1
|
Veluswami K, Rao S, Aggarwal S, Mani S, Balasubramanian A. Unraveling the Missing Pieces: Exploring the Gaps in Understanding Chagas Cardiomyopathy. Cureus 2024; 16:e66955. [PMID: 39280489 PMCID: PMC11401617 DOI: 10.7759/cureus.66955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Chagas cardiomyopathy affects a considerable number of patients infected with the protozoan Trypanosoma cruzi (T. cruzi) and remains one of the most neglected tropical diseases despite being a significant contributor to morbidity and mortality in both endemic regions of Latin America and non-endemic countries like the United States. Since its discovery almost a century ago, knowledge gaps still exist in the mechanisms involved in the pathogenesis of Chagas cardiomyopathy, and numerous challenges exist in its diagnosis and treatment. This article reviews the main pathogenetic mechanisms involved in the progression of Chagas cardiomyopathy, which has been proposed as a result of years of research. It also emphasizes the challenges involved in the diagnosis of the asymptomatic indeterminate phase and has focused on several diagnostic techniques, including echocardiography, electrocardiogram (ECG), magnetic resonance imaging (MRI), and nuclear imaging in diagnosing symptomatic Chagas cardiomyopathy. In this article, we have also provided a brief overview of the current treatment of Chagas cardiomyopathy, which is not etiology-specific but instead derived from the knowledge acquired from the treatment of other cardiomyopathies.
Collapse
Affiliation(s)
| | - Sudipta Rao
- Internal Medicine, JSS Medical College, Mysore, IND
| | | | - Sweatha Mani
- Internal Medicine, K.A.P. Viswanatham Government Medical College, Tiruchirappalli, IND
| | | |
Collapse
|
2
|
Libisch MG, Rego N, Robello C. Transcriptional Studies on Trypanosoma cruzi - Host Cell Interactions: A Complex Puzzle of Variables. Front Cell Infect Microbiol 2021; 11:692134. [PMID: 34222052 PMCID: PMC8248493 DOI: 10.3389/fcimb.2021.692134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
Chagas Disease, caused by the protozoan parasite Trypanosoma cruzi, affects nearly eight million people in the world. T. cruzi is a complex taxon represented by different strains with particular characteristics, and it has the ability to infect and interact with almost any nucleated cell. The T. cruzi-host cell interactions will trigger molecular signaling cascades in the host cell that will depend on the particular cell type and T. cruzi strain, and also on many different experimental variables. In this review we collect data from multiple transcriptomic and functional studies performed in different infection models, in order to highlight key differences between works that in our opinion should be addressed when comparing and discussing results. In particular, we focus on changes in the respiratory chain and oxidative phosphorylation of host cells in response to infection, which depends on the experimental model of T. cruzi infection. Finally, we also discuss host cell responses which reiterate independently of the strain, cell type and experimental conditions.
Collapse
Affiliation(s)
- María Gabriela Libisch
- Laboratorio de Interacciones Hospedero Patógeno-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Rego
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Carlos Robello,
| |
Collapse
|
3
|
Oliveira AER, Pereira MCA, Belew AT, Ferreira LRP, Pereira LMN, Neves EGA, Nunes MDCP, Burleigh BA, Dutra WO, El-Sayed NM, Gazzinelli RT, Teixeira SMR. Gene expression network analyses during infection with virulent and avirulent Trypanosoma cruzi strains unveil a role for fibroblasts in neutrophil recruitment and activation. PLoS Pathog 2020; 16:e1008781. [PMID: 32810179 PMCID: PMC7508367 DOI: 10.1371/journal.ppat.1008781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/22/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite that has a heterogeneous population composed of a pool of strains with distinct characteristics, including variable levels of virulence. In previous work, transcriptome analyses of parasite genes after infection of human foreskin fibroblasts (HFF) with virulent (CL Brener) and non-virulent (CL-14) clones derived from the CL strain, revealed a reduced expression of genes encoding parasite surface proteins in CL-14 compared to CL Brener during the final steps of the intracellular differentiation from amastigotes to trypomastigotes. Here we analyzed changes in the expression of host genes during in vitro infection of HFF cells with the CL Brener and CL-14 strains by analyzing total RNA extracted from cells at 60 and 96 hours post-infection (hpi) with each strain, as well as from uninfected cells. Similar transcriptome profiles were observed at 60 hpi with both strains compared to uninfected samples. However, at 96 hpi, significant differences in the number and expression levels of several genes, particularly those involved with immune response and cytoskeleton organization, were observed. Further analyses confirmed the difference in the chemokine/cytokine signaling involved with the recruitment and activation of immune cells such as neutrophils upon T. cruzi infection. These findings suggest that infection with the virulent CL Brener strain induces a more robust inflammatory response when compared with the non-virulent CL-14 strain. Importantly, the RNA-Seq data also exposed an unexplored role of fibroblasts as sentinel cells that may act by recruiting neutrophils to the initial site of infection. This role for fibroblasts in the regulation of the inflammatory response during infection by T. cruzi was