1
|
Laranjeira ABA, Hollingshead MG, Nguyen D, Kinders RJ, Doroshow JH, Yang SX. DNA damage, demethylation and anticancer activity of DNA methyltransferase (DNMT) inhibitors. Sci Rep 2023; 13:5964. [PMID: 37045940 PMCID: PMC10097729 DOI: 10.1038/s41598-023-32509-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Role of DNA damage and demethylation on anticancer activity of DNA methyltransferase inhibitors (DNMTi) remains undefined. We report the effects of DNMT1 gene deletion/disruption (DNMT1-/-) on anticancer activity of a class of DNMTi in vitro, in vivo and in human cancers. The gene deletion markedly attenuated cytotoxicity and growth inhibition mediated by decitabine, azacitidine and 5-aza-4'-thio-2'-deoxycytidine (aza-T-dCyd) in colon and breast cancer cells. The drugs induced DNA damage that concurred with DNMT1 inhibition, subsequent G2/M cell-cycle arrest and apoptosis, and upregulated p21 in DNMT1+/+ versus DNMT1-/- status, with aza-T-dCyd the most potent. Tumor growth and DNMT1 were significantly inhibited, and p21 was upmodulated in mice bearing HCT116 DNMT1+/+ xenograft and bladder PDX tumors. DNMT1 gene deletion occurred in ~ 9% human colon cancers and other cancer types at varying degrees. Decitabine and azacitidine demethylated CDKN2A/CDKN2B genes in DNMT1+/+ and DNMT1-/- conditions and increased histone-H3 acetylation with re-expression of p16INK4A/p15INK4B in DNMT1-/- state. Thus, DNMT1 deletion confers resistance to DNMTi, and their anti-cancer activity is determined by DNA damage effects. Patients with DNMT1 gene deletions may not respond to DNMTi treatment.
Collapse
Affiliation(s)
- Angelo B A Laranjeira
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Melinda G Hollingshead
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Dat Nguyen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | | | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Sherry X Yang
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA.
- Division of Cancer Treatment and Diagnosis, National Clinical Target Validation Laboratory, 9609 Medical Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Ding X, Zhu Z, Lapek J, McMillan EA, Zhang A, Chung CY, Dubbury S, Lapira J, Firdaus S, Kang X, Gao J, Oyer J, Chionis J, Rollins RA, Li L, Niessen S, Bagrodia S, Zhang L, VanArsdale T. PARP1-SNAI2 transcription axis drives resistance to PARP inhibitor, Talazoparib. Sci Rep 2022; 12:12501. [PMID: 35864202 PMCID: PMC9304387 DOI: 10.1038/s41598-022-16623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
The synthetic lethal association between BRCA deficiency and poly (ADP-ribose) polymerase (PARP) inhibition supports PARP inhibitor (PARPi) clinical efficacy in BRCA-mutated tumors. PARPis also demonstrate activity in non-BRCA mutated tumors presumably through induction of PARP1-DNA trapping. Despite pronounced clinical response, therapeutic resistance to PARPis inevitably develops. An abundance of knowledge has been built around resistance mechanisms in BRCA-mutated tumors, however, parallel understanding in non-BRCA mutated settings remains insufficient. In this study, we find a strong correlation between the epithelial-mesenchymal transition (EMT) signature and resistance to a clinical PARPi, Talazoparib, in non-BRCA mutated tumor cells. Genetic profiling demonstrates that SNAI2, a master EMT transcription factor, is transcriptionally induced by Talazoparib treatment or PARP1 depletion and this induction is partially responsible for the emerging resistance. Mechanistically, we find that the PARP1 protein directly binds to SNAI2 gene promoter and suppresses its transcription. Talazoparib treatment or PARP1 depletion lifts PARP1-mediated suppression and increases chromatin accessibility around SNAI2 promoters, thus driving SNAI2 transcription and drug resistance. We also find that depletion of the chromatin remodeler CHD1L suppresses SNAI2 expression and reverts acquired resistance to Talazoparib. The PARP1/CHD1L/SNAI2 transcription axis might be therapeutically targeted to re-sensitize Talazoparib in non-BRCA mutated tumors.
Collapse
Affiliation(s)
- Xia Ding
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.
| | - Zhou Zhu
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,AstraZeneca, Inc., Gaithersburg, MD, 20878, USA
| | - John Lapek
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Belharra Therapeutics, Inc., San Diego, CA, 92121, USA
| | - Elizabeth A McMillan
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Odyssey Therapeutics., San Diego, CA, 92121, USA
| | - Alexander Zhang
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Chi-Yeh Chung
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Sara Dubbury
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Bristol Myers Squibb., San Diego, CA, 92121, USA
| | - Jennifer Lapira
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Sarah Firdaus
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Xiaolin Kang
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Jingjin Gao
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Turning Point Therapeutics., San Diego, CA, 92121, USA
| | - Jon Oyer
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - John Chionis
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Genesis Therapeutics., San Diego, CA, 92121, USA
| | | | - Lianjie Li
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Sherry Niessen
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Belharra Therapeutics, Inc., San Diego, CA, 92121, USA
| | - Shubha Bagrodia
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Lianglin Zhang
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.
| | - Todd VanArsdale
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.
| |
Collapse
|
3
|
Romeo MA, Gilardini Montani MS, Benedetti R, Arena A, D’Orazi G, Cirone M. VPA and TSA Interrupt the Interplay between mutp53 and HSP70, Leading to CHK1 and RAD51 Down-Regulation and Sensitizing Pancreatic Cancer Cells to AZD2461 PARP Inhibitor. Int J Mol Sci 2022; 23:2268. [PMID: 35216385 PMCID: PMC8878079 DOI: 10.3390/ijms23042268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
HDAC inhibitors (HDACi) represent promising anti-cancer treatments, as the acetylation of histone and non-histone proteins is often dysregulated in cancer and contributes to cancer onset and progression. HDACi have been also reported to increase the cytotoxicity of DNA-damaging agents, such as radiation or cisplatin. In this study, we found that TSA and, even more effectively, VPA synergized with AZD2461, PARP1, 2 and 3 inhibitor (PARPi) to induce DNA damage and reduce pancreatic cancer cell survival. At a molecular level, VPA and TSA down-regulated CHK1 and RAD51, which is correlated with the interruption of the cross-talk between mutp53 and HSP70. Moreover, VPA and to a lesser extent TSA reactivated wtp53 in these cells, which contributed to CHK1 and RAD51 reduction. These findings suggest that the combination of HDACi and PARPi might improve the treatment of pancreatic cancer, which remains one of the most aggressive and therapy-resistant cancers.
