sensitivity assays, and mutation analysis were performed using cell cultures and breast cancer tissues. The relationship between Wnt5a and the PI3K–AKT–mTOR signaling pathway was also examined. Results The relapse-free survival rate in patients with Wnt5a-positive breast cancer was significantly lower than that in patients with Wnt5a-negative breast cancer (P = 0.047). DNA microarray data suggest that only the cytochrome P450 (CYP) pathway was significantly upregulated in MCF-7/Wnt5a (+) cells (P = 0.0440). Additionally, MCF-7/Wnt5a (+) cells displayed reduced sensitivity to the metabolic substrates of CYP, tamoxifen (P < 0.001), paclitaxel (P < 0.001), and cyclophosphamide (P < 0.001). Of note, PIK3CA mutations were not associated with the expression of Wnt5a in breast cancer tissue and culture cells. Conclusions In ER-positive breast cancer, Wnt5a upregulates the CYP metabolic pathway and suppresses tamoxifen, paclitaxel, and cyclophosphamide resistance, all of the three, standard treatment methods for ER-positive breast cancer. Wnt5a is thus potentially involved in the poor prognosis of ER-positive breast cancer independently of the PI3K–AKT–mTOR signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s12282-021-01241-0.
Collapse
|
8
|
Gilreath C, Boerma M, Qin Z, Hudson MK, Wang S. The Hypoxic Microenvironment of Breast Cancer Cells Promotes Resistance in Radiation Therapy. Front Oncol 2021; 10:629422. [PMID: 33680952 PMCID: PMC7930560 DOI: 10.3389/fonc.2020.629422] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
The American Cancer Society has estimated an expected 279,100 new breast cancer cases, and an expected 42,690 breast cancer deaths in the U.S. for the year 2020. This includes an estimated 276,480 women who are expected to be diagnosed. Radiation therapy, also called ionizing radiation therapy, is one of the most frequently used methods in the treatment of breast cancer. While radiation therapy is used in the treatment of more than 50% of all cancer cases, tumor resistance to ionizing radiation presents a major challenge for effective cancer treatment. Most tumor cells are in a hypoxic microenvironment that promotes resistance to radiation therapy. In addition to radiation resistance, the hypoxic microenvironment also promotes cancer proliferation and metastasis. In this review, we will discuss the hypoxic microenvironment of breast cancer tumors, related signaling pathways, breast cancer stem-like cells, and the resistance to radiation therapy. Recent developments in our understanding of tumor hypoxia and hypoxic pathways may assist us in developing new strategies to increase cancer control in radiation therapy.
Collapse
Affiliation(s)
- Cordell Gilreath
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - Marjan Boerma
- Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Zhiqiang Qin
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - M Keith Hudson
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - Shanzhi Wang
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR, United States
| |
Collapse
|
9
|
Abrams SL, Akula SM, Martelli AM, Cocco L, Ratti S, Libra M, Candido S, Montalto G, Cervello M, Gizak A, Rakus D, Steelman LS, McCubrey JA. Sensitivity of pancreatic cancer cells to chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals can be regulated by WT-TP53. Adv Biol Regul 2021; 79:100780. [PMID: 33451973 DOI: 10.1016/j.jbior.2020.100780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic malignancy. Approximately 85% of pancreatic cancers are classified as PDACs. The survival of PDAC patients is very poor and only 5-10% of patients survive 5 years after diagnosis. Mutations at the KRAS and TP53 gene are frequently observed in PDAC patients. The PANC-28 cell line lacks wild-type (WT) TP53. In the following study, we have investigated the effects of restoration of WT TP53 activity on the sensitivity of PANC-28 pancreatic cancer cells to various drugs which are used to treat PDAC patients as well as other cancer patients. In addition, we have examined the effects of signal transduction inhibitors which target critical pathways frequently deregulated in cancer. The effects of the anti-diabetes drug metformin and the anti-malarial drug chloroquine were also examined as these drugs may be repurposed to treat other diseases. Finally, the effects of certain nutraceuticals which are used to treat various ailments were also examined. Introduction of WT-TP53 activity in PANC-28 PDAC cells, can increase their sensitivity to various drugs. Attempts are being made clinically to increase TP53 activity in various cancer types which will often inhibit cell growth by multiple mechanisms.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Massimo Libra
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Department of Health Promotion, Maternal and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834.
| |
Collapse
|
10
|
Steelman LS, Chappell WH, Akula SM, Abrams SL, Cocco L, Manzoli L, Ratti S, Martelli AM, Montalto G, Cervello M, Libra M, Candido S, McCubrey JA. Therapeutic resistance in breast cancer cells can result from deregulated EGFR signaling. Adv Biol Regul 2020; 78:100758. [PMID: 33022466 DOI: 10.1016/j.jbior.2020.100758] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The epidermal growth factor receptor (EGFR) interacts with various downstream molecules including phospholipase C (PLC)/protein kinase C (PKC), Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/GSK-3, Jak/STAT and others. Often these pathways are deregulated in human malignancies such as breast cancer. Various therapeutic approaches to inhibit the activity of EGFR family members including small molecule inhibitors and monoclonal antibodies (MoAb) have been developed. A common problem with cancer treatments is the development of drug-resistance. We examined the effects of a conditionally-activated EGFR (v-Erb-B:ER) on the resistance of breast cancer cells to commonly used chemotherapeutic drugs such as doxorubicin, daunorubicin, paclitaxel, cisplatin and 5-flurouracil as well as ionizing radiation (IR). v-Erb-B is similar to the EGFR-variant EGFRvIII, which is expressed in various cancers including breast, brain, prostate. Both v-Erb-B and EGFRvIII encode the EGFR kinase domain but lack key components present in the extracellular domain of EGFR which normally regulate its activity and ligand-dependence. The v-Erb-B oncogene was ligated to the hormone binding domain of the estrogen receptor (ER) which results in regulation of the activity of the v-Erb-ER construct by addition of either estrogen (E2) or 4-hydroxytamoxifen (4HT) to the culture media. Introduction of the v-Erb-B:ER construct into the MCF-7 breast cancer cell line increased the resistance to the cells to various chemotherapeutic drugs, hormonal-based therapeutics and IR. These results point to the important effects that aberrant expression of EGFR kinase domain can have on therapeutic resistance.
Collapse
Affiliation(s)
- Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - William H Chappell
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Giuseppe Montalto
- Department of Health Promotion, Maternal and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Massimo Libra
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| |
Collapse
|
11
|
Porcelli L, Garofoli M, Di Fonte R, Fucci L, Volpicella M, Strippoli S, Guida M, Azzariti A. The β-adrenergic receptor antagonist propranolol offsets resistance mechanisms to chemotherapeutics in diverse sarcoma subtypes: a pilot study. Sci Rep 2020; 10:10465. [PMID: 32591592 PMCID: PMC7320177 DOI: 10.1038/s41598-020-67342-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Standard chemotherapy for soft tissue sarcomas has shown limited efficacy. Here, we sought to evaluate whether β-adrenergic receptor (β-AR) signalling contributed to the progression of sarcomas and therapy resistance. To assess the translational potential of β-adrenergic receptors, we performed immunohistochemical detection of β1-AR, β2-AR and β3-AR in leiomyosarcoma, liposarcoma and angiosarcoma tissue specimens, reporting the results scored for the intensity. By using established and patient-derived sarcoma cells, we demonstrated the antitumour potential of the pharmacological targeting of β-ARs with the nonselective β-blocker propranolol in such sarcomas. Of note, pharmacological β-AR inhibition synergized with doxorubicin in inhibiting the cell viability of liposarcoma and leiomyosarcoma cells and increased the response to docetaxel in angiosarcoma- and solitary fibrous tumour (SFT)-patient-derived cells. Notably, the SFT patient was treated with the combination of propranolol and docetaxel, reporting prolonged disease control. Mechanistically, we found that propranolol reduced the activity of the multidrug resistance efflux pump P-gp, thereby increasing the intracellular doxorubicin concentration and antitumour activity. In addition, propranolol attenuated the Akt-dependent survival signal induced by doxorubicin and strongly reduced the activation of the NF-kB/COX-2 pathway, increasing cell sensitivity to docetaxel. Overall, our study highlighted the therapeutic potential of propranolol, alone or in rational combination therapies, for sarcoma treatment.
Collapse
Affiliation(s)
- Letizia Porcelli
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124, Bari, Italy
| | - Marianna Garofoli
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124, Bari, Italy
| | - Roberta Di Fonte
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124, Bari, Italy
| | - Livia Fucci
- Histopathological Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sabino Strippoli
- Medical Oncology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Michele Guida
- Medical Oncology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Amalia Azzariti
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124, Bari, Italy.
| |
Collapse
|
12
|
Johnson J, Chow Z, Napier D, Lee E, Weiss HL, Evers BM, Rychahou P. Targeting PI3K and AMPKα Signaling Alone or in Combination to Enhance Radiosensitivity of Triple Negative Breast Cancer. Cells 2020; 9:cells9051253. [PMID: 32438621 PMCID: PMC7291172 DOI: 10.3390/cells9051253] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype and is characterized by poor survival. Radiotherapy plays an important role in treating TNBC. The purpose of this study was to determine whether inhibiting the AMP-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3K) pathways alone or in combination potentiates radiotherapy in TNBC. AMPKα1 and AMPKα2 knockdown diminished cyclin D1 expression and induced G1 cell cycle arrest but did not induce apoptosis alone or in combination with radiotherapy. Next, we analyzed the role of PI3K p85α, p85β, p110α, p110β, Akt1, and Akt2 proteins on TNBC cell cycle progression and apoptosis induction. Akt1 and p110α knockdown diminished cyclin D1 expression and induced apoptosis. Silencing Akt1 promoted synergistic apoptosis induction during radiotherapy and further reduced survival after radiation. Treatment with the Akt inhibitor, MK-2206 48 h after radiotherapy decreased Akt1 levels and potentiated radiation-induced apoptosis. Together, our results demonstrate that AMPKα, p110α, and Akt1 promote TNBC proliferation and that Akt1 is a key regulator of radiosensitivity in TNBC. Importantly, combining radiotherapy with the pharmacological inhibition of Akt1 expression is a potentially promising approach for the treatment of TNBC.