corroborated by measurements of levels of different chemokines/cytokines during in vitro infection and in plasma from Chagas disease patients as well as by neutrophil activation and migration assays. Trypanosoma cruzi is the causative agent of Chagas disease, a debilitating and often life-threatening illness that affects 6 to 7 million people mainly in Latin America. The parasite, transmitted to humans by an insect vector, needs to invade different cells from the infected person in order to multiply and spread the infection to various organs, including the heart and the gut. In this study, we investigated how the host cell responds to the infection by analyzing changes in the expression of human genes in fibroblasts infected with the CL Brener and CL-14 strains, which are strains that present highly distinct virulent phenotypes during infection in mice. We showed that human fibroblasts build a strong immune response upon infection by T. cruzi and that this response is different depending on the parasite strain: infection with the virulent CL Brener strain induces a more robust inflammatory response compared with the infection with the avirulent CL-14 strain. We also showed that, in response to the infection, fibroblasts produce molecules that can recruit and activate neutrophils, which are important immune cells that controls the infection.
Collapse
Affiliation(s)
- Antonio Edson R. Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milton C. A. Pereira
- Centro de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Ashton T. Belew
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Ludmila R. P. Ferreira
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Eula G. A. Neves
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria do Carmo P. Nunes
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Barbara A. Burleigh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Walderez O. Dutra
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Najib M. El-Sayed
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Ricardo T. Gazzinelli
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
- * E-mail: (SMRT); (RTG)
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail: (SMRT); (RTG)
| |
Collapse
|
4
|
Oliveira AER, Grazielle-Silva V, Ferreira LRP, Teixeira SMR. Close encounters between Trypanosoma cruzi and the host mammalian cell: Lessons from genome-wide expression studies. Genomics 2019; 112:990-997. [PMID: 31229555 DOI: 10.1016/j.ygeno.2019.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/22/2019] [Accepted: 06/15/2019] [Indexed: 12/15/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, a life-threatening disease that affects different tissues. Within its mammalian host, T. cruzi develops molecular strategies for successful invasion of different cell types and adaptation to the intracellular environment. Conversely, the host cell responds to the infection by activating intracellular pathways to control parasite replication. Here, we reviewed genome-wide expression studies based on microarray and RNA-seq data from both parasite and host genes generated from animal models of infection as well as from Chagas disease patients. As expected, analyses of T. cruzi genes highlighted changes related to parasite energy metabolism and cell surface molecules, whereas host cell transcriptome emphasized the role of immune response genes. Besides allowing a better understanding of mechanisms behind the pathogenesis of Chagas disease, these studies provide essential information for the development of new therapies as well as biomarkers for diagnosis and assessment of disease progression.
Collapse
Affiliation(s)
- Antonio Edson R Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Viviane Grazielle-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila R P Ferreira
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Santuza M R Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Bonney KM, Luthringer DJ, Kim SA, Garg NJ, Engman DM. Pathology and Pathogenesis of Chagas Heart Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:421-447. [PMID: 30355152 DOI: 10.1146/annurev-pathol-020117-043711] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chagas heart disease is an inflammatory cardiomyopathy that develops in approximately one-third of people infected with the protozoan parasite Trypanosoma cruzi. One way T. cruzi is transmitted to people is through contact with infected kissing bugs, which are found in much of the Western Hemisphere, including in vast areas of the United States. The epidemiology of T. cruzi and Chagas heart disease and the varied mechanisms leading to myocyte destruction, mononuclear cell infiltration, fibrosis, and edema in the heart have been extensively studied by hundreds of scientists for more than 100 years. Despite this wealth of knowledge, it is still impossible to predict what will happen in an individual infected with T. cruzi because of the tremendous variability in clonal parasite virulence and human susceptibility to infection and the lack of definitive molecular predictors of outcome from either side of the host-parasite equation. Further, while several distinct mechanisms of pathogenesis have been studied in isolation, it is certain that multiple coincident mechanisms combine to determine the ultimate outcome. For these reasons, Chagas disease is best considered a collection of related but distinct illnesses. This review highlights the pathology and pathogenesis of the most common adverse sequela of T. cruzi infection-Chagas heart disease-and concludes with a discussion of key unanswered questions and a view to the future.