Collapse
Affiliation(s)
- Maria Anele Romeo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (M.A.R.); (M.S.G.M.); (R.B.); (A.A.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (M.A.R.); (M.S.G.M.); (R.B.); (A.A.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| | - Rossella Benedetti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (M.A.R.); (M.S.G.M.); (R.B.); (A.A.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| | - Andrea Arena
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (M.A.R.); (M.S.G.M.); (R.B.); (A.A.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| | - Gabriella D’Orazi
- Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio, Via dei Vestini 33, 66100 Chieti, Italy;
- Department of Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00128 Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (M.A.R.); (M.S.G.M.); (R.B.); (A.A.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
4
|
Romeo MA, Gilardini Montani MS, Benedetti R, Arena A, Maretto M, Bassetti E, Caiazzo R, D'Orazi G, Cirone M. Anticancer effect of AZD2461 PARP inhibitor against colon cancer cells carrying wt or dysfunctional p53. Exp Cell Res 2021; 408:112879. [PMID: 34653407 DOI: 10.1016/j.yexcr.2021.112879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Colon cancer is one of the most common cancers, currently treated with traditional chemotherapies or alternative therapies. However, these treatments are still not enough effective and induce several side effects, so that the search of new therapeutic strategies is needed. The use of Poly-(ADP-ribose)-polymerase (PARP) inhibitors, although originally approved against BRCA-1 or BRCA-2 mutated cancers, has been extended, particularly in combination with other treatments, to cure cancers that do not display defects in DNA repair signaling pathways. The role of p53 oncosuppressor in the regulating the outcome of PARP inhibitor treatment remains an open issue. In this study, we addressed this topic by using a well-tolerated PARP 1/2/3 inhibitor, namely AZD2461, against colon cancer cell lines with different p53 status. We found that AZD2461 reduced cell proliferation in wtp53 and p53-/- cancer cells by increasing ROS and DNA damage, while R273H mutant (mut) p53 counteracted these effects. Moreover, AZD2461 improved the reduction of cell proliferation by low dose radiation (IR) in wtp53 cancer cells, in which a down-regulation of BRCA-1 occurred. AZD2461 did not affect cell proliferation of mutp53 colon cancer cells also in combination with low dose radiation, suggesting that only wt p53 or p53 null colon cancer cells could benefit AZD2461 treatment.
Collapse
Affiliation(s)
- Maria Anele Romeo
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Rossella Benedetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Andrea Arena
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Mara Maretto
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Erica Bassetti
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Rossella Caiazzo
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Gabriella D'Orazi
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio" Chieti, Italy; Department of Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy.
| |
Collapse
|
5
|
Yang SX, Hollingshead M, Rubinstein L, Nguyen D, Larenjeira ABA, Kinders RJ, Difilippantonio M, Doroshow JH. TET2 and DNMT3A mutations and exceptional response to 4'-thio-2'-deoxycytidine in human solid tumor models. J Hematol Oncol 2021; 14:83. [PMID: 34039392 PMCID: PMC8157655 DOI: 10.1186/s13045-021-01091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Challenges remain on the selection of patients who potentially respond to a class of drugs that target epigenetics for cancer treatment. This study aims to investigate TET2/DNMT3A mutations and antitumor activity of a novel epigenetic agent in multiple human cancer cell lines and animal models. Methods Seventeen cancer cell lines and multiple xenograft models bearing representative human solid tumors were subjected to 4′-thio-2′-deoxycytidine (T-dCyd) or control treatment. Gene mutations in cell lines were examined by whole exome and/or Sanger sequencing. Specific gene expression was measured in cells and xenograft tumor samples by Western blotting and immunohistochemistry. TET2/DNMT3A mutation status in 47,571 human tumor samples was analyzed at cBioPortal for Cancer Genomics. Results Cell survival was significantly inhibited by T-dCyd in breast BT549, lung NCI-H23, melanoma SKMEL5 and renal ACHN cancer lines harboring deleterious TET2 and nonsynonymous DNMT3A mutations compared to 13 lines without such mutation pattern (P = 0.007). The treatment upregulated p21 and induced cell cycle arrest in NCI-H23 cells, and dramatically inhibited their xenograft tumor growth versus wildtype models. T-dCyd administrations led to a significant p21 increase and near eradication of tumor cells in the double-mutant xenografts by histological evaluation. TET2/DNMT3A was co-mutated in human lung, breast, skin and kidney cancers and frequently in angioimmunoblastic and peripheral T cell lymphomas and several types of leukemia. Conclusions Cell and animal models with concurrent mutations in TET2 and DNMT3A were sensitive to T-dCyd treatment. The mutations were detectable in human solid tumors and frequently occur in some hematological malignancies. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01091-5.
Collapse
Affiliation(s)
- Sherry X Yang
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Melinda Hollingshead
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Larry Rubinstein
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dat Nguyen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angelo B A Larenjeira
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Michael Difilippantonio
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Ghelli Luserna di Rorà A, Cerchione C, Martinelli G, Simonetti G. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target. J Hematol Oncol 2020; 13:126. [PMID: 32958072 PMCID: PMC7507691 DOI: 10.1186/s13045-020-00959-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
The inhibition of the DNA damage response (DDR) pathway in the treatment of cancer has recently gained interest, and different DDR inhibitors have been developed. Among them, the most promising ones target the WEE1 kinase family, which has a crucial role in cell cycle regulation and DNA damage identification and repair in both nonmalignant and cancer cells. This review recapitulates and discusses the most recent findings on the biological function of WEE1/PKMYT1 during the cell cycle and in the DNA damage repair, with a focus on their dual role as tumor suppressors in nonmalignant cells and pseudo-oncogenes in cancer cells. We here report the available data on the molecular and functional alterations of WEE1/PKMYT1 kinases in both hematological and solid tumors. Moreover, we summarize the preclinical information on 36 chemo/radiotherapy agents, and in particular their effect on cell cycle checkpoints and on the cellular WEE1/PKMYT1-dependent response. Finally, this review outlines the most important pre-clinical and clinical data available on the efficacy of WEE1/PKMYT1 inhibitors in monotherapy and in combination with chemo/radiotherapy agents or with other selective inhibitors currently used or under evaluation for the treatment of cancer patients.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Claudio Cerchione
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy.