Collapse
Affiliation(s)
- Jeremy Johnson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Zeta Chow
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Dana Napier
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
| | - Eun Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Z.C.); (D.N.); (H.L.W.); (B.M.E.)
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-85-9-323-9285
| |
Collapse
|
13
|
Antoch MP, Wrobel M, Gillard B, Kuropatwinski KK, Toshkov I, Gleiberman AS, Karasik E, Moser MT, Foster BA, Andrianova EL, Chernova OV, Gudkov AV. Superior cancer preventive efficacy of low versus high dose of mTOR inhibitor in a mouse model of prostate cancer. Oncotarget 2020; 11:1373-1387. [PMID: 32341756 PMCID: PMC7170500 DOI: 10.18632/oncotarget.27550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a PI3K-related kinase that regulates cell growth, proliferation and survival in response to the availability of energy sources and growth factors. Cancer development and progression is often associated with constitutive activation of the mTOR pathway, thus justifying mTOR inhibition as a promising approach to cancer treatment and prevention. However, development of previous rapamycin analogues has been complicated by their induction of adverse side effects and variable efficacy. Since mTOR pathway regulation involves multiple feedback mechanisms that may be differentially activated depending on the degree of mTOR inhibition, we investigated whether rapamycin dosing could be adjusted to achieve chemopreventive efficacy without side effects. Thus, we tested the efficacy of two doses of a novel, highly bioavailable nanoformulation of rapamycin, Rapatar, in a mouse prostate cancer model (male mice with prostate epithelium-specific Pten-knockout). We found that the highest efficacy was achieved by the lowest dose of Rapatar used in the study. While both doses tested were equally effective in suppressing proliferation of prostate epithelial cells, higher dose resulted in activation of feedback circuits that reduced the drug’s tumor preventive efficacy. These results demonstrate that low doses of highly bioavailable mTOR inhibitor, Rapatar, may provide safe and effective cancer prevention.
Collapse
Affiliation(s)
- Marina P Antoch
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Bryan Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Karen K Kuropatwinski
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michael T Moser
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | - Andrei V Gudkov
- Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
14
|
Wang Y, Liu L, Chen Z. Transcriptome profiling of cervical cancer cells acquired resistance to cisplatin by deep sequencing. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2820-2829. [PMID: 31293179 DOI: 10.1080/21691401.2019.1637882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cervical cancer is one of the most fatal malignancies in females. Acquired resistance to chemotherapeutic agent is one reason behind this lethality. In this study, we developed cisplatin resistance cell line, subsequently examined the molecular mechanisms linked. Transcriptome sequencing technology was utilized to compare the various expression models between the cisplatin-resistant cell line (Hela/DDP) and its parental cell line human cervical adenocarcinoma Hela. The present study has identified 2,312 differentially expressed genes (DEGs). Results showed there were 1,437 up-regulated genes and 875 down-regulated ones. Databases analysis including Gene ontology (GO), Cluster of Orthologous Groups of proteins (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed to reveal potential molecular mechanisms. We studied AKT3, a crucial gene in the PI3K/AKT pathway which clustered the most DEGs. Silencing AKT3 in Hela/DDP could enhance its sensibility to cisplatin. Quantitative real-time reverse transcription PCR (qRT-PCR) and western blot experiments were showed that expression of AKT3 was decreased after siRNA interference and inhibitor treatment. CCK-8 experiments showed that low expression of Akt3/pAkt enhanced the sensitivity of drug-resistant cells to cisplatin. Apoptotic analysis demonstrated that inhibition of AKT3 increased the rate of Hela/DDP apoptosis. Our results suggest a novel mechanism by which upregulated expression of AKT3 in cervical cancer may lead to resistance to cisplatin.
Collapse
Affiliation(s)
- Yamin Wang
- a National Institute Education, Nanyang Technological University , Singapore , Singapore
| | - Linna Liu
- b Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University , Xi'an , P.R. China
| | - Zhong Chen
- a National Institute Education, Nanyang Technological University , Singapore , Singapore
| |
Collapse
|
15
|
Hinz N, Jücker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 2019; 17:154. [PMID: 31752925 PMCID: PMC6873690 DOI: 10.1186/s12964-019-0450-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AKT, also known as protein kinase B, is a key element of the PI3K/AKT signaling pathway. Moreover, AKT regulates the hallmarks of cancer, e.g. tumor growth, survival and invasiveness of tumor cells. After AKT was discovered in the early 1990s, further studies revealed that there are three different AKT isoforms, namely AKT1, AKT2 and AKT3. Despite their high similarity of 80%, the distinct AKT isoforms exert non-redundant, partly even opposing effects under physiological and pathological conditions. Breast cancer as the most common cancer entity in women, frequently shows alterations of the PI3K/AKT signaling. MAIN CONTENT A plethora of studies addressed the impact of AKT isoforms on tumor growth, metastasis and angiogenesis of breast cancer as well as on therapy response and overall survival in patients. Therefore, this review aimed to give a comprehensive overview about the isoform-specific effects of AKT in breast cancer and to summarize known downstream and upstream mechanisms. Taking account of conflicting findings among the studies, the majority of the studies reported a tumor initiating role of AKT1, whereas AKT2 is mainly responsible for tumor progression and metastasis. In detail, AKT1 increases cell proliferation through cell cycle proteins like p21, p27 and cyclin D1 and impairs apoptosis e.g. via p53. On the downside AKT1 decreases migration of breast cancer cells, for instance by regulating TSC2, palladin and EMT-proteins. However, AKT2 promotes migration and invasion most notably through regulation of β-integrins, EMT-proteins and F-actin. Whilst AKT3 is associated with a negative ER-status, findings about the role of AKT3 in regulation of the key properties of breast cancer are sparse. Accordingly, AKT1 is mutated and AKT2 is amplified in some cases of breast cancer and AKT isoforms are associated with overall survival and therapy response in an isoform-specific manner. CONCLUSIONS Although there are several discussed hypotheses how isoform specificity is achieved, the mechanisms behind the isoform-specific effects remain mostly unrevealed. As a consequence, further effort is necessary to achieve deeper insights into an isoform-specific AKT signaling in breast cancer and the mechanism behind it.
Collapse
Affiliation(s)
- Nico Hinz
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
16
|
Fatima M, Iqbal Ahmed MM, Batool F, Riaz A, Ali M, Munch-Petersen B, Mutahir Z. Recombinant deoxyribonucleoside kinase from Drosophila melanogaster can improve gemcitabine based combined gene/chemotherapy for targeting cancer cells. Bosn J Basic Med Sci 2019; 19:342-349. [PMID: 30903745 DOI: 10.17305/bjbms.2019.4136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/03/2019] [Indexed: 11/16/2022] Open
Abstract
A recombinant deoxyribonucleoside kinase from Drosophila melanogaster with a deletion of the last 20 amino acid residues (named DmdNKΔC20) was hypothesized as a potential therapeutic tool for gene therapy due to its broad substrate specificity and better catalytic efficiency towards nucleosides and nucleoside analogs. This study was designed to evaluate the effect of DmdNKΔC20 for sensitizing human cancer cell lines to gemcitabine and to further investigate its role in reversal of acquired drug resistance in gemcitabine-resistant cancer cell line. The DmdNKΔC20 gene was delivered to three different cancer cell lines, including breast, colon and liver cancer cells, using lipid-mediated transfection reagent. After transfection, gene expression of DmdNKΔC20 was confirmed by quantitative reverse transcription PCR (qRT-PCR) and the combined effect of DmdNKΔC20 and gemcitabine based cytotoxicity was observed by cell viability assay. We further evolved a gemcitabine-resistant breast cancer cell line (named MCF7-R) through directed evolution in the laboratory, which showed 375-fold more resistance compared with parental MCF7 cells. Upon transfection with DmdNKΔC20 gene, MCF7-R cells showed 83-fold higher sensitivity to gemcitabine compared with the control group of MCF7-R cells. Moreover, we observed 79% higher expression of p21 protein in transfected MCF7-R cells, which may indicate induction of apoptosis. Our findings highlight the importance and therapeutic potential of DmdNKΔC20 in combined gene/chemotherapy approach to target a wide range of cancers, particularly gemcitabine-resistant cancers.
