1
|
Shakhov AS, Churkina AS, Kotlobay AA, Alieva IB. The Endothelial Centrosome: Specific Features and Functional Significance for Endothelial Cell Activity and Barrier Maintenance. Int J Mol Sci 2023; 24:15392. [PMID: 37895072 PMCID: PMC10607758 DOI: 10.3390/ijms242015392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
This review summarizes information about the specific features that are characteristic of the centrosome and its relationship with the cell function of highly specialized cells, such as endotheliocytes. It is based on data from other researchers and our own long-term experience. The participation of the centrosome in the functional activity of these cells, including its involvement in the performance of the main barrier function of the endothelium, is discussed. According to modern concepts, the centrosome is a multifunctional complex and an integral element of a living cell; the functions of which are not limited only to the ability to polymerize microtubules. The location of the centrosome near the center of the interphase cell, the concentration of various regulatory proteins in it, the organization of the centrosome radial system of microtubules through which intracellular transport is carried out by motor proteins and the involvement of the centrosome in the process of the perception of the external signals and their transmission make this cellular structure a universal regulatory and distribution center, controlling the entire dynamic morphology of an animal cell. Drawing from modern data on the tissue-specific features of the centrosome's structure, we discuss the direct involvement of the centrosome in the performance of functions by specialized cells.
Collapse
Affiliation(s)
- Anton Sergeevich Shakhov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
| | - Aleksandra Sergeevna Churkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1–73, Leninskye Gory, 119992 Moscow, Russia
| | - Anatoly Alekseevich Kotlobay
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Irina Borisovna Alieva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
| |
Collapse
|
2
|
Centrosomal-associated Proteins: Potential therapeutic targets for solid tumors? Biomed Pharmacother 2021; 144:112292. [PMID: 34700231 DOI: 10.1016/j.biopha.2021.112292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
The centrosome is a special organelle in human cells and an organizing unit for microtubules and signaling molecules. In addition, the centrosome is tightly restricted during the cell cycle and forms the basal body of the cilia in ciliated cells. Centrosome abnormality is frequently observed in malignant tumors. The dysregulation of centrosome-associated proteins leads to multipolar mitosis, aneuploidy, and nondirected cell migration, and therefore promotes cancer progression. The overduplication of primary centrosome and the accumulation of chromosome, comprise the majority cause of chromosomal mis-segregation in cancer cells. This review discusses the structure and function of the centrosome and the role of its associated proteins in the progression of solid tumors. We summarized the effects of centrosome amplification abnormalities and other centrosome-related phenotypes on tumors. The mechanism of the delineation of centrosome amplification with tumor malignancy remains to be decided. A better understanding of centrosome abnormality in tumorigenesis may be useful to screen novel therapeutic strategies for the treatment of solid tumors.
Collapse
|
3
|
Ki SM, Kim JH, Won SY, Oh SJ, Lee IY, Bae Y, Chung KW, Choi B, Park B, Choi E, Lee JE. CEP41-mediated ciliary tubulin glutamylation drives angiogenesis through AURKA-dependent deciliation. EMBO Rep 2020; 21:e48290. [PMID: 31885126 PMCID: PMC7001496 DOI: 10.15252/embr.201948290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
The endothelial cilium is a microtubule-based organelle responsible for blood flow-induced mechanosensation and signal transduction during angiogenesis. The precise function and mechanisms by which ciliary mechanosensation occurs, however, are poorly understood. Although posttranslational modifications (PTMs) of cytoplasmic tubulin are known to be important in angiogenesis, the specific roles of ciliary tubulin PTMs play remain unclear. Here, we report that loss of centrosomal protein 41 (CEP41) results in vascular impairment in human cell lines and zebrafish, implying a previously unknown pro-angiogenic role for CEP41. We show that proper control of tubulin glutamylation by CEP41 is necessary for cilia disassembly and that is involved in endothelial cell (EC) dynamics such as migration and tubulogenesis. We show that in ECs responding to shear stress or hypoxia, CEP41 activates Aurora kinase A (AURKA) and upregulates expression of VEGFA and VEGFR2 through ciliary tubulin glutamylation, as well as leads to the deciliation. We further show that in hypoxia-induced angiogenesis, CEP41 is responsible for the activation of HIF1α to trigger the AURKA-VEGF pathway. Overall, our results suggest the CEP41-HIF1α-AURKA-VEGF axis as a key molecular mechanism of angiogenesis and demonstrate how important ciliary tubulin glutamylation is in mechanosense-responded EC dynamics.