| |
Collapse
|
7
|
Gapeyev AB, Yurshenas DA, Manokhin AA, Khramov RN. The protection of DNA in blood leukocytes from damaging action of ultraviolet radiation using the “Useful Sun” strategy. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917030058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Yang SX, Polley EC, Nguyen D. Association of γH2AX at Diagnosis with Chemotherapy Outcome in Patients with Breast Cancer. Am J Cancer Res 2017; 7:945-951. [PMID: 28382166 PMCID: PMC5381256 DOI: 10.7150/thno.19102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 01/13/2023] Open
Abstract
γH2AX plays a role in DNA damage response signaling and facilitates the repair of DNA double strand breaks. However, it remains unknown whether constitutive tumor γH2AX expression is associated with treatment outcome in patients. γH2AX status was detected in primary tumors from 24% of 826 patients with stage I, II and III breast cancer by immunohistochemistry; overall survival was analyzed by Kaplan-Meier method. At median follow-up of 176 months (range 13 - 282 months), we found substantial survival heterogeneity in γH2AX-positive patients (P=0.002) among uniform treatment groups including radiation or endocrine therapy alone and no-treatment, as well as chemotherapy alone (being worst), in contrast to γH2AX-negative patients (P=0.2). In the chemotherapy group (n=118), median survival was 63 months (95% confidence interval [CI], 29 - 83) in patients with γH2AX-positive tumors compared with 170 months (95% CI 94 - 235) in those with γH2AX-negative tumors (P=0.0017). γH2AX remained a poor prognosis factor in the group by multivariable analysis (adjusted hazard ratio 2.12, P=0.009). Our data demonstrate that constitutive γH2AX positivity is significantly associated with survival heterogeneity in patients among uniform treatment groups, and its expression at diagnosis independently predicts poor chemotherapy outcome in breast cancer.
Collapse
|
9
|
Kwon M, Jang H, Kim EH, Roh JL. Efficacy of poly (ADP-ribose) polymerase inhibitor olaparib against head and neck cancer cells: Predictions of drug sensitivity based on PAR-p53-NF-κB interactions. Cell Cycle 2016; 15:3105-3114. [PMID: 27686740 DOI: 10.1080/15384101.2016.1235104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) is a key molecule in the DNA damage response (DDR), which is a major target of both chemotherapies and radiotherapies. PARP inhibitors therefore comprise a promising class of anticancer therapeutics. In this study, we evaluated the efficacy of the PARP inhibitor olaparib, and also sought to identify the mechanism and predictive marker associated with olaparib sensitivity in head and neck cancer (HNC) cells. A total of 15 HNC cell lines, including AMC HNC cells, were tested. AMC-HN3 and HN4 exhibited stronger responses to olaparib. Among cisplatin-resistant cell lines, only AMC HN9-cisR cells were significantly suppressed by olaparib. We found that basal poly (ADP-ribose) (PAR) levels, but not PARP-1 levels, correlated with olaparib sensitivity. AMC-HN3 and HN4 cells exhibited higher basal levels of NF-κB that decreased significantly after olaparib treatment. In contrast, apoptotic proteins were intrinsically expressed in AMC-HN9-cisR cells. As interference with p53 expression led to NF-κB reactivation, we concluded that elevated basal PAR and NF-κB levels are predictive of olaparib responsiveness in HNC cells; in addition, olaparib inhibits HNC cells via PAR-p53-NF-κB interactions.
Collapse
Affiliation(s)
- Minsu Kwon
- a Department of Otorhinolaryngology , Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine , Changwon , Republic of Korea
| | - Hyejin Jang
- b Department of Otolaryngology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Republic of Korea
| | - Eun Hye Kim
- b Department of Otolaryngology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Republic of Korea
| | - Jong-Lyel Roh
- b Department of Otolaryngology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
10
|
Somnay Y, Lubner S, Gill H, Matsumura JB, Chen H. The PARP inhibitor ABT-888 potentiates dacarbazine-induced cell death in carcinoids. Cancer Gene Ther 2016; 23:348-354. [PMID: 27632933 PMCID: PMC5083201 DOI: 10.1038/cgt.2016.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/12/2016] [Indexed: 02/07/2023]
Abstract
Monoagent DNA-alkylating chemotherapies like dacarbazine are among a paucity of medical treatments for advanced carcinoid tumors, but are limited by host toxicity and intrinsic chemoresistance through the base excision repair (BER) pathway via poly (ADP-ribose) polymerase (PARP). Hence, inhibitors of PARP may potentiate DNA-damaging agents by blocking BER and DNA restoration. We show that the PARP inhibitor ABT-888 (Veliparib) enhances the cytotoxic effects of dacarbazine in carcinoids. Two human carcinoid cell lines (BON and H727) treated with a combination of ABT-888 and dacarbazine resulted in synergistic growth inhibition signified by combination indices <1 on the Chou-Talalay scale. ABT-888 administered prior to varying dacarbazine doses promoted the suppression of neuroendocrine biomarkers of malignancy ASCL1 and CgA, shown by Western analysis. ATM phosphorylation and p21Waf1/Cip1 activation, indicative of DNA damage, were increased by ABT-888 when combined with dacarbazine treatment, suggesting BER pathway attenuation by ABT-888. PE Annexin V/7-AAD staining and sorting revealed a profound induction of apoptosis following combination treatment, which was further confirmed by increased PARP cleavage. These results demonstrate that ABT-888 synergizes dacarbazine treatment in carcinoids. Therefore, ABT-888 may help treat carcinoids unresponsive or refractory to mainstay therapies.
Collapse
Affiliation(s)
- Y Somnay
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - S Lubner
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - H Gill
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J B Matsumura
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - H Chen
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Surgery, University of Alabama- Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Biane C, Delaplace F, Klaudel H. Networks and games for precision medicine. Biosystems 2016; 150:52-60. [PMID: 27543134 DOI: 10.1016/j.biosystems.2016.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/20/2016] [Accepted: 08/11/2016] [Indexed: 12/13/2022]
Abstract
Recent advances in omics technologies provide the leverage for the emergence of precision medicine that aims at personalizing therapy to patient. In this undertaking, computational methods play a central role for assisting physicians in their clinical decision-making by combining data analysis and systems biology modelling. Complex diseases such as cancer or diabetes arise from the intricate interplay of various biological molecules. Therefore, assessing drug efficiency requires to study the effects of elementary perturbations caused by diseases on relevant biological networks. In this paper, we propose a computational framework called Network-Action Game applied to best drug selection problem combining Game Theory and discrete models of dynamics (Boolean networks). Decision-making is modelled using Game Theory that defines the process of drug selection among alternative possibilities, while Boolean networks are used to model the effects of the interplay between disease and drugs actions on the patient's molecular system. The actions/strategies of disease and drugs are focused on arc alterations of the interactome. The efficiency of this framework has been evaluated for drug prediction on a model of breast cancer signalling.