Collapse
Affiliation(s)
- Mahak Fatima
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Inhibition of TFF3 Enhances Sensitivity-and Overcomes Acquired Resistance-to Doxorubicin in Estrogen Receptor-Positive Mammary Carcinoma. Cancers (Basel) 2019; 11:cancers11101528. [PMID: 31658702 PMCID: PMC6826976 DOI: 10.3390/cancers11101528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
Dose-dependent toxicity and acquired resistance are two major challenges limiting the efficacious treatment of mammary carcinoma (MC) with doxorubicin. Herein, we investigated the function of Trefoil Factor 3 (TFF3) in the sensitivity and acquired resistance of estrogen receptor positive (ER+) MC cells to doxorubicin. Doxorubicin treatment of ER+MC cells increased TFF3 expression. The depletion of TFF3 by siRNA or inhibition with a small molecule TFF3 inhibitor (AMPC) synergistically enhanced the efficacy of doxorubicin in ER+MC through the suppression of doxorubicin-induced AKT activation and enhancement of doxorubicin-induced apoptosis. Elevated expression of TFF3 and increased activation of AKT were also observed using a model of acquired doxorubicin resistance in ER+MC cells. AMPC partially re-sensitized the doxorubicin resistant cells to doxorubicin-induced apoptosis. Indeed, doxorubicin resistant ER + MC cells exhibited increased sensitivity to AMPC as a single agent compared to doxorubicin sensitive cells. In vivo, AMPC attenuated growth of doxorubicin sensitive ER+MC xenografts whereas it produced regression of xenografts generated by doxorubicin resistant ER+MC cells. Hence, TFF3 inhibition may improve the efficacy and reduce required doses of doxorubicin in ER+MC. Moreover, inhibition of TFF3 may also be an effective therapeutic strategy to eradicate doxorubicin resistant ER+MC.
Collapse
|
18
|
Nguyen JT, Haidar FS, Fox AL, Ray C, Mendonça DB, Kim JK, Krebsbach PH. mEAK-7 Forms an Alternative mTOR Complex with DNA-PKcs in Human Cancer. iScience 2019; 17:190-207. [PMID: 31288154 PMCID: PMC6614755 DOI: 10.1016/j.isci.2019.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/30/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
MTOR associated protein, eak-7 homolog (mEAK-7), activates mechanistic target of rapamycin (mTOR) signaling in human cells through an alternative mTOR complex to regulate S6K2 and 4E-BP1. However, the role of mEAK-7 in human cancer has not yet been identified. We demonstrate that mEAK-7 and mTOR signaling are strongly elevated in tumor and metastatic lymph nodes of patients with non-small-cell lung carcinoma compared with those of patients with normal lung or lymph tissue. Cancer stem cells, CD44+/CD90+ cells, yield elevated mEAK-7 and activated mTOR signaling. mEAK-7 is required for clonogenic potential and spheroid formation. mEAK-7 associates with DNA-dependent protein kinase catalytic subunit isoform 1 (DNA-PKcs), and this interaction is increased in response to X-ray irradiation to regulate S6K2 signaling. DNA-PKcs pharmacologic inhibition or genetic knockout reduced S6K2, mEAK-7, and mTOR binding with DNA-PKcs, resulting in loss of S6K2 activity and mTOR signaling. Therefore, mEAK-7 forms an alternative mTOR complex with DNA-PKcs to regulate S6K2 in human cancer cells.
Collapse
Affiliation(s)
- Joe Truong Nguyen
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | - Fatima Sarah Haidar
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | - Alexandra Lucienne Fox
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | - Connor Ray
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | | | - Jin Koo Kim
- Section of Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul H Krebsbach
- Section of Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Tian Y, Zhao K, Yuan L, Li J, Feng S, Feng Y, Fang Z, Li H, Deng R. EIF3B correlates with advanced disease stages and poor prognosis, and it promotes proliferation and inhibits apoptosis in non-small cell lung cancer. Cancer Biomark 2018; 23:291-300. [PMID: 30198870 DOI: 10.3233/cbm-181628] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuan Tian
- Department of Medical Examination, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Medical Examination, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Zhao
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Medical Examination, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luer Yuan
- Shanghai Qeejen Bio-tech Institution, Shanghai, China
| | - Jialing Li
- Shanghai Qeejen Bio-tech Institution, Shanghai, China
| | | | - Yufeng Feng
- Shanghai Qeejen Bio-tech Institution, Shanghai, China
| | - Zhongqi Fang
- Animal Science and Agricultural College, Yanbian University, Yanji, Jilin, China
| | - Hui Li
- Shanghai Qeejen Bio-tech Institution, Shanghai, China
| | - Ruoyu Deng
- Shanghai Qeejen Bio-tech Institution, Shanghai, China
| |
Collapse
|
20
|
Qu C, Kunkalla K, Vaghefi A, Frederiksen JK, Liu Y, Chapman JR, Blonska M, Bernal-Mizrachi L, Alderuccio JP, Lossos IS, Landgraf R, Vega F. Smoothened stabilizes and protects TRAF6 from degradation: A novel non-canonical role of smoothened with implications in lymphoma biology. Cancer Lett 2018; 436:149-158. [PMID: 30165192 DOI: 10.1016/j.canlet.2018.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6), an (K63) E3-ligase, plays a role in many biological processes and its activity is relevant in diffuse large B cell lymphoma (DLBCL) biology. Although molecules that trigger TRAF6 activation have been defined, those that stabilize TRAF6 and/or enhance TRAF6 function remain largely unclear. We found that TRAF6 amplifies pAKT signaling in DLBCL. Moreover, TRAF6 activation and stabilization of its ubiquitination profile are facilitated by smoothened (SMO), signal transducer of canonical Hedgehog signaling. Here, we report that SMO is needed to facilitate and maintain TRAF6-dependent elevated pAKT levels, and that the SMO/TRAF6 axis contributes to doxorubicin resistance in DLBCL. Mechanistically, we found that SMO, through its C-terminal tail, stabilizes and protects TRAF6 from degradation, an effect mediated by ubiquitin-specific protease-8. Moreover, this functional link between SMO and TRAF6 is reflected in DLBCL patients where high expression of both molecules correlates with poor prognosis. In summary, our study reveals a novel cell survival mechanism in which SMO stabilizes and protects TRAF6 from degradation. The axis SMO/TRAF6/AKT is highly relevant in the biology of DLBCL and is involved in doxorubicin resistance.
Collapse
Affiliation(s)
- Changju Qu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology; Institute of Blood and Marrow Transplantation; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Kranthi Kunkalla
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Amineh Vaghefi
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - John K Frederiksen
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Yadong Liu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology; Institute of Blood and Marrow Transplantation; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Jennifer R Chapman
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Marzenna Blonska
- Division of Hematology-Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Georgia
| | - Juan Pablo Alderuccio
- Division of Hematology-Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Izidore S Lossos
- Division of Hematology-Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Ralf Landgraf
- Department of Biochemistry and Molecular Biology, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Francisco Vega
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA; Division of Hematology-Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
21
|
Abrams SL, Lertpiriyapong K, Yang LV, Martelli AM, Cocco L, Ratti S, Falasca M, Murata RM, Rosalen PL, Lombardi P, Libra M, Candido S, Montalto G, Cervello M, Steelman LS, McCubrey JA. Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Adv Biol Regul 2018; 69:16-34. [PMID: 29980405 DOI: 10.1016/j.jbior.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10%. Mutations at the TP53 gene are readily detected in pancreatic tumors isolated from PDAC patients. We have investigated the effects of restoration of wild-type (WT) TP53 activity on the sensitivity of pancreatic cancer cells to: chemotherapy, targeted therapy, as well as, nutraceuticals. Upon introduction of the WT-TP53 gene into the MIA-PaCa-2 pancreatic cancer cell line, the sensitivity to drugs used to treat pancreatic cancer cells such as: gemcitabine, fluorouracil (5FU), cisplatin, irinotecan, oxaliplatin, and paclitaxel increased significantly. Likewise, the sensitivity to drugs used to treat other cancers such as: doxorubicin, mitoxantrone, and 4 hydroxy tamoxifen (4HT) also increased upon introduction of WT-TP53 into MIA-PaCa-2 cells. Furthermore, the sensitivity to certain inhibitors which target: PI3K/mTORC1, PDK1, SRC, GSK-3, and biochemical processes such as proteasomal degradation and the nutraceutical berberine as increased upon introduction of WT-TP53. Furthermore, in some cases, cells with WT-TP53 were more sensitive to the combination of drugs and suboptimal doses of the MDM2 inhibitor nutlin-3a. However, TP53-independent effects of nutlin-3a were observed upon treatment with either a proteasomal or a PI3K/mTOR inhibitor. These studies indicate the sensitizing effects that WT-TP53 can have in PDAC cells which normally lack WT-TP53 to various therapeutic agents and suggest approaches to improve PDAC therapy.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy; Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
22
|
Molavi O, Narimani F, Asiaee F, Sharifi S, Tarhriz V, Shayanfar A, Hejazi M, Lai R. Silibinin sensitizes chemo-resistant breast cancer cells to chemotherapy. PHARMACEUTICAL BIOLOGY 2017; 55:729-739. [PMID: 28027688 PMCID: PMC6130726 DOI: 10.1080/13880209.2016.1270972] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/30/2016] [Accepted: 12/03/2016] [Indexed: 05/22/2023]
Abstract
CONTEXT Multiple drug resistance is the major obstacle to conventional chemotherapy. Silibinin, a nontoxic naturally occurring compound, has anticancer activity and can increase the cytotoxic effects of chemotherapy in various cancer models. OBJECTIVE To evaluate the effects of silibinin on enhancing the sensitivity of chemo-resistant human breast cell lines to doxorubicin (DOX) and paclitaxel (PAC). MATERIALS AND METHODS The cells were treated with silibinin (at 50 to 600 μM concentrations) and/or chemo drugs for 24 and 48 h, then cell viability and changes in oncogenic proteins were determined by MTT assay and Western blotting/RT-PCR, respectively. Flow cytometry was used to study apoptosis in the cells receiving different treatments. The antitumorigenic effects of silibinin (at 200 to 400 μM concentration) were evaluated by mammosphere assay. RESULTS Silibinin exerted significant growth inhibitory effects with IC50 ranging from 200 to 570 μM in different cell lines. Treatment of DOX-resistant MDA-MB-435 cells with silibinin at 200 μM reduced DOX IC50 from 71 to 10 μg/mL and significantly suppressed the key oncogenic pathways including STAT3, AKT, and ERK in these cells. Interestingly treatment of DOX-resistant MDA-MB-435 cells with silibinin at 400 μM concentration for 48 h induced a 50% decrease in the numbers of colonies as compared with DMSO-treated cells. Treatment of PAC-resistant MCF-7 cells with silibinin at 400 μM concentration generated synergistic effects when it was used in combination with PAC at 250 nM concentration (CI = 0.81). CONCLUSION Silibinin sensitizes chemo-resistant cells to chemotherapeutic agents and can be useful in treating breast cancers.