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - Ji Hyun Kim
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - So Yeon Won
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - Shin Ji Oh
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - In Young Lee
- Laboratory of Cell Death and Human DiseasesDepartment of Life SciencesKorea UniversitySeoulSouth Korea
| | - Young‐Ki Bae
- Comparative Biomedicine Research & Tumor Microenvironment Research BranchResearch InstituteNational Cancer CenterGoyangKorea
| | - Ki Wha Chung
- Department of Biological SciencesKongju National UniversityKongjuSouth Korea
| | - Byung‐Ok Choi
- Department of NeurologySungkyunkwan University School of MedicineSeoulSouth Korea
| | - Boyoun Park
- Department of Systems BiologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulSouth Korea
| | - Eui‐Ju Choi
- Laboratory of Cell Death and Human DiseasesDepartment of Life SciencesKorea UniversitySeoulSouth Korea
| | - Ji Eun Lee
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
- Samsung Biomedical Research InstituteSamsung Medical CenterSeoulSouth Korea
| |
Collapse
|
4
|
Sirkisoon SR, Carpenter RL, Rimkus T, Anderson A, Harrison A, Lange AM, Jin G, Watabe K, Lo HW. Interaction between STAT3 and GLI1/tGLI1 oncogenic transcription factors promotes the aggressiveness of triple-negative breast cancers and HER2-enriched breast cancer. Oncogene 2018; 37:2502-2514. [PMID: 29449694 PMCID: PMC5948110 DOI: 10.1038/s41388-018-0132-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3), glioma oncogene homolog 1 (GLI1), and truncated GLI1 (tGLI1) are oncogenic transcription factors playing important roles in breast cancer. tGLI1 is a gain-of-function GLI1 isoform. Whether STAT3 physically and/or functionally interacts with GLI1/tGLI1 has not been explored. To address this knowledge gap, we analyzed 47 node-positive breast cancer specimens using immunohistochemical staining and found that phosphorylated-STAT3 (Y705), GLI1, and tGLI1 are co-overexpressed in the majority of triple-negative breast carcinomas (64%) and HER2-enriched (68%) breast carcinomas, and in lymph node metastases (65%). Using gene set enrichment analysis, we analyzed 710 breast tumors and found that STAT3 activation and GLI1/tGLI1 activation signatures are co-enriched in triple-negative subtypes of breast cancers and HER2-enriched subtypes of breast cancers, but not in luminal subtypes of breast cancers. Patients with high levels of STAT3 and GLI1/tGLI1 co-activation in their breast tumors had worse metastasis-free survival compared to those with low levels. Since these proteins co-overexpress in breast tumors, we examined whether they form complexes and observed that STAT3 interacted with both GLI1 and tGLI1. We further found that the STAT3-GLI1 and STAT3-tGLI1 complexes bind to both consensus GLI1-binding and STAT3-binding sites using chromatin immunoprecipitation (ChIP) assay, and that the co-overexpression markedly activated a promoter controlled by GLI1-binding sites. To identify genes that can be directly co-activated by STAT3 and GLI1/tGLI1, we analyzed three ChIP-seq datasets and identified 34 potential target genes. Following validations using reverse transcription polymerase chain reaction and survival analysis, we identified three genes as novel transcriptional targets of STAT3 and GLI1/tGLI1, R-Ras2, Cep70, and UPF3A. Finally, we observed that co-overexpression of STAT3 with GLI1/tGLI1 promoted the ability of breast cancer cells to form mammospheres and that STAT3 only cooperates with tGLI1 in immortalized mammary epithelial cells. In summary, our study identified novel physical and functional cooperation between two families of oncogenic transcription factors, and the interaction contributes to aggressiveness of breast cancer cells and poor prognosis of triple-negative breast cancers and HER2-enriched breast cancers.