Collapse
Affiliation(s)
- Célia Biane
- IBISC Laboratory, Evry Val d'Essonne University, Evry, France.
| | | | - Hanna Klaudel
- IBISC Laboratory, Evry Val d'Essonne University, Evry, France.
| |
Collapse
|
12
|
Lakatos P, Hegedűs C, Salazar Ayestarán N, Juarranz Á, Kövér KE, Szabó É, Virág L. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism. Mutat Res 2016; 790:31-40. [PMID: 27427773 DOI: 10.1016/j.mrfmmm.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/28/2016] [Accepted: 07/04/2016] [Indexed: 12/24/2022]
Abstract
A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5J/cm(2)) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ-34+UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and -8. In conclusion, PJ-34 is a photosensitizer and PJ-34+UVA causes DNA damage and caspase-mediated cell death independently of PARP-1 inhibition.
Collapse
Affiliation(s)
- Petra Lakatos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nerea Salazar Ayestarán
- Department of Biology, Faculty of Sciences, Universidad Autónoma of Madrid, 28049-Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Universidad Autónoma of Madrid, 28049-Madrid, Spain
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Debrecen, Debrecen, Hungary
| | - Éva Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
13
|
Chand S, O'Hayer K, Blanco FF, Winter JM, Brody JR. The Landscape of Pancreatic Cancer Therapeutic Resistance Mechanisms. Int J Biol Sci 2016; 12:273-82. [PMID: 26929734 PMCID: PMC4753156 DOI: 10.7150/ijbs.14951] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma, PDA) is infamously moving to the top of the list as one of the most lethal cancers with an overall 5 year survival rate of 7%. Multiple genomic-based and molecular characterization studies of PDA specimens and established animal models have provided the field with multiple targets and a progression model of this disease. Still, to date, the best therapeutic options are surgery and combination cytotoxic therapies. In general, even in the best case scenario (i.e., an early stage diagnosis and a response to a specific therapy), most of these fortunate patients' PDA cells acquire or exert resistance mechanisms and eventually kill the patient. Herein, we touch on a growing field of investigation that focuses on PDA cell therapeutic resistance mechanisms. We examine extrinsic elements (i.e., the tumor microenvironment, hypoxia) to the intrinsic processes within the cell (i.e., post-transcriptional gene regulation and somatic mutations) that are important for therapeutic efficacy and resistance. Even as better targeted and personalized approaches move through the clinical trial pipeline the discussed resistance mechanisms will most likely play a role in the management of this deadly disease.
Collapse
Affiliation(s)
- Saswati Chand
- 1. Department of Surgery, The Jefferson Pancreas, Biliary, and Related Cancer Center
| | - Kevin O'Hayer
- 1. Department of Surgery, The Jefferson Pancreas, Biliary, and Related Cancer Center;; 2. Department of Medical Oncology, and the; 3. Department of Pharmacology & Experimental Therapeutics, Division of Clinical Pharmacology, Thomas Jefferson University, Philadelphia PA
| | - Fernando F Blanco
- 1. Department of Surgery, The Jefferson Pancreas, Biliary, and Related Cancer Center;; 3. Department of Pharmacology & Experimental Therapeutics, Division of Clinical Pharmacology, Thomas Jefferson University, Philadelphia PA
| | - Jordan M Winter
- 1. Department of Surgery, The Jefferson Pancreas, Biliary, and Related Cancer Center
| | - Jonathan R Brody
- 1. Department of Surgery, The Jefferson Pancreas, Biliary, and Related Cancer Center
| |
Collapse
|
14
|
Gapeyev AB, Lukyanova NA. Pulse-modulated extremely high-frequency electromagnetic radiation protects cellular DNA from the damaging effects of physical and chemical factors in vitro. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915050061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Yang KS, Kohler RH, Landon M, Giedt R, Weissleder R. Single cell resolution in vivo imaging of DNA damage following PARP inhibition. Sci Rep 2015; 5:10129. [PMID: 25984718 PMCID: PMC4434991 DOI: 10.1038/srep10129] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/24/2015] [Indexed: 11/17/2022] Open
Abstract
Targeting DNA repair pathways is a powerful strategy to treat cancers. To gauge efficacy in vivo, typical response markers include late stage effects such as tumor shrinkage, progression free survival, or invasive repeat biopsies. These approaches are often difficult to answer critical questions such as how a given drug affects single cell populations as a function of dose and time, distance from microvessels or how drug concentration (pharmacokinetics) correlates with DNA damage (pharmacodynamics). Here, we established a single-cell in vivo pharmacodynamic imaging read-out based on a truncated 53BP1 double-strand break reporter to determine whether or not poly(ADP-ribose) polymerase (PARP) inhibitor treatment leads to accumulation of DNA damage. Using this reporter, we show that not all PARP inhibitor treated tumors incur an increase in DNA damage. The method provides a framework for single cell analysis of cancer therapeutics in vivo.
Collapse
Affiliation(s)
- Katherine S Yang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Matthieu Landon
- 1] Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114 [2] Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115
| | - Randy Giedt
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Ralph Weissleder
- 1] Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114 [2] Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115
| |
Collapse
|
16
|
Kim HL, Ra H, Kim KR, Lee JM, Im H, Kim YH. Poly(ADP-ribosyl)ation of p53 contributes to TPEN-induced neuronal apoptosis. Mol Cells 2015; 38:312-7. [PMID: 25813624 PMCID: PMC4400305 DOI: 10.14348/molcells.2015.2142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 01/23/2023] Open
Abstract
Depletion of intracellular zinc by N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) induces p53-mediated protein synthesis-dependent apoptosis of mouse cortical neurons. Here, we examined the requirement for poly(ADP-ribose) polymerase (PARP)-1 as an upstream regulator of p53 in zinc depletion-induced neuronal apoptosis. First, we found that chemical inhibition or genetic deletion of PARP-1 markedly attenuated TPEN-induced apoptosis of cultured mouse cortical neurons. Poly(ADP-ribosyl)ation of p53 occurred starting 1 h after TPEN treatment. Suggesting the critical role of PARP-1, the TPEN-induced increase of stability and activity of p53 as well as poly(ADP-ribosyl)ation of p53 was almost completely blocked by PARP inhibition. Consistent with this, the induction of downstream proapoptotic proteins PUMA and NOXA was noticeably reduced by chemical inhibitors or genetic deletion of PARP-1. TPEN-induced cytochrome C release into the cytosol and caspase-3 activation were also blocked by inhibition of PARP-1. Taken together, these findings indicate that PARP-1 is essential for TPEN-induced neuronal apoptosis.