Collapse
Affiliation(s)
- Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- CONTACT Ommoleila MolaviDepartment of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, 111-Faculty of Pharmacy, Tabriz University, Tabriz, Iran
| | - Farzaneh Narimani
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farshid Asiaee
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Raymond Lai
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Morgillo F, Della Corte CM, Diana A, Mauro CD, Ciaramella V, Barra G, Belli V, Franzese E, Bianco R, Maiello E, de Vita F, Ciardiello F, Orditura M. Phosphatidylinositol 3-kinase (PI3Kα)/AKT axis blockade with taselisib or ipatasertib enhances the efficacy of anti-microtubule drugs in human breast cancer cells. Oncotarget 2017; 8:76479-76491. [PMID: 29100327 PMCID: PMC5652721 DOI: 10.18632/oncotarget.20385] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/26/2017] [Indexed: 01/14/2023] Open
Abstract
Purpose The Phosphatidylinositol 3-kinase (PI3Ks) pathway is commonly altereted in breast cancer patients, but its role is still unclear. Taselisib, a mutant PI3Kα selective inhibitor, and ipatasertib, an AKT inhibitor, are currently under investigation in clinical trials in combination with paclitaxel or hormonal therapies in breast cancer. The aim of this study was to evaluate if PI3K or AKT inhibition can prevent resistance to chemotherapy and potentiate its efficacy. Experimental design The efficacy of combined treatment of ipatasertib and taselisib plus vinorelbine or paclitaxel or eribulin was evaluated in vitro on human breast cancer cells (with different expression profile of hormonal receptors, HER2, and of PI3Ka mutation) on cell survival by using MTT (3,(4,5-dimethylthiazol-2)2,5 difeniltetrazolium bromide) and colony forming assays on cell apoptosis by flow-cytometry analysis. We also investigated the effect of combined treatment on downstream intracellular signaling, by western blot analysis, and on metastatic properties, by migration assays. Finally, we analyzed changes in cell cytoskeleton by immunofluorescence. Results A significant synergism of ipatasertib or taselisib plus anti-microtubule chemotherapy in terms of anti-proliferative, pro-apoptotic and anti-metastatic effect was observed. The combined treatment completely inhibited the activation of proteins downstream of PI3K and MAPK pathways and affected the expression of survivin. Combined treatments completely disorganized the cytoskeleton in human breast cancer cells, with contemporary delocalization of survivin from cytoplasm to nucleus, thus suggesting a potential mechanism for this combination. Conclusions Targeting PI3K may enhance the efficacy of anti-microtubule drugs in human breast cancer cells.
Collapse
Affiliation(s)
- Floriana Morgillo
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F. Magrassi”, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Carminia Maria Della Corte
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F. Magrassi”, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Anna Diana
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F. Magrassi”, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Concetta di Mauro
- Oncologia Medica, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Vincenza Ciaramella
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F. Magrassi”, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Giusi Barra
- Immunologia Clinica, Dipartimento di Internistica Clinica e Sperimentale “F. Magrassi”, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Valentina Belli
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F. Magrassi”, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Elisena Franzese
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F. Magrassi”, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Roberto Bianco
- Oncologia Medica, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Evaristo Maiello
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Ferdinando de Vita
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F. Magrassi”, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Fortunato Ciardiello
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F. Magrassi”, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Michele Orditura
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F. Magrassi”, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| |
Collapse
|
24
|
Abrams SL, Ruvolo PP, Ruvolo VR, Ligresti G, Martelli AM, Cocco L, Ratti S, Tafuri A, Steelman LS, Candido S, Libra M, McCubrey JA. Targeting signaling and apoptotic pathways involved in chemotherapeutic drug-resistance of hematopoietic cells. Oncotarget 2017; 8:76525-76557. [PMID: 29100331 PMCID: PMC5652725 DOI: 10.18632/oncotarget.20408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/15/2017] [Indexed: 12/29/2022] Open
Abstract
A critical problem in leukemia as well as other cancer therapies is the development of chemotherapeutic drug-resistance. We have developed models of hematopoietic drug resistance that are based on expression of dominant-negative TP53 [TP53 (DN)] or constitutively-active MEK1 [MEK1(CA)] oncogenes in the presence of chemotherapeutic drugs. In human cancer, functional TP53 activity is often lost in human cancers. Also, activation of the Raf/MEK/ERK pathway frequently occurs due to mutations/amplification of upstream components of this and other interacting pathways. FL5.12 is an interleukin-3 (IL−3) dependent hematopoietic cell line that is sensitive to doxorubicin (a.k.a Adriamycin). FL/Doxo is a derivative cell line that was isolated by culturing the parental FL5.12 cells in doxorubicin for prolonged periods of time. FL/Doxo + TP53 (DN) and FL/Doxo + MEK1 (CA) are FL/Doxo derivate cell lines that were infected with retrovirus encoding TP53 (DN) or MEK1 (CA) and are more resistant to doxorubicin than FL/Doxo cells. This panel of cell lines displayed differences in the sensitivity to inhibitors that suppress mTORC1, BCL2/BCLXL, MEK1 or MDM2 activities, as well as, the proteasomal inhibitor MG132. The expression of key genes involved in cell growth and drug-resistance (e.g., MDM2, MDR1, BAX) also varied in these cells. Thus, we can begin to understand some of the key genes that are involved in the resistance of hematopoietic cells to chemotherapeutic drugs and targeted therapeutics.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Peter P Ruvolo
- Section of Signal Transduction and Apoptosis, Hormel Institute, University of Minnesota, Austin, MN, USA.,Current/Present address: Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Vivian R Ruvolo
- Section of Signal Transduction and Apoptosis, Hormel Institute, University of Minnesota, Austin, MN, USA.,Current/Present address: Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Giovanni Ligresti
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy.,Current/Present address: Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Agostino Tafuri
- Hematology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
25
|
Shen F, Chen S, Gao Y, Dai X, Chen Q. The prevalence of malignant and borderline ovarian cancer in pre- and post-menopausal Chinese women. Oncotarget 2017; 8:80589-80594. [PMID: 29113327 PMCID: PMC5655222 DOI: 10.18632/oncotarget.20384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
The incidence of ovarian cancer depends on the ethnicity and geographical area. Menopausal status is a well-known risk factor for ovarian cancer and most cases occur after menopause in Caucasians. However, it is less clear how the status of menopause or age at diagnosis is associated with ovarian cancer including its subtypes in Chinese women. Data on 1,283 women with primary malignant or borderline ovarian cancer including age at diagnosis, age at menopause and histology from the largest women's hospital in China was analysed. The median age at diagnosis was 53, 44 and 23 years for epithelial ovarian cancer or sex-cord tumors or germ cell tumors respectively. 58% of epithelial ovarian cancers were diagnosed after menopause, while 58% and 95% of sex-cord tumors and germ cell tumors were diagnosed before menopause. Around 60% of serous, endometrioid and clear-cell carcinoma of epithelial ovarian cancer were diagnosed after menopause, while 23% of mucinous carcinoma was diagnosed after menopause. The median age at diagnosis was 35 years for borderline ovarian cancer and 80% of patients were diagnosed before menopause. Our data demonstrates that the median age at diagnosis of ovarian cancer is younger in our study population than Caucasians reported in the literature regardless of malignant or borderline ovarian cancers, and regardless of subtypes of epithelial ovarian cancer. The prevalence of ovarian cancer is proportionately higher in our study population before menopause than Caucasians. Our results suggest clinicians to be more aware of the symptoms of ovarian cancer in premenopausal Chinese women.
Collapse
Affiliation(s)
- Fang Shen
- The Hospital of Obstetrics and Gynaecology, Fudan University, China
| | - Shouzhen Chen
- The Hospital of Obstetrics and Gynaecology, Fudan University, China
| | - Yifei Gao
- The Hospital of Obstetrics and Gynaecology, Fudan University, China
| | - Xujing Dai
- The Hospital of Obstetrics and Gynaecology, Fudan University, China
| | - Qi Chen
- The Hospital of Obstetrics and Gynaecology, Fudan University, China.,Department of Obstetrics and Gynaecology, The University of Auckland, New Zealand
| |
Collapse
|
26
|
Kassem L, Abdel-Rahman O. Targeting mTOR pathway in gynecological malignancies: Biological rationale and systematic review of published data. Crit Rev Oncol Hematol 2016; 108:1-12. [PMID: 27931828 DOI: 10.1016/j.critrevonc.2016.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/06/2016] [Accepted: 10/11/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND mTOR inhibitors are widely used in different malignancies with several trials testing their efficacy and safety in gynecological malignancies. We aimed to review the current evidence that support the expansion of using such drugs in the treatment of advanced gynecological cancers. METHODS A comprehensive systematic review of literature has been conducted to include prospective trials that used everolimus, temsirolimus or ridaforolimus in the management of gynecological cancers and have available efficacy and toxicity results. RESULTS A total of 23 studies including 980 patients were considered eligible for our review. Our review included 16 phase II and 7 phase I studies with the majority of patients having uterine cancers. Regarding Endometrial cancer, the CBR ranged from 21% to 60% and median PFS from 2.8 months to 7.3 months. In Ovarian cancers, CBR ranged from 24% to 50% and median PFS from 3.2 months to 5.9 months. In the single phase II study in cervical cancer the CBR was 61% and median PFS was 3.5 months. The toxicity profile was consistent with what was observed previously in other malignancies with fatigue, mucositis, and hematological toxicities being the most common adverse events observed. CONCLUSION mTOR inhibitors seem to be a promising option in the second line management of advanced gynecological cancers with best safety and efficacy outcomes when given as a single agent or in combination with hormonal treatment. More research is needed for better patient selection.