Collapse
Affiliation(s)
- Kevin M Bonney
- Liberal Studies, Faculty of Arts and Sciences, New York University, New York, NY 10003, USA;
| | - Daniel J Luthringer
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| | - Stacey A Kim
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA;
| | - David M Engman
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| |
Collapse
|
6
|
Li Y, Shah-Simpson S, Okrah K, Belew AT, Choi J, Caradonna KL, Padmanabhan P, Ndegwa DM, Temanni MR, Corrada Bravo H, El-Sayed NM, Burleigh BA. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection. PLoS Pathog 2016; 12:e1005511. [PMID: 27046031 PMCID: PMC4821583 DOI: 10.1371/journal.ppat.1005511] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/28/2016] [Indexed: 01/22/2023] Open
Abstract
Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our comprehensive, high resolution transcriptomic dataset provides a substantially more detailed interpretation of T. cruzi infection biology and offers a basis for future drug and vaccine discovery efforts. In-depth knowledge of the functional processes governing host colonization and transmission of pathogenic microorganisms is essential for the advancement of effective intervention strategies. This study focuses on Trypanosoma cruzi, the vector-borne protozoan parasite responsible for human Chagas disease and the leading cause of infectious myocarditis worldwide. To gain global insights into the biology of this parasite and its interaction with mammalian host cells, we have exploited a deep-sequencing approach to generate comprehensive, high-resolution transcriptomic maps for mammalian-infective stages of T. cruzi with the simultaneous interrogation of the human host cell transcriptome across an infection time course. We demonstrate that the establishment of intracellular T. cruzi infection in mammalian host cells is accompanied by extensive remodeling of the parasite and host cell transcriptomes. Despite the lack of transcriptional control mechanisms in trypanosomatids, our analyses identified functionally-enriched processes within sets of developmentally-regulated transcripts in T. cruzi that align with known or predicted biological features of the parasite. The novel insights into the biology of intracellular T. cruzi infection and the regulation of amastigote development gained in this study establish a unique foundation for functional network analyses that will be instrumental in providing functional links between parasite dependencies and host functional pathways that have the potential to be exploited for intervention.
Collapse
Affiliation(s)
- Yuan Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Sheena Shah-Simpson
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Kwame Okrah
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - A Trey Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jungmin Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Kacey L Caradonna
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Prasad Padmanabhan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David M Ndegwa
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - M Ramzi Temanni
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Héctor Corrada Bravo
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Silva JF, Capettini LSA, da Silva JFP, Sales-Junior P, Cruz JS, Cortes SF, Lemos VS. Mechanisms of vascular dysfunction in acute phase of Trypanosoma cruzi infection in mice. Vascul Pharmacol 2016; 82:73-81. [PMID: 26988253 DOI: 10.1016/j.vph.2016.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/27/2015] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
Abstract
Vascular disorders have a direct link to mortality in the acute phase of Trypanosoma cruzi infection. However, the underlying mechanisms of vascular dysfunction in this phase are largely unknown. We hypothesize that T. cruzi invades endothelial cells causing dysfunction in contractility and relaxation of the mouse aorta. Immunodetection of T. cruzi antigen TcRBP28 was observed in endothelial cells. There was a decreased endothelial nitric oxide synthase (eNOS)-derived NO-dependent vascular relaxation, and increased vascular contractility accompanied by augmented superoxide anions production. Endothelial removal, inhibition of cyclooxygenase 2 (COX-2), blockade of thromboxane A2 (TXA2) TP receptors, and scavenger of superoxide normalized the contractile response. COX-2, thromboxane synthase, inducible nitric oxide synthase (iNOS), p65 NFκB subunit and p22(phox) of NAD(P)H oxidase (NOX) subunit expressions were increased in vessels of chagasic animals. Serum TNF-α was augmented. Basal NO production, and nitrotyrosine residue expression were increased. It is concluded that T. cruzi invades mice aorta endothelial cells and increases TXA2/TP receptor/NOX-derived superoxide formation. Alongside, T. cruzi promotes systemic TNF-α increase, which stimulates iNOS expression in vessels and nitrosative stress. In light of the heart failure that develops in the chronic phase of the disease, to understand the mechanism involved in the increased contractility of the aorta is crucial.