Collapse
Affiliation(s)
| | | | - Ki-Ryeong Kim
- Department of Molecular Biology, Sejong University, Seoul 143-747,
Korea
| | - Jeong-Min Lee
- Department of Molecular Biology, Sejong University, Seoul 143-747,
Korea
| | - Hana Im
- Department of Molecular Biology, Sejong University, Seoul 143-747,
Korea
| | - Yang-Hee Kim
- Department of Molecular Biology, Sejong University, Seoul 143-747,
Korea
| |
Collapse
|
17
|
Antolín AA, Mestres J. Linking off-target kinase pharmacology to the differential cellular effects observed among PARP inhibitors. Oncotarget 2015; 5:3023-8. [PMID: 24632590 PMCID: PMC4102788 DOI: 10.18632/oncotarget.1814] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PARP inhibitors hold promise as a novel class of targeted anticancer drugs. However, their true mechanism of action is still not well understood following recent reports that show marked differences in cellular effects. Here, we demonstrate that three PARP drug candidates, namely, rucaparib, veliparib, and olaparib, have a clearly different in vitro affinity profile across a panel of diverse kinases selected using a computational approach that relates proteins by ligand similarity. In this respect, rucaparib inhibits nine kinases with micromolar affinity, including PIM1, PIM2, PRKD2, DYRK1A, CDK1, CDK9, HIPK2, CK2, and ALK. In contrast, olaparib does not inhibit any of the sixteen kinases tested. In between, veliparib inhibits only two, namely, PIM1 and CDK9. The differential kinase pharmacology observed among PARP inhibitors provides a plausible explanation to their different cellular effects and offers unexplored opportunities for this drug class, but alerts also on the risk associated to transferring directly both preclinical and clinical outcomes from one PARP drug candidate to another.
Collapse
Affiliation(s)
- Albert A Antolín
- Systems Pharmacology, Research Program on Biomedical Informatics, IMIM Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | | |
Collapse
|
18
|
Smith MA, Hampton OA, Reynolds CP, Kang MH, Maris JM, Gorlick R, Kolb EA, Lock R, Carol H, Keir ST, Wu J, Kurmasheva RT, Wheeler DA, Houghton PJ. Initial testing (stage 1) of the PARP inhibitor BMN 673 by the pediatric preclinical testing program: PALB2 mutation predicts exceptional in vivo response to BMN 673. Pediatr Blood Cancer 2015; 62:91-8. [PMID: 25263539 PMCID: PMC4456187 DOI: 10.1002/pbc.25201] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/07/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND BMN 673 is a potent inhibitor of poly-ADP ribose polymerase (PARP) that is in clinical testing with a primary focus on BRCA-mutated cancers. BMN 673 is active both through inhibiting PARP catalytic activity and by tightly trapping PARP to DNA at sites of single strand breaks. PROCEDURE BMN 673 was tested in vitro at concentrations ranging from 0.1 nM to 1 μM and in vivo at a daily dose of 0.33 mg/kg administered orally twice daily (Mon-Fri) and once daily on weekends (solid tumors) for 28 days. RESULTS The median relative IC50 (rIC50 ) concentration against the PPTP cell lines was 25.8 nM. The median rIC50 for the Ewing cell lines was lower than for the remaining cell lines (6.4 vs. 31.1 nM, respectively). In vivo BMN 673 induced statistically significant differences in EFS distribution in 17/43 (39.5%) xenograft models. Three objective regressions were observed: a complete response (CR) in a medulloblastoma line (BT-45), a maintained CR in a Wilms tumor line (KT-10), and a maintained CR in an ependymoma line (BT-41). BMN 673 maintained its high level of activity against KT-10 with a threefold reduction in dose. KT-10 possesses a truncating mutation in PALB2 analogous to PALB2 mutations associated with hereditary breast and ovarian cancer that abrogate homologous recombination (HR) repair. CONCLUSIONS The PPTP results suggest that single agent BMN 673 may have limited clinical activity against pediatric cancers. Single agent activity is more likely for patients whose tumors have defects in HR repair.
Collapse
Affiliation(s)
| | - Oliver A. Hampton
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Min H. Kang
- Texas Tech University Health Sciences Center, Lubbock, TX
| | - John M. Maris
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Cancer Research Institute, Philadelphia, PA
| | | | | | - Richard Lock
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
| | - Hernan Carol
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
| | | | - Jianrong Wu
- St. Jude Children's Research Hospital, Memphis, TN
| | | | - David A. Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
19
|
Zhao P, Chen L, Li LH, Wei ZF, Tong B, Jia YG, Kong LY, Xia YF, Dai Y. SC-III3, a novel scopoletin derivative, induces cytotoxicity in hepatocellular cancer cells through oxidative DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation. BMC Cancer 2014; 14:987. [PMID: 25527123 PMCID: PMC4320555 DOI: 10.1186/1471-2407-14-987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 12/11/2014] [Indexed: 11/16/2022] Open
Abstract