Collapse
Affiliation(s)
- Loay Kassem
- Clinical Oncology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
27
|
Manna A, De Sarkar S, De S, Bauri AK, Chattopadhyay S, Chatterjee M. Impact of MAPK and PI3K/AKT signaling pathways on Malabaricone-A induced cytotoxicity in U937, a histiocytic lymphoma cell line. Int Immunopharmacol 2016; 39:34-40. [DOI: 10.1016/j.intimp.2016.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 01/24/2023]
|
28
|
Genetic and epigenetic cancer chemoprevention on molecular targets during multistage carcinogenesis. Arch Toxicol 2016; 90:2389-404. [PMID: 27538406 DOI: 10.1007/s00204-016-1813-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
|
29
|
Azim HA, Kassem L, Treilleux I, Wang Q, El Enein MA, Anis SE, Bachelot T. Analysis of PI3K/mTOR Pathway Biomarkers and Their Prognostic Value in Women with Hormone Receptor-Positive, HER2-Negative Early Breast Cancer. Transl Oncol 2016; 9:114-123. [PMID: 27084427 PMCID: PMC4833894 DOI: 10.1016/j.tranon.2016.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND: The PI3K/AKT/mTOR pathway alterations have been shown to play significant roles in the development, progression, and metastatic spread of breast cancer. Furthermore, they have been implicated in the process of drug resistance, especially endocrinal therapies. In this study, we aimed to define the correlation between the PI3K mutations and the expression of the phosphorylated forms of different downstream molecules in women with estrogen receptor (ER)–positive, human epidermal growth factor receptor 2–negative (luminal) early breast cancer treated at Cairo university hospitals. METHODS: Next-generation sequencing was used to detect mutations in the PIK3CA hotspots (in exons 9 and 20). Immunohistochemistry was performed on tissue microarray blocks prepared from samples of 35 Egyptian luminal breast cancer patients in the pathology department of Centre Léon Bérard (CLB). The intensity and the percentage of stained tumor cells were integrated to define high versus low biomarker expression. The cytoplasmic and nuclear stainings were graded separately. Patients were followed for a median of 4.7 years (2.1 to 6.9 years). Correlation was done between PI3K mutations and the immunohistochemistry expression of pAKT, LKB1, p4EBP1, and pS6 ribosomal protein (pS6RP) with the clinicopathologic features and disease free survival (DFS) of the patients. RESULTS: Median age at diagnosis was 51.3 years (range, 25 to 82 years). Tumors were larger than 20 mm in 79.2% of the cases, whereas 57.9% had axillary lymph node deposits. Only 12.3% of the patients had SBR grade I tumors, 50.8% had grade II, and 36.8% had grade III. ERs were negative in 6 patients (17%) after pathology review. Thirty-two cases were assessable for LKB1 and pAKT, 33 for p4EBP1 and pS6RP, and 24 for PI3K mutations. Nuclear LKB1, cytoplasmic LKB1, nuclear pAKT, cytoplasmic pAKT, nuclear p4EBP1, and cytoplasmic pS6RP expression was high in 65.6%, 62.5%, 62.5%, 68.8%, 42.4%, and 57.6%, respectively. PIK3CA mutations were found in 7 patients (29.2%). PI3K mutations were correlated with nuclear localization of pAKT (i.e., decreased cytoplasmic pAKT, P = .04; and increased nuclear pAKT, P = .10). There was a tendency toward an inverse correlation between PI3K mutations and the expression of pS6RP (P = .10) and p4EBP1 (P = .19). Nuclear LKB1 expression was a marker of good prognosis. It was associated with smaller tumors (P = .05), more ER (P = .08) and progesteron receptor (PgR) positivity (P = .002). In the Kaplan Meier (KM) model, patients with high nuclear LKB1 had longer DFS (hazard ratio = 0.36; 95% confidence interval, 0.15-1.10; P = .08). Nuclear pAKT high expression also carried a tendency toward longer DFS (hazard ratio = 0.51; 95% confidence interval, 0.11-1.16; P = .13). The expression of p4EBP1, pS6RP, and the PI3K mutational status did not show any prognostic significance in our cohort. CONCLUSION: Among the studied biomarkers, only nuclear expression of LKB1 and pAKT tended to predict better survival in breast cancer patients. PI3K mutation was correlated with the expression of nuclear pAKT but not pS6RP or p4EBP1.
Collapse
Affiliation(s)
- Hamdy A Azim
- Department of Clinical Oncology, Cairo University Hospital, Cairo, Egypt.
| | - Loay Kassem
- Department of Clinical Oncology, Cairo University Hospital, Cairo, Egypt.
| | | | - Qing Wang
- Genomic Platform-Translational Research Laboratory, Centre Léon Bérard, Lyon, France
| | - Mona Abu El Enein
- Department of Clinical Oncology, Cairo University Hospital, Cairo, Egypt
| | - Shady E Anis
- Department of Pathology, Cairo University Hospital, Cairo, Egypt
| | - Thomas Bachelot
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
30
|
Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget 2015; 5:4603-50. [PMID: 25051360 PMCID: PMC4148087 DOI: 10.18632/oncotarget.2209] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway.
Collapse
|
31
|
Kim HJ, Kwon H, Lee JW, Kim HJ, Lee SB, Park HS, Sohn G, Lee Y, Koh BS, Yu JH, Son BH, Ahn SH. Metformin increases survival in hormone receptor-positive, HER2-positive breast cancer patients with diabetes. Breast Cancer Res 2015; 17:64. [PMID: 25935404 PMCID: PMC4504447 DOI: 10.1186/s13058-015-0574-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction Metformin use has recently been observed to decrease both the rate and mortality of breast cancer. Our study was aim to determine whether metformin use is associated with survival in diabetic breast cancer patients by breast cancer subtype and systemic treatment. Methods Data from the Asan Medical Center Breast Cancer Database from 1997 to 2007 were analyzed. The study cohort comprised 6,967 nondiabetic patients, 202 diabetic patients treated with metformin, and 184 diabetic patients that did not receive metformin. Patients who were divided into three groups by diabetes status and metformin use were also divided into four subgroups by hormone receptor and HER2-neu status. Results In Kaplan-Meier analysis, the metformin group had a significantly better overall and cancer specific survival outcome compared with non metformin diabetic group (P <0.005 for both). There was no difference in survival between the nondiabetic and metformin groups. In multivariate analysis, Compared with metformin group, patients who did not receive metformin tended to have a higher risk of metastasis with HR 5.37 (95 % CI, 1.88 to 15.28) and breast cancer death with HR 6.51 (95 % CI, 1.88 to 15.28) on the hormone receptor-positive and HER2-negative breast cancer. The significant survival benefit of metformin observed in diabetic patients who received chemotherapy and endocrine therapy (HR for disease free survival 2.14; 95 % CI 1.14 to 4.04) was not seen in diabetic patients who did not receive these treatments. Conclusion Patients receiving metformin treatment when breast cancer diagnosis show a better prognosis only if they have hormone receptor-positive, HER2-positive tumors. Metformin treatment might provide a survival benefit when added to systemic therapy in diabetic patients.