Collapse
Affiliation(s)
- Josiane F Silva
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luciano S A Capettini
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - José F P da Silva
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | - Jader Santos Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Steyner F Cortes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Virginia S Lemos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
8
|
Flórez-Vargas O, Bramhall M, Noyes H, Cruickshank S, Stevens R, Brass A. The quality of methods reporting in parasitology experiments. PLoS One 2014; 9:e101131. [PMID: 25076044 PMCID: PMC4116335 DOI: 10.1371/journal.pone.0101131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/03/2014] [Indexed: 12/23/2022] Open
Abstract
There is a growing concern both inside and outside the scientific community over the lack of reproducibility of experiments. The depth and detail of reported methods are critical to the reproducibility of findings, but also for making it possible to compare and integrate data from different studies. In this study, we evaluated in detail the methods reporting in a comprehensive set of trypanosomiasis experiments that should enable valid reproduction, integration and comparison of research findings. We evaluated a subset of other parasitic (Leishmania, Toxoplasma, Plasmodium, Trichuris and Schistosoma) and non-parasitic (Mycobacterium) experimental infections in order to compare the quality of method reporting more generally. A systematic review using PubMed (2000-2012) of all publications describing gene expression in cells and animals infected with Trypanosoma spp was undertaken based on PRISMA guidelines; 23 papers were identified and included. We defined a checklist of essential parameters that should be reported and have scored the number of those parameters that are reported for each publication. Bibliometric parameters (impact factor, citations and h-index) were used to look for association between Journal and Author status and the quality of method reporting. Trichuriasis experiments achieved the highest scores and included the only paper to score 100% in all criteria. The mean of scores achieved by Trypanosoma articles through the checklist was 65.5% (range 32-90%). Bibliometric parameters were not correlated with the quality of method reporting (Spearman's rank correlation coefficient <-0.5; p>0.05). Our results indicate that the quality of methods reporting in experimental parasitology is a cause for concern and it has not improved over time, despite there being evidence that most of the assessed parameters do influence the results. We propose that our set of parameters be used as guidelines to improve the quality of the reporting of experimental infection models as a pre-requisite for integrating and comparing sets of data.
Collapse
Affiliation(s)
- Oscar Flórez-Vargas
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Michael Bramhall
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Harry Noyes
- School of Biological Science, University of Liverpool, Liverpool, United Kingdom
| | - Sheena Cruickshank
- Manchester Immunology Group, Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| | - Robert Stevens
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Andy Brass
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
- Manchester Immunology Group, Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Gomes JAS, Molica AM, Keesen TSL, Morato MJF, de Araujo FF, Fares RCG, Fiuza JA, Chaves AT, Pinheiro V, Nunes MDCP, Correa-Oliveira R, da Costa Rocha MO. Inflammatory mediators from monocytes down-regulate cellular proliferation and enhance cytokines production in patients with polar clinical forms of Chagas disease. Hum Immunol 2013; 75:20-8. [PMID: 24071371 DOI: 10.1016/j.humimm.2013.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/25/2013] [Accepted: 09/11/2013] [Indexed: 02/09/2023]
Abstract
Exposure to Trypanosoma cruzi parasites induces monocytes and macrophages to produce various endogenous mediators, including prostaglandins and cytokines. To clarify the involvement of monocytes as an important source of inflammatory mediators in Chagas disease patients, we evaluated PBMC before and after depletion of adherent cells (monocytes) from patients with indeterminate (IND) and cardiac (CARD) clinical forms and from non-infected individuals (NI). We demonstrated that after the partial depletion of adherent cells, production of PGE2 was slightly decreased in patients with Chagas disease. Inhibition of the cells by indomethacin increased the proliferation in PBMC cells from patients after antigen stimulation. Pro-inflammatory cytokines as IL-2 and IFN-γ also had a greater decrease after partial depletion of adherent cells in both clinical forms of Chagas disease. IL-10 and IL-5 levels were also reduced after partial depletion of adherent cells both in IND and CARD patients. In addition, we evaluated the APC potential of B cells and observed that the MHCII and CD80 molecules had an increased expression after partial depletion of most monocytes in all groups. Thus, inflammatory mediators produced by monocytes seem to be important to modulate immune responses in Chagas disease by regulating the processes of inflammation and antigen presentation.