Background Natural products from plants have been proven to be important resources of antitumor agents. In this study, we exploited the antitumor activity of (E)-3-(4-chlorophenyl)-N-(7-hydroxy-6-methoxy-2-oxo-2H-chromen-3-yl) acrylamide (SC-III3), a newly synthesized derivative of scopoletin, by in vitro and in vivo experiments. Methods Human hepatocellular carcinoma cell line HepG2 cells and xenograft of HepG2 cells in BALB/c nude mice were used to investigate the effects of SC-III3 on hepatocellular cancers. Cell cycle arrest and apoptosis were analyzed by flow cytometry. Cell cycle arrest, apoptosis and ATM-Chk pathway-related proteins were characterized by western blot. Results SC-III3 selectively inhibited the viability of HepG2 cells without significant cytotoxicity against human normal liver cells LO2. In mouse xenograft model of HepG2 cells, SC-III3 showed a marked inhibition of tumor growth in a dose-dependent manner. Cell cycle analysis revealed that SC-III3 induced cells to accumulate in S phase, which was accompanied by a marked decrease of the expressions of cyclin A, cyclin B, cyclin E and Cdk2 proteins, the crucial regulators of S phase cell cycle. SC-III3 treatment resulted in DNA breaks in HepG2 cells, which might contribute to its S phase arrest. The S arrest and the activation of ATM-Chk1/Chk2-Cdc25A-Cdk2 pathways induced by SC-III3 in HepG2 cells could be efficiently abrogated by pretreatments of either Ku55933 (an inhibitor of ATM) or UCN-01 (an inhibitor of Chk1/Chk2). The activation of p53-p21 pathway by SC-III3 was also reversed by Ku55933 treatment. SC-III3 led to significant accumulation of intracellular reactive oxygen species (ROS), a breaker of DNA strand, in HepG2 cells but not LO2 cells. Pretreatment with N-acetyl-l-cysteine (NAC), a ROS scavenger, could reverse SC-III3-caused ROS accumulation, DNA damage, activation of signal pathways relevant to DNA damage, S phase arrest and cell viability decrease in HepG2 cells. Conclusion SC-III3 is able to efficiently inhibit the growth of hepatocellular carcinoma through inducing the generation of intracellular ROS, DNA damage and consequent S phase arrest, but lack of significant cytotoxicity against normal liver cells. This compound deserves further studies as a candidate of anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu-Feng Xia
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | | |
Collapse
|
20
|
Owonikoko TK, Zhang G, Deng X, Rossi MR, Switchenko JM, Doho GH, Chen Z, Kim S, Strychor S, Christner SM, Beumer J, Li C, Yue P, Chen A, Sica GL, Ramalingam SS, Kowalski J, Khuri FR, Sun SY. Poly (ADP) ribose polymerase enzyme inhibitor, veliparib, potentiates chemotherapy and radiation in vitro and in vivo in small cell lung cancer. Cancer Med 2014; 3:1579-94. [PMID: 25124282 PMCID: PMC4298385 DOI: 10.1002/cam4.317] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/26/2022] Open
Abstract
Poly (ADP) ribose polymerase (PARP) plays a key role in DNA repair and is highly expressed in small cell lung cancer (SCLC). We investigated the therapeutic impact of PARP inhibition in SCLC. In vitro cytotoxicity of veliparib, cisplatin, carboplatin, and etoposide singly and combined was determined by MTS in 9 SCLC cell lines (H69, H128, H146, H526, H187, H209, DMS53, DMS153, and DMS114). Subcutaneous xenografts in athymic nu/nu mice of H146 and H128 cells with relatively high and low platinum sensitivity, respectively, were employed for in vivo testing. Mechanisms of differential sensitivity of SCLC cell lines to PARP inhibition were investigated by comparing protein and gene expression profiles of the platinum sensitive and the less sensitive cell lines. Veliparib showed limited single-agent cytotoxicity but selectively potentiated (≥50% reduction in IC50) cisplatin, carboplatin, and etoposide in vitro in five of nine SCLC cell lines. Veliparib with cisplatin or etoposide or with both cisplatin and etoposide showed greater delay in tumor growth than chemotherapy alone in H146 but not H128 xenografts. The potentiating effect of veliparib was associated with in vitro cell line sensitivity to cisplatin (CC = 0.672; P = 0.048) and DNA-PKcs protein modulation. Gene expression profiling identified differential expression of a 5-gene panel (GLS, UBEC2, HACL1, MSI2, and LOC100129585) in cell lines with relatively greater sensitivity to platinum and veliparib combination. Veliparib potentiates standard cytotoxic agents against SCLC in a cell-specific manner. This potentiation correlates with platinum sensitivity, DNA-PKcs expression and a 5-gene expression profile.
Collapse
Affiliation(s)
- Taofeek K Owonikoko
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, Georgia; Winship Cancer Institute of Emory University, Atlanta, Georgia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wei Q, Huang H, Yang L, Yuan J, Yang X, Liu Y, Zhuang Z. Hydrogen peroxide induces adaptive response and differential gene expression in human embryo lung fibroblast cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:478-485. [PMID: 22489041 DOI: 10.1002/tox.21775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 05/31/2023]
Abstract
Hydrogen peroxide (H2 O2 ), a substance involved in cellular oxidative stress, has been observed to induce an adaptive response, which is characterized by a protection against the toxic effect of H2 O2 at higher concentrations. However, the molecular mechanism for the adaptive response remains unclear. In particular, the existing reports on H2 O2 -induced adaptive response are limited to animal cells and human tumor cells, and relatively normal human cells have never been observed for an adaptive response to H2 O2 . In this study, a human embryo lung fibroblast (MRC-5) cell line was used to model an adaptive response to H2 O2 , and the relevant differential gene expressions by using fluoro mRNA differential display RT-PCR. The results showed significant suppression of cytotoxicity of H2 O2 (1100 μM, 1 h) after pretreatment of the cells with H2 O2 at lower concentrations (0.088-8.8 μM, 24 h), as indicated by cell survival, lactate dehydrogenase release, and the rate of apoptotic cells. Totally 60 mRNA components were differentially expressed compared to untreated cells, and five of them (sizing 400-600 bp) which demonstrated the greatest increase in expression were cloned and sequenced. They showed identity with known genes, such as BCL-2, eIF3S5, NDUFS4, and RPS10. Real time RT-PCR analysis of the five genes displayed a pattern of differential expression consistent with that by the last method. These five genes may be involved in the induction of adaptive response by H2 O2 in human cells, at least in this particular cell type.