Collapse
Affiliation(s)
- Hee Jeong Kim
- Division of Breast and Endocrine Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Hyunwook Kwon
- Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Jong Won Lee
- Division of Breast and Endocrine Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Sae Byul Lee
- Division of Breast and Endocrine Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Hee Sung Park
- Division of Breast and Endocrine Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Guiyun Sohn
- Division of Breast and Endocrine Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Yura Lee
- Division of Breast and Endocrine Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Beom Seok Koh
- Division of Breast and Endocrine Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Jong Han Yu
- Division of Breast and Endocrine Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Byung Ho Son
- Division of Breast and Endocrine Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Sei Hyun Ahn
- Division of Breast and Endocrine Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
Liu R, Zhang L, Yang J, Zhang X, Mikkelsen R, Song S, Zhou H. HIV Protease Inhibitors Sensitize Human Head and Neck Squamous Carcinoma Cells to Radiation by Activating Endoplasmic Reticulum Stress. PLoS One 2015; 10:e0125928. [PMID: 25933118 PMCID: PMC4416809 DOI: 10.1371/journal.pone.0125928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/26/2015] [Indexed: 01/04/2023] Open
Abstract
Background Human head and neck squamous cell carcinoma (HNSCC) is the sixth most malignant cancer worldwide. Despite significant advances in the delivery of treatment and surgical reconstruction, there is no significant improvement of mortality rates for this disease in the past decades. Radiotherapy is the core component of the clinical combinational therapies for HNSCC. However, the tumor cells have a tendency to develop radiation resistance, which is a major barrier to effective treatment. HIV protease inhibitors (HIV PIs) have been reported with radiosensitizing activities in HNSCC cells, but the underlying cellular/molecular mechanisms remain unclear. Our previous study has shown that HIV PIs induce cell apoptosis via activation of endoplasmic reticulum (ER) stress. The aim of this study was to examine the role of ER stress in HIV PI-induced radiosensitivity in human HNSCC. Methodology and Principal Findings HNSCC cell lines, SQ20B and FaDu, and the most commonly used HIV PIs, lopinavir and ritonavir (L/R), were used in this study. Clonogenic assay was used to assess the radiosensitivity. Cell viability, apoptosis and cell cycle were analyzed using Cellometer Vision CBA. The mRNA and protein levels of ER stress-related genes (eIF2α, CHOP, ATF-4, and XBP-1), as well as cell cycle related protein, cyclin D1, were detected by real time RT-PCR and Western blot analysis, respectively. The results demonstrated that L/R dose-dependently sensitized HNSCC cells to irradiation and inhibited cell growth. L/R-induced activation of ER stress was correlated to down-regulation of cyclin D1 expression and cell cycle arrest under G0/G1 phase. Conclusion and Significance HIV PIs sensitize HNSCC cells to radiotherapy by activation of ER stress and induction of cell cycle arrest. Our results provided evidence that HIV PIs can be potentially used in combination with radiation in the treatment of HNSCC.
Collapse
Affiliation(s)
- Runping Liu
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China; Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Luyong Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Yang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China; Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Xiaoxuan Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China; Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Ross Mikkelsen
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Shiyu Song
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Huiping Zhou
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America; McGuire Veterans Affairs Medical Center, Richmond, VA, 23298, United States of America
| |
Collapse
|
33
|
McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Sokolosky M, Abrams SL, Montalto G, D'Assoro AB, Libra M, Nicoletti F, Maestro R, Basecke J, Rakus D, Gizak A, Demidenko ZN, Cocco L, Martelli AM, Cervello M. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget 2015; 5:2881-911. [PMID: 24931005 PMCID: PMC4102778 DOI: 10.18632/oncotarget.2037] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) was initially identified and studied in the regulation of glycogen synthesis. GSK-3 functions in a wide range of cellular processes. Aberrant activity of GSK-3 has been implicated in many human pathologies including: bipolar depression, Alzheimer's disease, Parkinson's disease, cancer, non-insulin-dependent diabetes mellitus (NIDDM) and others. In some cases, suppression of GSK-3 activity by phosphorylation by Akt and other kinases has been associated with cancer progression. In these cases, GSK-3 has tumor suppressor functions. In other cases, GSK-3 has been associated with tumor progression by stabilizing components of the beta-catenin complex. In these situations, GSK-3 has oncogenic properties. While many inhibitors to GSK-3 have been developed, their use remains controversial because of the ambiguous role of GSK-3 in cancer development. In this review, we will focus on the diverse roles that GSK-3 plays in various human cancers, in particular in solid tumors. Recently, GSK-3 has also been implicated in the generation of cancer stem cells in various cell types. We will also discuss how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTORC1, Ras/Raf/MEK/ERK, Wnt/beta-catenin, Hedgehog, Notch and others.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology,Brody School of Medicine at East Carolina University Greenville, NC 27858 USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Salzano M, Rusciano MR, Russo E, Bifulco M, Postiglione L, Vitale M. Calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylates Raf-1 at serine 338 and mediates Ras-stimulated Raf-1 activation. Cell Cycle 2014; 11:2100-6. [DOI: 10.4161/cc.20543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
35
|
McCubrey JA, Abrams SL, Fitzgerald TL, Cocco L, Martelli AM, Montalto G, Cervello M, Scalisi A, Candido S, Libra M, Steelman LS. Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv Biol Regul 2014; 57:75-101. [PMID: 25453219 DOI: 10.1016/j.jbior.2014.09.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 11/28/2022]
Abstract
The EGFR/PI3K/PTEN/Akt/mTORC pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance, cancer initiating cells (CICs) and metastasis. The expression of this pathway is frequently altered in breast and other cancers due to mutations at or aberrant expression of: HER2, EGFR1, PIK3CA, and PTEN as well as other oncogenes and tumor suppressor genes. miRs and epigenetic mechanisms of gene regulation are also important events which regulate this pathway. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway has been associated with CICs and in some cases resistance to therapeutics. We will review the effects of activation of the EGFR/PI3K/PTEN/Akt/mTORC pathway primarily in breast cancer and development of drug resistance. The targeting of this pathway and other interacting pathways will be discussed as well as clinical trials with novel small molecule inhibitors as well as established drugs that are used to treat other diseases. In this manuscript, we will discuss an inducible EGFR model (v-ERB-B:ER) and its effects on cell growth, cell cycle progression, activation of signal transduction pathways, prevention of apoptosis in hematopoietic, breast and prostate cancer models.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Anatomical Sciences, Università di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Saverio Candido
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
36
|
McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Libra M, Nicoletti F, D'Assoro AB, Cocco L, Martelli AM, Steelman LS. Targeting breast cancer initiating cells: advances in breast cancer research and therapy. Adv Biol Regul 2014; 56:81-107. [PMID: 24913694 DOI: 10.1016/j.jbior.2014.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Over the past 10 years there have been significant advances in our understanding of breast cancer and the important roles that breast cancer initiating cells (CICs) play in the development and resistance of breast cancer. Breast CICs endowed with self-renewing and tumor-initiating capacities are believed to be responsible for the relapses which often occur after various breast cancer therapies. In this review, we will summarize some of the key developments in breast CICs which will include discussion of some of the key genes implicated: estrogen receptor (ER), HER2, BRCA1, TP53, PIK3CA, RB, P16INK1 and various miRs as well some drugs which are showing promise in targeting CICs. In addition, the concept of combined therapies will be discussed. Basic and clinical research is resulting in novel approaches to improve breast cancer therapy by targeting the breast CICs.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA.
| | - Nicole M Davis
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | | | - Antonino B D'Assoro
- Department of Medical Oncology, Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA
| |
Collapse
|
37
|
The AKT inhibitor MK-2206 is cytotoxic in hepatocarcinoma cells displaying hyperphosphorylated AKT-1 and synergizes with conventional chemotherapy. Oncotarget 2014; 4:1496-506. [PMID: 24036604 PMCID: PMC3824526 DOI: 10.18632/oncotarget.1236] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common potentially lethal human malignancies worldwide. Advanced or recurrent HCC is frequently resistant to conventional chemotherapeutic agents and radiation. Therefore, targeted agents with tolerable toxicity are mandatory to improve HCC therapy and prognosis. In this neoplasia, the PI3K/Akt signaling network has been frequently shown to be aberrantly up-regulated. To evaluate whether Akt could represent a target for treatment of HCC, we studied the effects of the allosteric Akt inhibitor, MK-2206, on a panel of HCC cell lines characterized by different levels of Akt-1 activation. The inhibitor decreased cell viability and induced cell cycle arrest in the G0/G1 phase of the cell cycle, with a higher efficacy in cells with hyperphosphorylated Akt-1. Moreover, MK-2206 induced apoptosis, as documented by Annexin V labeling, and also caused autophagy, as evidenced by increased levels of the autophagy marker LC3A/B. Autophagy was shown to be a protective mechanism against MK-2206 cytotoxicity. MK-2206 down-regulated, in a concentration-dependent manner, the phosphorylation levels of Akt-1 synergizedand its downstream targets, GSK3 α/β and FOXO3A. MK-2206 synergized with doxorubicin, a chemotherapeutic drug widely used for HCC treatment. Our findings suggest that the use of Akt inhibitors, either alone or in combination with doxorubicin, may be considered as an attractive therapeutic regimen for the treatment of HCC.
Collapse
|
38
|
Koutsaki M, Spandidos DA, Zaravinos A. Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett 2014; 351:173-81. [PMID: 24952258 DOI: 10.1016/j.canlet.2014.05.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) are a family of short ribonucleic acids found to play a pivotal role in cancer pathogenesis. MiRNAs are crucial in cellular differentiation, growth, stress response, cell death and other fundamental cellular processes, and their involvement in ovarian cancer has been recently shown. They can repress the expression of important cancer-related genes and they can also function both as oncogenes and tumour suppressor genes. During epithelial-mesenchymal transition (EMT), epithelial cells lose their cell polarity and cell-cell adhesion and gain migratory and invasive properties. In the ovarian surface epithelium, EMT is considered the key regulator of the post-ovulatory repair process and it can be triggered by a range of environmental stimuli. The aberrant expression of the miR-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) in ovarian carcinoma and its involvement in ovarian cancer initiation and progression has been well-demonstrated. The miR-200 family members seem to be strongly associated with a pathologic EMT and to have a metastasis suppressive role. MiRNA signatures can accurately distinguish ovarian cancer from the normal ovary and can be used as diagnostic tools to predict the clinical response to chemotherapy. Recent evidence suggests a growing list of new miRNAs (miR-187, miR-34a, miR-506, miRNA-138, miR-30c, miR-30d, miR-30e-3p, miR-370 and miR-106a, among others) that are also implicated in ovarian carcinoma-associated EMT, either enhancing or suppressing it. MiRNA-based gene therapy provides a prospective anti-tumour approach for integrated cancer therapy. The aim of nanotechnology-based delivery approach for miRNA therapy is to overcome challenges in miRNA delivery and to effectively encourage the reprogramming of miRNA networks in cancer cells, which may lead to a clinically translatable miRNA-based therapy to benefit ovarian cancer patients.