Collapse
Affiliation(s)
- Juliana Assis Silva Gomes
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; School of Medicine, Postgraduate Program in Health Sciences: Infectology in Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil; René Rachou Research Center, FIOCRUZ, Belo Horizonte, Minas Gerais 30190-002, Brazil.
| | - Andreia Maria Molica
- School of Medicine, Postgraduate Program in Health Sciences: Infectology in Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil; René Rachou Research Center, FIOCRUZ, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Tatjana Souza Lima Keesen
- Department of Molecular and Cellular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | | | | | - Ana Thereza Chaves
- René Rachou Research Center, FIOCRUZ, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Vladimir Pinheiro
- School of Medicine, Postgraduate Program in Health Sciences: Infectology in Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil; René Rachou Research Center, FIOCRUZ, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Maria do Carmo Pereira Nunes
- School of Medicine, Postgraduate Program in Health Sciences: Infectology in Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Rodrigo Correa-Oliveira
- René Rachou Research Center, FIOCRUZ, Belo Horizonte, Minas Gerais 30190-002, Brazil; National Institute of Science and Technology on Tropical Diseases - INCT-DT, Salvador, Bahia, Brazil
| | - Manoel Otávio da Costa Rocha
- School of Medicine, Postgraduate Program in Health Sciences: Infectology in Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| |
Collapse
|
10
|
Sathler PC, Santana M, Lourenço AL, Rodrigues CR, Abreu P, Cabral LM, Castro HC. Human thromboxane synthase: comparative modeling and docking evaluation with the competitive inhibitors Dazoxiben and Ozagrel. J Enzyme Inhib Med Chem 2013; 29:527-31. [PMID: 23914925 DOI: 10.3109/14756366.2013.817403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thromboxane synthase (TXAS) is a P450 epoxygenase that synthesizes thromboxane A2 (TXA2), a potent mediator of platelet aggregation, vasoconstriction and bronchoconstriction. This enzyme plays an important role in several human diseases, including myocardial infarction, stroke, septic shock, asthma and cancer. Despite of the increasing interest on developing TXAS inhibitors, the structure and activity of TXAS are still not totally elucidated. In this study, we used a comparative molecular modeling approach to construct a reliable model of TXAS and analyze its interactions with Dazoxiben and Ozagrel, two competitive inhibitors. Our results were compatible with experimental published data, showing feasible cation-π interaction between the iron atom of the heme group of TXAS and the basic nitrogen atom of the imidazolyl group of those inhibitors. In the absence of the experimental structure of thromboxane synthase, this freely available model may be useful for designing new antiplatelet drugs for diseases related with TXA2.
Collapse
Affiliation(s)
- Plínio Cunha Sathler
- School of Pharmacy, Federal University of Rio de Janeiro , Niterói, Rio de Janeiro , Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Molina-Berríos A, Campos-Estrada C, Lapier M, Duaso J, Kemmerling U, Galanti N, Ferreira J, Morello A, López-Muñoz R, Maya JD. Protection of vascular endothelium by aspirin in a murine model of chronic Chagas' disease. Parasitol Res 2013; 112:2731-9. [PMID: 23681190 DOI: 10.1007/s00436-013-3444-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/26/2013] [Indexed: 12/22/2022]
Abstract
Chronic Chagas' disease affects 10-30 % of patients infected with Trypanosoma cruzi, and it mainly manifests as cardiomyopathy. Important pathophysiological mechanisms involved in the cardiac lesions include activation of the endothelium and induced microvascular alterations. These processes involve the production of endothelial adhesion molecules and thromboxane A2, which are involved in inflammatory cell recruitment and platelet aggregation, respectively. Cyclooxygenase inhibitors such as aspirin decrease thromboxane production and alter the course of Chagas' disease, both in the acute and chronic phases. We studied the effects of the administration of low and high doses of aspirin during the early phase of T. cruzi infection, following microvascular damage in the context of a chronic murine model of Chagas' disease. The effects of both schedules were assessed at 24 and 90 days postinfection by evaluating parasitemia, mortality, and cardiac histopathological changes as well as the expression of ICAM, VCAM, and E-selectin in cardiac tissue. Thromboxane A2, soluble ICAM, and E-selectin blood levels were also measured. While aspirin did not affect parasitemia or mortality in the infected mice, it decreased both cardiac inflammatory infiltrates and thromboxane levels. Additionally, at 90 days postinfection, aspirin normalized sICAM and sE-selectin levels. Considering the improved endothelial function induced by aspirin, we propose the possibility of including this drug in clinical therapy to treat chronic Chagas' disease.
Collapse
Affiliation(s)
- Alfredo Molina-Berríos
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|