Collapse
Affiliation(s)
- Qinzhi Wei
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China; Department of Toxicology, Faculty of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China; Toxicology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, 21 TianBei 1st Road, Shenzhen 518020, Guangdong Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Davidson D, Wang Y, Aloyz R, Panasci L. The PARP inhibitor ABT-888 synergizes irinotecan treatment of colon cancer cell lines. Invest New Drugs 2013; 31:461-8. [PMID: 23054213 PMCID: PMC3857790 DOI: 10.1007/s10637-012-9886-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/26/2012] [Indexed: 12/18/2022]
Abstract
Poly [ADP-ribose] polymerase-1 (PARP-1) localizes rapidly to sites of DNA damage and has been associated with various repair mechanisms including base excision repair (BER) and homologous recombination/non-homologous end joining (HRR/NHEJ). PARP-1 acts by adding poly-ADP ribose side chains to target proteins (PARylation) altering molecular interactions and functions. Recently small molecule inhibitors of PARP-1 have been shown to have significant clinical potential and third generation PARP inhibitors are currently being investigated in clinical trials. These drugs alone or in combination with radio/chemotherapy have resulted in meaningful patient responses and an increase in survival in metastatic breast cancer cases bearing BRCA-deficient or triple negative tumors and BRCA-deficient ovarian cancer patients. ABT-888, a potent PARP-1 inhibitor, sensitizes many cancer cells in-vitro and in-vivo to temozolomide. As such, we hypothesized that colon cancers would be sensitized to the DNA damaging chemotherapeutic agents, oxaliplatin and irinotecan, by ABT-888. Using colon cancer cell lines significant synergy was observed between ABT-888 and irinotecan at concentrations of ABT-888 as low as 0.125 μM. The level of synergy observed correlated with the degree of PARP1 inhibition as measured biochemically in cell lysates. ABT-888 at concentrations of 0.5-4 μM resulted in synergy with oxaliplatin. Furthermore, 24 h post treatment combinations of ABT-888/irinotecan generally resulted in increased G2/M cell cycle arrest and increased levels of DNA damage, followed by increased levels of apoptosis 48 h post treatment. In conclusion this study suggests that ABT-888 may be a clinically effective adjuvant to current colon cancer therapies that include the use of irinotecan and/or oxaliplatin.
Collapse
Affiliation(s)
- David Davidson
- Montreal Centre for Experimental Therapeutics in Cancer-Segal Cancer Center-Lady Davis Institute-Jewish General Hospital, McGill University, 3755, Côte Sainte Catherine Road, Montréal, Québec H3T 1E2, Canada
| | | | | | | |
Collapse
|
23
|
Montariello D, Troiano A, Malanga M, Calabrò V, Quesada P. p63 involvement in poly(ADP-ribose) polymerase 1 signaling of topoisomerase I-dependent DNA damage in carcinoma cells. Biochem Pharmacol 2013; 85:999-1006. [PMID: 23376119 DOI: 10.1016/j.bcp.2013.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
Poly(ADP-ribose)polymerase 1 (PARP-1) inhibitors are thought as breakthrough for cancer treatment in solid tumors such as breast cancer through their effects on PARP's enzymatic activity. Our previous findings showed that the hydrophilic PARP inhibitor PJ34 enhances the sensitivity of p53 proficient MCF7 breast carcinoma cells to topotecan, a DNA Topoisomerase I (TOP 1) inhibitor. In the present study, we combine the classical TOP 1 poison camptothecin or its water-soluble derivative topotecan with PJ34 to investigate the potentiation of chemotherapeutic efficiency in MCF7 (p53(WT)), MDA-MB231 (p53(mut)) breast carcinoma cells and SCC022 (p53(null)) squamous carcinoma cells. We show that, following TPT-PJ34 combined treatment, MCF7 cells exhibit apoptotic death while MDA-MB231 and SCC022 cells are more resistant to these agents. Specifically, in MCF7, (i) PJ34 in combination with TPT causes a G2/M cell cycle arrest followed by massive apoptosis; (ii) PJ34 addition reverts TPT-dependent PARP-1 automodification and triggers caspase-dependent PARP-1 proteolysis; (iii) TPT, used as a single agent, stimulates p53 expression while in combination with PJ34 increases p53, TAp63α and TAp63γ protein levels with a concomitant reduction of MDM2 protein. The identification of p63 proteins as new players involved in the cancer cell response to TPT-PJ34 is relevant for a better understanding of the PARP1-dependent signaling of DNA damage. Furthermore, our data indicate that, in response to TPT-PJ34 combined chemotherapy, a functional cooperation between p53 and TAp63 proteins may occur and be essential to trigger apoptotic cell death.
Collapse
|
24
|
Lovato A, Panasci L, Witcher M. Is there an epigenetic component underlying the resistance of triple-negative breast cancers to parp inhibitors? Front Pharmacol 2013; 3:202. [PMID: 23293602 PMCID: PMC3530734 DOI: 10.3389/fphar.2012.00202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/06/2012] [Indexed: 12/15/2022] Open
Abstract
Poly(ADP-ribose) polymerase (Parp) is an enzyme responsible for catalyzing post-translational modifications through the addition of poly(ADP-ribose) chains (known as PARylation). Modification by PARylation modulates numerous cellular processes including transcription, chromatin remodeling, apoptosis, and DNA damage repair. In particular, the role of Parp activation in response to DNA damage has been intensely studied. Tumors bearing mutations of the breast cancer susceptibility genes, Brca1/2, are prone to DNA breakages whose restoration into functional double-strand DNA is Parp dependent. This concept has been exploited therapeutically in Brca mutated breast and ovarian tumors, where acute sensitivity to Parp inhibitors is observed. Based on in vitro and clinical studies it remains unclear to what extent Parp inhibitors can be utilized beyond treating Brca mutated tumors. This review will focus on the often overlooked roles of PARylation in chromatin remodeling, epigenetics, and transcription to explain why some cancers may be unresponsive to Parp inhibition. We predict that understanding the impact of PARylation on gene expression will lead to alternative approaches to manipulate the Parp pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Amanda Lovato
- The Departments of Oncology and Experimental Medicine, The Lady Davis Institute and Segal Cancer Centre of the Jewish General Hospital, McGill University Montreal QC, Canada
| | | | | |
Collapse
|
25
|