Collapse
Affiliation(s)
- Maria Koutsaki
- Pediatric Department, University Hospital of Heraklion, 1352 Heraklion, Crete, Greece; Laboratory of Virology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece
| | - Demetrios A Spandidos
- Laboratory of Virology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece
| | - Apostolos Zaravinos
- Laboratory of Virology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece; Department of Laboratory Medicine, Karolinska Institute, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
39
|
Martelli AM, Buontempo F, Evangelisti C. GSK-3β: a key regulator of breast cancer drug resistance. Cell Cycle 2014; 13:697-8. [PMID: 24526116 PMCID: PMC3979905 DOI: 10.4161/cc.28091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics; National Research Council; Bologna, Italy; Muscoloskeletal Cell Biology Laboratory; IOR; Bologna, Italy
| |
Collapse
|
40
|
Chaetoglobosin K inhibits tumor angiogenesis through downregulation of vascular epithelial growth factor-binding hypoxia-inducible factor 1α. Anticancer Drugs 2014; 24:715-24. [PMID: 23695013 DOI: 10.1097/cad.0b013e3283627a0b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ovarian cancer is the fifth leading cause of cancer deaths for women in America. With no known carcinogens or manageable risk factors, targeted prevention is currently unavailable. Angioprevention is a nonspecific strategy to limit the growth of solid tumors and is especially suitable for ovarian cancers. In search of angiopreventive agents, we examined chaetoglobosin K (ChK), a natural cytochalasan compound from the fungus Diplodia macrospora. We found that ChK significantly inhibits cell viability at concentrations as low as 0.5 μmol/l for A2780/CP70 ovarian cancer cells and 1.0 μmol/l for OVCAR-3 cells. ChK also significantly inhibits the secretion of key angiogenesis mediators, including Akt (which is also known as protein kinase B), hypoxia-inducible factor 1α (HIF-1α), and vascular epithelial growth factor (VEGF) by ovarian cancer cells. More importantly, ChK inhibits in-vitro and in-vivo angiogenesis induced by ovarian cancer cells and reduces the migratory capability of human umbilical vein endothelial cells. Through transfection of HIF-1α plasmids in luciferase assays, we found that ChK executes its VEGF inhibition by mediating the downregulation of HIF-1α. Furthermore, chromatin immunoprecipitation assays using the HIF-1α antibody revealed that ChK inhibits the interaction of HIF-1α with the VEGF promoter. Through transfection of Akt plasmids, we found that inhibition of HIF-1α by ChK occurs through downregulation of Akt. To our knowledge, this is the first report about the potential angioprevention of ChK. Our data suggest that this natural fungal bioactive compound effectively inhibits angiogenesis through downregulation of VEGF-binding HIF-1α and could be an effective agent for cancer treatment.
Collapse
|
41
|
Abstract
Making headlines, a thought-provocative paper by Neff, Ehninger and coworkers claims that rapamycin extends life span but has limited effects on aging. How is that possibly possible? And what is aging if not an increase of the probability of death with age. I discuss that the JCI paper actually shows that rapamycin slows aging and also extends lifespan regardless of its direct anti-cancer activities. Aging is, in part, MTOR-driven: a purposeless continuation of developmental growth. Rapamycin affects the same processes in young and old animals: young animals' traits and phenotypes, which continuations become hyperfunctional, harmful and lethal later in life.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, BLSC, L3-312, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| |
Collapse
|
42
|
Zhu Z, Wang CP, Zhang YF, Nie L. MicroRNA-100 Resensitizes Resistant Chondrosarcoma Cells to Cisplatin through Direct Targeting of mTOR. Asian Pac J Cancer Prev 2014; 15:917-23. [DOI: 10.7314/apjcp.2014.15.2.917] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
43
|
Sokolosky M, Chappell WH, Stadelman K, Abrams SL, Davis NM, Steelman LS, McCubrey JA. Inhibition of GSK-3β activity can result in drug and hormonal resistance and alter sensitivity to targeted therapy in MCF-7 breast cancer cells. Cell Cycle 2014; 13:820-33. [PMID: 24407515 DOI: 10.4161/cc.27728] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The PI3K/Akt/mTORC1 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance, and metastasis. One molecule regulated by this pathway is GSK-3β. GSK-3β is phosphorylated by Akt on S9, which leads to its inactivation; however, GSK-3β also can regulate the activity of the PI3K/Akt/mTORC1 pathway by phosphorylating molecules such as PTEN, TSC2, p70S6K, and 4E-BP1. To further elucidate the roles of GSK-3β in chemotherapeutic drug and hormonal resistance of MCF-7 breast cancer cells, we transfected MCF-7 breast cancer cells with wild-type (WT), kinase-dead (KD), and constitutively activated (A9) forms of GSK-3β. MCF-7/GSK-3β(KD) cells were more resistant to doxorubicin and tamoxifen compared with either MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells. In the presence and absence of doxorubicin, the MCF-7/GSK-3β(KD) cells formed more colonies in soft agar compared with MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells. In contrast, MCF-7/GSK-3β(KD) cells displayed an elevated sensitivity to the mTORC1 blocker rapamycin compared with MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells, while no differences between the 3 cell types were observed upon treatment with a MEK inhibitor by itself. However, resistance to doxorubicin and tamoxifen were alleviated in MCF-7/GSK-3β(KD) cells upon co-treatment with an MEK inhibitor, indicating regulation of this resistance by the Raf/MEK/ERK pathway. Treatment of MCF-7 and MCF-7/GSK-3β(WT) cells with doxorubicin eliminated the detection of S9-phosphorylated GSK-3β, while total GSK-3β was still detected. In contrast, S9-phosphorylated GSK-3β was still detected in MCF-7/GSK-3β(KD) and MCF-7/GSK-3β(A9) cells, indicating that one of the effects of doxorubicin on MCF-7 cells was suppression of S9-phosphorylated GSK-3β, which could result in increased GSK-3β activity. Taken together, these results demonstrate that introduction of GSK-3β(KD) into MCF-7 breast cancer cells promotes resistance to doxorubicin and tamoxifen, but sensitizes the cells to mTORC1 blockade by rapamycin. Therefore GSK-3β is a key regulatory molecule in sensitivity of breast cancer cells to chemo-, hormonal, and targeted therapy.
Collapse
Affiliation(s)
- Melissa Sokolosky
- Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA
| | - William H Chappell
- Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA
| | - Kristin Stadelman
- Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA
| | - Nicole M Davis
- Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA
| | - Linda S Steelman
- Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA
| | - James A McCubrey
- Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA
| |
Collapse
|
44
|
Abstract
mTOR is a serine/threonine kinase and plays a critical role in mammalian cell growth, survival, and metabolism. mTOR is present in two cellular complexes: mTORC1 and mTORC2. Dysregulation of the mTOR pathway has been related to tumorigenesis, poor prognosis and/or chemotherapy resistance in a variety of malignancies. Inhibition of mTORC1 by Rapamycin and its analogs has been explored to treat a number of tumors. However, the effectiveness of patient response is limited and not all patients respond. Second generation of mTOR inhibitors have recently been developed to target mTOR kinase activity and to suppress both mTORC1 and mTORC2. Dual mTORC1/mTORC2 inhibitors generally are more efficacious in preclinical studies and clinical trials. We and others have recently found that dual mTORC1/mTORC2 inhibitors sensitize T-cell acute lymphocytic leukemia and rhabdomyosarcoma cells to DNA damaging agents by suppression of expression of FANCD2 of the Fanconi anemia pathway, an important DNA repair mechanism that is associated with drug resistance of multiple types of cancer. This review will highlight mTOR and the Fanconi anemia pathway in cancer, with a particular attention to our newly discovered connection between mTOR and the Fanconi anemia pathway.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| |
Collapse
|
45
|
Rutherford C, Childs S, Ohotski J, McGlynn L, Riddick M, MacFarlane S, Tasker D, Pyne S, Pyne NJ, Edwards J, Palmer TM. Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1. Cell Death Dis 2013; 4:e927. [PMID: 24263101 PMCID: PMC3847331 DOI: 10.1038/cddis.2013.455] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 01/10/2023]
Abstract
Although the ability of bioactive lipid sphingosine-1-phosphate (S1P) to positively regulate anti-apoptotic/pro-survival responses by binding to S1P1 is well known, the molecular mechanisms remain unclear. Here we demonstrate that expression of S1P1 renders CCL39 lung fibroblasts resistant to apoptosis following growth factor withdrawal. Resistance to apoptosis was associated with attenuated accumulation of pro-apoptotic BH3-only protein Bim. However, although blockade of extracellular signal-regulated kinase (ERK) activation could reverse S1P1-mediated suppression of Bim accumulation, inhibition of caspase-3 cleavage was unaffected. Instead S1P1-mediated inhibition of caspase-3 cleavage was reversed by inhibition of phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC), which had no effect on S1P1 regulation of Bim. However, S1P1 suppression of caspase-3 was associated with increased expression of anti-apoptotic protein Mcl-1, the expression of which was also reduced by inhibition of PI3K and PKC. A role for the induction of Mcl-1 in regulating endogenous S1P receptor-dependent pro-survival responses in human umbilical vein endothelial cells was confirmed using S1P receptor agonist FTY720-phosphate (FTY720P). FTY720P induced a transient accumulation of Mcl-1 that was associated with a delayed onset of caspase-3 cleavage following growth factor withdrawal, whereas Mcl-1 knockdown was sufficient to enhance caspase-3 cleavage even in the presence of FTY720P. Consistent with a pro-survival role of S1P1 in disease, analysis of tissue microarrays from ER(+) breast cancer patients revealed a significant correlation between S1P1 expression and tumour cell survival. In these tumours, S1P1 expression and cancer cell survival were correlated with increased activation of ERK, but not the PI3K/PKB pathway. In summary, pro-survival/anti-apoptotic signalling from S1P1 is intimately linked to its ability to promote the accumulation of pro-survival protein Mcl-1 and downregulation of pro-apoptotic BH3-only protein Bim via distinct signalling pathways. However, the functional importance of each pathway is dependent on the specific cellular context.