Collapse
Affiliation(s)
| | | | - Tadas Rimkus
- Department of Cancer Biology, Winston-Salem, NC, USA
| | | | | | | | - Guangxu Jin
- Department of Radiology, Winston-Salem, NC, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Winston-Salem, NC, USA
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Winston-Salem, NC, USA.
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Luo Y, Gao S, Hao Z, Yang Y, Xie S, Li D, Liu M, Zhou J. Apoptosis signal-regulating kinase 1 exhibits oncogenic activity in pancreatic cancer. Oncotarget 2018; 7:75155-75164. [PMID: 27655673 PMCID: PMC5342730 DOI: 10.18632/oncotarget.12090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer has an extremely grim prognosis, with an overall 5-year survival rate less than 5%, as a result of its rapid metastasis and late diagnosis. To combat this disease, it is crucial to better understand the molecular mechanisms that contribute to its pathogenesis. Herein, we report that apoptosis signal-regulating kinase 1 (ASK1) is overexpressed in pancreatic cancer tissues and that its expression correlates with the histological grade of pancreatic cancer. The expression of ASK1 is also elevated in pancreatic cancer cell lines at both protein and mRNA levels. In addition, ASK1 promotes the proliferation and stimulates the tumorigenic capacity of pancreatic cancer cells. These functions of ASK1 are abrogated by pharmacological inhibition of its kinase activity or by introduction of a kinase-dead mutation, suggesting that the kinase activity of ASK1 is required for its role in pancreatic cancer. However, the alteration of ASK1 expression or activity does not significantly affect the migration or invasion of pancreatic cancer cells. Collectively, these findings reveal a critical role for ASK1 in the development of pancreatic cancer and have important implications for the diagnosis and treatment of this malignancy.
Collapse
Affiliation(s)
- Youguang Luo
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Molecular and Nano Probes of the Ministry of Education, Shandong Normal University, Jinan 250014, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siqi Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziwei Hao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Molecular and Nano Probes of the Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Molecular and Nano Probes of the Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Molecular and Nano Probes of the Ministry of Education, Shandong Normal University, Jinan 250014, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Yang Y, Mu T, Li T, Xie S, Zhou J, Liu M, Li D. Effects of FSTL1 on the proliferation and motility of breast cancer cells and vascular endothelial cells. Thorac Cancer 2017; 8:606-612. [PMID: 28857515 PMCID: PMC5668505 DOI: 10.1111/1759-7714.12491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
Background Treatments that prevent the motility of breast cancer cells and inhibit formation of new capillary vessels are urgently needed. FSTL1 is a secreted protein that has been implicated in maintaining the normal physiological function of the cardiovascular system, in addition to a variety of other biological functions. We investigated the role of FSTL1 in the proliferation and migration of breast cancer and vascular endothelial cells. Methods Human umbilical vein endothelial cells and human breast cancer BT‐549 cells were used to test the effects of FSTL1 and the N‐terminal domain of FSTL1. Immunofluorescence microscopy and 3‐(4, 5‐dimethylthiazolyl‐2)‐2,5‐diphenyltetrazolium bromide, transwell invasion, and wound healing assays were conducted. Results Different doses of the N‐terminal fragment of FSTL1 (FSTL‐N) have variable effects on the migration of these cells. However, FSTL1 does not significantly affect tube formation in vitro from vascular endothelial cells. FSTL1‐FL and FSTL1‐N have modest effects on the invasion of breast cancer and vascular endothelial cells. Interestingly, FSTL1‐FL, but not FSTL‐N, modulates vascular endothelial cell polarization. Conclusion FSTL1 modestly affects the proliferation of breast cancer cells and vascular endothelial cells. Our findings improve our understanding of the functions of FSTL1 in breast cancer development and angiogenesis.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tianhao Mu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Te Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Songbo Xie
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Abstract
Angiogenesis is the process of developing new blood vessels from the original vascular
