1
|
Dvornikov AV, Wang M, Yang J, Zhu P, Le T, Lin X, Cao H, Xu X. Phenotyping an adult zebrafish lamp2 cardiomyopathy model identifies mTOR inhibition as a candidate therapy. J Mol Cell Cardiol 2019; 133:199-208. [PMID: 31228518 PMCID: PMC6705397 DOI: 10.1016/j.yjmcc.2019.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 12/23/2022]
Abstract
Adult zebrafish is an emerging vertebrate model for studying genetic basis of cardiomyopathies; but whether the simple fish heart can model essential features of hypertrophic cardiomyopathy (HCM) remained unknown. Here, we report a comprehensive phenotyping of a lamp2 knockout (KO) mutant. LAMP2 encodes a lysosomal protein and is a causative gene of Danon disease that is characterized by HCM and massive autophagic vacuoles accumulation in the tissues. There is no effective therapy yet to treat this most lethal cardiomyopathy in the young. First, we did find the autophagic vacuoles accumulation in cardiac tissues from lamp2 KO. Next, through employing a set of emerging phenotyping tools, we revealed heart failure phenotypes in the lamp2 KO mutants, including decreased ventricular ejection fraction, reduced physical exercise capacity, blunted β-adrenergic contractile response, and enlarged atrium. We also noted changes of the following indices suggesting cardiac hypertrophic remodeling in lamp2 KO: a rounded heart shape, increased end-systolic ventricular volume and density of ventricular myocardium, elevated actomyosin activation kinetics together with increased maximal isometric tension at the level of cardiac myofibrils. Lastly, we assessed the function of lysosomal-localized mTOR on the lamp2-associated Danon disease. We found that haploinsufficiency of mtor was able to normalize some characteristics of the lamp2 KO, including ejection fraction, β-adrenergic response, and the actomyosin activation kinetics. In summary, we demonstrate the feasibility of modeling the inherited HCM in the adult zebrafish, which can be used to develop potential therapies.
Collapse
Affiliation(s)
- Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mingmin Wang
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingchun Yang
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tai Le
- Department of Electrical Engineering and Computer Science, University of California Irvine, CA, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hung Cao
- Department of Electrical Engineering and Computer Science, University of California Irvine, CA, USA; Department of Biomedical Engineering, University of California Irvine, CA, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Zhang H, Dvornikov AV, Huttner IG, Ma X, Santiago CF, Fatkin D, Xu X. A Langendorff-like system to quantify cardiac pump function in adult zebrafish. Dis Model Mech 2018; 11:dmm.034819. [PMID: 30012855 PMCID: PMC6177000 DOI: 10.1242/dmm.034819] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
Zebrafish are increasingly used as a vertebrate model to study human cardiovascular disorders. Although heart structure and function are readily visualized in zebrafish embryos because of their optical transparency, the lack of effective tools for evaluating the hearts of older, nontransparent fish has been a major limiting factor. The recent development of high-frequency echocardiography has been an important advance for in vivo cardiac assessment, but it necessitates anesthesia and has limited ability to study acute interventions. We report the development of an alternative experimental ex vivo technique for quantifying heart size and function that resembles the Langendorff heart preparations that have been widely used in mammalian models. Dissected adult zebrafish hearts were perfused with a calcium-containing buffer, and a beat frequency was maintained with electrical stimulation. The impact of pacing frequency, flow rate and perfusate calcium concentration on ventricular performance (including end-diastolic and end-systolic volumes, ejection fraction, radial strain, and maximal velocities of shortening and relaxation) were evaluated and optimal conditions defined. We determined the effects of age on heart function in wild-type male and female zebrafish, and successfully detected hypercontractile and hypocontractile responses after adrenergic stimulation or doxorubicin treatment, respectively. Good correlations were found between indices of cardiac contractility obtained with high-frequency echocardiography and with the ex vivo technique in a subset of fish studied with both methods. The ex vivo beating heart preparation is a valuable addition to the cardiac function tool kit that will expand the use of adult zebrafish for cardiovascular research.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA.,Cardiovascular Surgery Department, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| | - Inken G Huttner
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA.,Clinical and Translational Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN 55092, USA
| | - Celine F Santiago
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.,Cardiology Department, St. Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
3
|
Li L. The Molecular Mechanism of Glucagon-Like Peptide-1 Therapy in Alzheimer's Disease, Based on a Mechanistic Target of Rapamycin Pathway. CNS Drugs 2017; 31:535-549. [PMID: 28540646 DOI: 10.1007/s40263-017-0431-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is an important molecule that connects aging, lifespan, energy balance, glucose and lipid metabolism, and neurodegeneration. Rapamycin exerts effects in numerous biological activities via its target protein, playing a key role in energy balance, regulation of autophagy, extension of lifespan, immunosuppression, and protection against neurodegeneration. There are many similar pathophysiological processes and molecular pathways between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM), and pharmacologic agents used to treat T2DM, including glucagon-like peptide-1 (GLP-1) analogs, seem to be beneficial for AD. mTOR mediates the effects of GLP-1 analogs in the treatment of T2DM; hence, I hypothesize that mTOR is a key molecule for mediating the protective effects of GLP-1 for AD.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Park CW, Hong SM, Kim ES, Kwon JH, Kim KT, Nam HG, Choi KY. BNIP3 is degraded by ULK1-dependent autophagy via MTORC1 and AMPK. Autophagy 2013; 9:345-60. [PMID: 23291726 DOI: 10.4161/auto.23072] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BNIP3 (BCL2/adenovirus E1B 19 kDa interacting protein 3) is an atypical BH3-only protein that is induced by hypoxia-inducible factor 1 (HIF1) under hypoxia. BNIP3 is primarily regulated at the transcriptional level. However, little is known about the underlying mechanism of BNIP3 degradation. In this study, we found that BNIP3 was downregulated when hypoxia was accompanied by amino acid starvation. The BNIP3 downregulation did not occur at the transcription level and was independent of HIF1A. BNIP3 was primarily degraded by the proteasome, but BNIP3 was subjected to both proteasomal and autophagic degradation in response to starvation. The autophagic degradation of BNIP3 was dependent on ATG7 and MAP1LC3. We determined that autophagic degradation of BNIP3 was specifically regulated by ULK1 via the MTOR-AMPK pathway. Moreover, we confirmed that BNIP3 could play a protective role in tumor cells under hypoxia, and the treatment with Torin1, an MTOR inhibitor, decreased the BNIP3 level and enhanced the death of hypoxic tumor cells.
Collapse
Affiliation(s)
- Chang Wook Park
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | | | | | | | |
Collapse
|