Collapse
Affiliation(s)
- C Rutherford
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - S Childs
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - J Ohotski
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - L McGlynn
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - M Riddick
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - S MacFarlane
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - D Tasker
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - S Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - N J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - J Edwards
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - T M Palmer
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| |
Collapse
|
46
|
Osisami M, Keller ET. Mechanisms of Metastatic Tumor Dormancy. J Clin Med 2013; 2:136-50. [PMID: 26237067 PMCID: PMC4470233 DOI: 10.3390/jcm2030136] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/20/2013] [Accepted: 09/10/2013] [Indexed: 12/29/2022] Open
Abstract
Tumor metastasis can occur years after an apparent cure due to a phenomenon known as metastatic tumor dormancy; in which tumor masses or individual tumor cells are growth restricted for extended periods of time. This period of dormancy is induced and maintained by several mechanisms, including: (1) Tumor microenvironment factors such as cytokine expression, immunosurveillance and angiogenesis; (2) Metastasis suppressor gene activity; and (3) Cancer therapeutics. Disseminated tumor cells (DTC) are the key cells that result in dormant tumors. However, many challenges exist towards isolating DTCs for mechanistic studies. The main DTC that may represent the dormant cell is the cancer stem cells (CSC) as they have a slow proliferation rate. In addition to limited knowledge regarding induction of tumor dormancy, there are large gaps in knowledge regarding how tumors escape from dormancy. Emerging research into cancer stem cells, immunotherapy, and metastasis suppressor genes, may lead to new approaches for targeted anti-metastatic therapy to prevent dormancy escape. Overall, an enhanced understanding of tumor dormancy is critical for better targeting and treatment of patients to prevent cancer recurrence.
Collapse
Affiliation(s)
- Mary Osisami
- Department of Urology, University of Michigan Medical School, 5111 CCGC1500 E. Medical Center, Ann Arbor, MI 48109-0940, USA.
| | - Evan T Keller
- Department of Urology, University of Michigan Medical School, 5111 CCGC1500 E. Medical Center, Ann Arbor, MI 48109-0940, USA.
| |
Collapse
|
47
|
Rajput S, Kumar BNP, Dey KK, Pal I, Parekh A, Mandal M. Molecular targeting of Akt by thymoquinone promotes G(1) arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci 2013; 93:783-90. [PMID: 24044882 DOI: 10.1016/j.lfs.2013.09.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/26/2013] [Accepted: 09/06/2013] [Indexed: 12/28/2022]
Abstract
AIM Thymoquinone (TQ), the predominant bioactive constituent of black seed oil (Nigella Sativa), has been shown to possess antineoplastic activity against multifarious tumors. However, the meticulous mechanism of TQ on Akt mediated survival pathway is still unrevealed in breast cancer. Here, we investigated TQ's mechanism of action against PI3K/Akt signaling and its downstream targets by modulating proteins translational machinery, leading to apoptosis in cancer cells. MAIN METHODS MDA-MB-468 and T-47D cells were treated with TQ and evaluated for its anticancer activity through phase distribution and western blot. Modulatory effects of TQ on Akt were affirmed through kinase and drug potential studies. KEY FINDINGS Studies revealed G1 phase arrest till 24h incubation with TQ while extended exposure showed phase shift to subG1 indicating apoptosis, supported by suppression of cyclin D1, cyclin E and cyclin dependent kinase inhibitor p27 expression. Immunoblot and membrane potential studies revealed mitochondrial impairment behind apoptotic process with upregulation of Bax, cytoplasmic cytochrome c and procaspase-3, PARP cleavage along with Bcl-2, Bcl-xL and survivin downregulation. Moreover, we construed the rationale behind mitochondrial dysfunction by examining the phosphorylation status of PDK1, PTEN, Akt, c-raf, GSK-3β and Bad in TQ treated cells, thus ratifying the involvement of Akt in apoptosis. Further, the consequential effect of Akt inhibition by TQ is proven by translational repression through deregulated phosphorylation of 4E-BP1, eIF4E, S6R and p70S6K. SIGNIFICANCE Our observations for the first time may provide a new insight for the development of novel therapies for Akt overexpressed breast cancer by TQ.
Collapse
Affiliation(s)
- Shashi Rajput
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | | | | | | | | | | |
Collapse
|
48
|
A combination of temsirolimus, an allosteric mTOR inhibitor, with clofarabine as a new therapeutic option for patients with acute myeloid leukemia. Oncotarget 2013; 3:1615-28. [PMID: 23271044 PMCID: PMC3681499 DOI: 10.18632/oncotarget.762] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Signaling through the phosphatidylinositol 3-kinase (PI3K) pathway and its downstream effectors, Akt and mechanistic target of rapamycin (mTOR), is aberrantly activated in acute myeloid leukemia (AML) patients, where it contributes to leukemic cell proliferation, survival, and drug-resistance. Thus, inhibiting mTOR signaling in AML blasts could enhance their sensitivity to cytotoxic agents. Preclinical data also suggest that allosteric mTOR inhibition with rapamycin impaired leukemia initiating cells (LICs) function. In this study, we assessed the therapeutic potential of a combination consisting of temsirolimus [an allosteric mTOR complex 1 (mTORC1) inhibitor] with clofarabine, a nucleoside analogue with potent inhibitory effects on both ribonucleotide reductase and DNA polymerase. The drug combination (CLO-TOR) displayed synergistic cytotoxic effects against a panel of AML cell lines and primary cells from AML patients. Treatment with CLO-TOR induced a G₀/G₁-phase cell cycle arrest, apoptosis, and autophagy. CLO-TOR was pro-apoptotic in an AML patient blast subset (CD34⁺/CD38⁻/CD123⁺), which is enriched in putative leukemia initiating cells (LICs). In summary, the CLO-TOR combination could represent a novel valuable treatment for AML patients, also in light of its efficacy against LICs.
Collapse
|
49
|
Berman AE, Leontieva OV, Natarajan V, McCubrey JA, Demidenko ZN, Nikiforov MA. Recent progress in genetics of aging, senescence and longevity: focusing on cancer-related genes. Oncotarget 2013; 3:1522-32. [PMID: 23455653 PMCID: PMC3681491 DOI: 10.18632/oncotarget.889] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is widely believed that aging results from the accumulation of molecular damage, including damage of DNA and mitochondria and accumulation of molecular garbage both inside and outside of the cell. Recently, this paradigm is being replaced by the “hyperfunction theory”, which postulates that aging is caused by activation of signal transduction pathways such as TOR (Target of Rapamycin). These pathways consist of different enzymes, mostly kinases, but also phosphatases, deacetylases, GTPases, and some other molecules that cause overactivation of normal cellular functions. Overactivation of these sensory signal transduction pathways can cause cellular senescence, age-related diseases, including cancer, and shorten life span. Here we review some of the numerous very recent publications on the role of signal transduction molecules in aging and age-related diseases. As was emphasized by the author of the “hyperfunction model”, many (or actually all) of them also play roles in cancer. So these “participants” in pro-aging signaling pathways are actually very well acquainted to cancer researchers. A cancer-related journal such as Oncotarget is the perfect place for publication of such experimental studies, reviews and perspectives, as it can bridge the gap between cancer and aging researchers.
Collapse
Affiliation(s)
- Albert E Berman
- V.N. Orekhovich Institute of Biomedical Chemistry RAMS, 10 Pogodinskaya Str., Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
50
|
Montenegro RC, de Vasconcellos MC, Barbosa GDS, Burbano RMR, Souza LGS, Lemos TLG, Costa-Lotufo LV, de Moraes MO. A novel o-naphtoquinone inhibits N-cadherin expression and blocks melanoma cell invasion via AKT signaling. Toxicol In Vitro 2013; 27:2076-83. [PMID: 23912027 DOI: 10.1016/j.tiv.2013.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
The down-regulation or loss of epithelial markers is often accompanied by the up-regulation of mesenchymal markers. E-cadherin generally suppresses invasiveness, whereas N-cadherin promotes invasion and metastasis in vitro. The aim of this work is to investigate the role of biflorin, a naphthoquinone with proven anticancer properties, on the expression of N-cadherin and AKT proteins in MDA-MB-435 invasive melanoma cancer cells after 12h of exposure to 1, 2.5 and 5 μM biflorin. Biflorin inhibited MDA-MB-435 invasion in a dose-dependent manner (p<0.01). Likewise, biflorin down-regulated N-cadherin and AKT-1 expression in a dose-dependent manner. Biflorin did not inhibit the adhesion of MDA-MB-435 cells to any tested substrates. Additionally, biflorin blocked the invasiveness of cells by down-regulating N-cadherin, most likely via AKT-1 signaling. As such, biflorin may be a novel anticancer agent and a new prototype for drug design.
Collapse
Affiliation(s)
- Raquel Carvalho Montenegro
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa 01-Guamá, Belém/PA, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|