network; it is necessary for normal physiological processes, such as embryonic development
and wound healing. Angiogenesis is also involved in pathological events, including
myocardial ischemia and tumor growth. To investigate the molecular mechanisms of this
important process, a variety of methods and models are employed. These strategies can also
be used to provide insight into the etiology of angiogenesis-related diseases, thereby
contributing to the development of new diagnostics and treatments. Commonly used animal
models include the chorioallantoic membrane and yolk sac membrane of chick embryos, the
mouse retina and aortic ring, and angiogenesis reactors implanted into mice. These animal
models have been instrumental in the study of the angiogenic process. For example, the
chorioallantoic membrane undergoes robust angiogenesis during the development of chick
embryos, and, because its surface is easily accessible, this membrane provides a
convenient model for experimentation. Here, we discuss the methods that employ animal
models for the imaging and quantification of angiogenesis. In addition, we propose
potential novel directions for future investigations in this area.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong 250014, P.R. China
| | - Songbo Xie
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong 250014, P.R. China
| | - Jun Zhou
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
8
|
Shi X, Sun X. Regulation of paclitaxel activity by microtubule-associated proteins in cancer chemotherapy. Cancer Chemother Pharmacol 2017; 80:909-917. [PMID: 28741098 DOI: 10.1007/s00280-017-3398-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/17/2017] [Indexed: 11/30/2022]
Abstract
Microtubules, highly dynamic components of the cytoskeleton, participate in diverse cellular activities such as mitosis, cell migration, and intracellular trafficking. Dysregulation of microtubule dynamics contributes to the development of serious diseases, including cancer. The dynamic properties and functions of microtubule network are regulated by microtubule-associated proteins. Paclitaxel, an anti-microtubule agent of the taxane family, has shown a success in clinical treatment of many cancer patients. However, the variable response activity of patients and acquired resistance to paclitaxel limit the clinical use of the drug. Accumulating studies show that microtubule-associated proteins can regulate paclitaxel sensitivity in a wide range of cancer types. In this review, we will describe the roles of various microtubule-associated proteins in the regulation of paclitaxel in cancers. Particularly, we will focus on the modulation of centrosomal proteins in paclitaxel resistance. Improved understandings of how these proteins act might predict treatment responses and provide insights into more rational chemotherapeutic regimens in clinical practice.
Collapse
Affiliation(s)
- Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.
| | - Xiaoou Sun
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Fukuda K, Miura Y, Maeda T, Hayashi S, Kuroda R. Decoy receptor 3 down-regulates centrosomal protein 70 kDa specifically in rheumatoid synovial fibroblasts. Mod Rheumatol 2017; 28:287-292. [PMID: 28696795 DOI: 10.1080/14397595.2017.1341593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Decoy receptor 3 (DcR3) competitively binds to Fas ligand, lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpes virus entry mediator on T cells (LIGHT) and TNF-like ligand 1A (TL1A), thereby preventing their effects. Using a microarray assay, we previously newly identified centrosomal protein 70 kDa (CEP70) as one of the genes whose expression in fibroblast-like synoviocytes from patients with rheumatoid arthritis (RA-FLS) is reduced by DcR3. Here, we investigated the significance of DcR3 regulation of CEP70 for RA-FLS. METHODS Synovial samples were obtained from RA patients who had never been treated with biologics and from osteoarthritis (OA) patients. CEP70 mRNA expression was quantified using RT-qPCR analysis. CEP70 protein expression was assessed using immunohistochemical and western blot analyses. RESULTS CEP70 was expressed predominantly in the superficial lining layer in RA synovial tissue. CEP70 expression was dose-dependently downregulated by DcR3-Fc in RA-FLS but was not downregulated in OA-FLS. TL1A antibody prevented the DcR3-Fc inhibitory effects on CEP70 expression in RA-FLS. CONCLUSIONS These results indicated that DcR3 reduces CEP70 expression in RA-FLS by binding to membrane-bound TL1A and may suppress RA-FLS proliferation. The reduction in CEP70 expression by DcR3/TL1A signaling may control the hyperplasia of RA synovium.