Current World Literature. Curr Opin Oncol 2013; 25:99-104. [DOI: 10.1097/cco.0b013e32835c1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Oplustilova L, Wolanin K, Mistrik M, Korinkova G, Simkova D, Bouchal J, Lenobel R, Bartkova J, Lau A, O’Connor MJ, Lukas J, Bartek J. Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment. Cell Cycle 2012; 11:3837-50. [PMID: 22983061 PMCID: PMC3495826 DOI: 10.4161/cc.22026] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Impaired DNA damage response pathways may create vulnerabilities of cancer cells that can be exploited therapeutically. One such selective vulnerability is the sensitivity of BRCA1- or BRCA2-defective tumors (hence defective in DNA repair by homologous recombination, HR) to inhibitors of the poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme critical for repair pathways alternative to HR. While promising, treatment with PARP-1 inhibitors (PARP-1i) faces some hurdles, including (1) acquired resistance, (2) search for other sensitizing, non-BRCA1/2 cancer defects and (3) lack of biomarkers to predict response to PARP-1i. Here we addressed these issues using PARP-1i on 20 human cell lines from carcinomas of the breast, prostate, colon, pancreas and ovary. Aberrations of the Mre11-Rad50-Nbs1 (MRN) complex sensitized cancer cells to PARP-1i, while p53 status was less predictive, even in response to PARP-1i combinations with camptothecin or ionizing radiation. Furthermore, monitoring PARsylation and Rad51 foci formation as surrogate markers for PARP activity and HR, respectively, supported their candidacy for biomarkers of PARP-1i responses. As to resistance mechanisms, we confirmed the role of the multidrug resistance efflux transporters and its reversibility. More importantly, we demonstrated that shRNA lentivirus-mediated depletion of 53BP1 in human BRCA1-mutant breast cancer cells increased their resistance to PARP-1i. Given the preferential loss of 53BP1 in BRCA-defective and triple-negative breast carcinomas, our findings warrant assessment of 53BP1 among candidate predictive biomarkers of response to PARPi. Overall, this study helps characterize genetic and functional determinants of cellular responses to PARP-1i and contributes to the search for biomarkers to exploit PARP inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Lenka Oplustilova
- Danish Cancer Society Research Center; Copenhagen, Denmark
- AstraZeneca; iMed Oncology; Macclesfield, Cheshire, UK
| | - Kamila Wolanin
- Danish Cancer Society Research Center; Copenhagen, Denmark
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine; Faculty of Medicine and Dentistry; Palacky University; Olomouc, Czech Republic
| | - Gabriela Korinkova
- Institute of Molecular and Translational Medicine; Faculty of Medicine and Dentistry; Palacky University; Olomouc, Czech Republic
| | - Dana Simkova
- Institute of Molecular and Translational Medicine; Faculty of Medicine and Dentistry; Palacky University; Olomouc, Czech Republic
| | - Jan Bouchal
- Institute of Molecular and Translational Medicine; Faculty of Medicine and Dentistry; Palacky University; Olomouc, Czech Republic
| | - Rene Lenobel
- Laboratory of Growth Regulators; Palacky University Olomouc; Olomouc, Czech Republic
| | | | - Alan Lau
- AstraZeneca; iMed Oncology; Macclesfield, Cheshire, UK
| | | | - Jiri Lukas
- Danish Cancer Society Research Center; Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen, Denmark
| | - Jiri Bartek
- Danish Cancer Society Research Center; Copenhagen, Denmark
- Institute of Molecular and Translational Medicine; Faculty of Medicine and Dentistry; Palacky University; Olomouc, Czech Republic
| |
Collapse
|
27
|
Nowsheen S, Cooper T, Bonner JA, LoBuglio AF, Yang ES. HER2 overexpression renders human breast cancers sensitive to PARP inhibition independently of any defect in homologous recombination DNA repair. Cancer Res 2012; 72:4796-806. [PMID: 22987487 PMCID: PMC3458582 DOI: 10.1158/0008-5472.can-12-1287] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
HER2 overexpression in breast cancer confers increased tumor aggressiveness. Although anti-HER2 therapies have improved patient outcome, resistance ultimately occurs. PARP inhibitors target homologous recombination (HR)-deficient tumors, such as the BRCA-associated breast and ovarian cancers. In this study, we show that HER2+ breast cancers are susceptible to PARP inhibition independent of an HR deficiency. HER2 overexpression in HER2 negative breast cancer cells was sufficient to render cells susceptible to the PARP inhibitors ABT-888 and AZD-2281 both in vitro and in vivo, which was abrogated by HER2 reduction. In addition, ABT-888 significantly inhibited NF-κB (p65/RelA) transcriptional activity in HER2+ but not HER2 negative breast cancer cells. This corresponded with a reduction in phosphorylated p65 and total IKKα levels, with a concomitant increase in IκBα. Overexpression of p65 abrogated cellular sensitivity to ABT-888, whereas IκBα overexpression reduced cell viability to a similar extent as ABT-888. Therefore, susceptibility of HER2+ breast cancer cells to PARP inhibition may be because of inhibition of NF-κB signaling driven by HER2. Our findings indicate that PARP inhibitors may be a novel therapeutic strategy for sporadic HER2+ breast cancer patients.
Collapse
Affiliation(s)
- Somaira Nowsheen
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine
| | - Tiffiny Cooper
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine
| | - James A. Bonner
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine
| | - Albert F. LoBuglio
- Department of Hematology/Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine
| | - Eddy S. Yang
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine
- Department of Cell, Developmental, and Integrative Biology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine
- Department of Pharmacology and Toxicology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine
| |
Collapse
|
28
|
Höpker K, Hagmann H, Khurshid S, Chen S, Schermer B, Benzing T, Reinhardt HC. Putting the brakes on p53-driven apoptosis. Cell Cycle 2012; 11:4122-8. [PMID: 22983126 DOI: 10.4161/cc.21997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Following genotoxic stress, cells activate a complex, kinase-based signaling network to arrest the cell cycle and initiate DNA repair or apoptosis. The tumor suppressor p53 lies at the heart of this DNA damage response. p53 mediates the transactivation of both cell cycle-regulating and pro-apoptotic clusters of target genes. However, it remains incompletely understood which signaling molecules dictate the choice between these two opposing p53-dependent cellular outcomes. Over recent years, numerous regulatory mechanisms impacting on the cellular outcome of p53 signaling have been described. However, no single dominant mechanism has thus far been identified to regulate the cellular choice between p53-driven apoptosis or senescence. The transcriptional regulator AATF has recently emerged as a novel factor impacting on the cellular outcome of the p53 response. Upon genotoxic stress, cytoplasmic pools of MRLC-bound AATF are phosphorylated through the p38MAPK/MK2 checkpoint kinase complex. This AATF phosphorylation results in the disruption of cytoplasmic MRLC3:AATF complexes followed by rapid nuclear localization of AATF. Once in the nucleus, AATF binds to the PUMA, BAX and BAK promoters to repress the DNA damage-induced expression of these pro-apoptotic p53 target genes. Depletion of AATF in tumor cells results in a dramatically enhanced response to DNA-damaging chemotherapeutics, both in vitro and in vivo. Furthermore, focal copy number gains at the AATF locus in neuroblastoma correlate with adverse prognosis and reduced overall survival in this typically p53-proficient malignancy. These data identify the p38/MK2/AATF signaling pathway as a critical repressor of p53-driven apoptosis in tumor cells and implicate this signaling cascade as a novel target for chemotherapy-sensitizing therapeutic efforts.
Collapse
Affiliation(s)
- Katja Höpker
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|