Collapse
Affiliation(s)
- Koji Fukuda
- a Department of Orthopaedic Surgery , Kobe University Graduate School of Medicine , Kobe , Japan.,b Department of Orthopaedic Surgery , Rokko Island Kohnan Hospital , Kobe , Japan
| | - Yasushi Miura
- a Department of Orthopaedic Surgery , Kobe University Graduate School of Medicine , Kobe , Japan.,c Division of Orthopedic Science, Department of Rehabilitation Science , Kobe University Graduate School of Health Sciences , Kobe , Japan
| | - Toshihisa Maeda
- a Department of Orthopaedic Surgery , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Shinya Hayashi
- a Department of Orthopaedic Surgery , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Ryosuke Kuroda
- a Department of Orthopaedic Surgery , Kobe University Graduate School of Medicine , Kobe , Japan
| |
Collapse
|
10
|
Shi X, Wang Y, Sun X, Wang C, Jiang P, Zhang Y, Huang Q, Liu X, Li D, Zhou J, Liu M. Centrosomal Protein 70 Is a Mediator of Paclitaxel Sensitivity. Int J Mol Sci 2017. [PMID: 28632150 PMCID: PMC5486089 DOI: 10.3390/ijms18061267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Centrosome aberrations have been implicated in the development and progression of breast cancer. Our previous worked show that centrosomal protein 70 (Cep70) regulates breast cancer growth and metastasis. However, it remains elusive whether Cep70 is implicated in the sensitivity of the anti-microtubule drug paclitaxel in breast cancer. Here we provide evidence that Cep70 is a mediator of paclitaxel sensitivity in breast cancer. Cell proliferation assays show that Cep70 expression correlates with paclitaxel sensitivity in breast cancer cell lines. In addition, paclitaxel sensitivity varies when altering Cep70 expression level. Mechanistic studies reveal that Cep70 interacts with tubulin, and promotes the ability of paclitaxel to stimulate microtubule assembly. These data demonstrate that Cep70 mediates paclitaxel sensitivity in breast cancer.
Collapse
Affiliation(s)
- Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | - Yujue Wang
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | - Xiaoou Sun
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Chan Wang
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | - Peng Jiang
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | - Yu Zhang
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | - Qinghai Huang
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
11
|
Shakhov AS, Alieva IB. The Centrosome as the Main Integrator of Endothelial Cell Functional Activity. BIOCHEMISTRY (MOSCOW) 2017; 82:663-677. [PMID: 28601076 DOI: 10.1134/s0006297917060037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The centrosome is an intracellular structure of the animal cell responsible for organization of cytoplasmic microtubules. According to modern concepts, the centrosome is a very important integral element of the living cell whose functions are not limited to its ability to polymerize microtubules. The centrosome localization in the geometric center of the interphase cell, the high concentration of various regulatory proteins in this area, the centrosome-organized radial system of microtubules for intracellular transport by motor proteins, the centrosome involvement in the perception of external signals and their transmission - all these features make this cellular structure a unique regulation and distribution center managing dynamic morphology of the animal cell. In conjunction with the tissue-specific features of the centrosome structure, this suggests the direct involvement of the centrosome in execution of cell functions. This review discusses the involvement of the centrosome in the vital activity of endothelial cells, as well as its possible participation in the implementation of barrier function, the major function of endothelium.
Collapse
Affiliation(s)
- A S Shakhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | |
Collapse
|
12
|
Lazo PA. Is Centrosomal Protein 70, a Centrosomal Protein with New Roles in Breast Cancer Dissemination and Metastasis, a Facilitator of Epithelial-Mesenchymal Transition? THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:494-497. [PMID: 28109768 DOI: 10.1016/j.ajpath.2016.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
This commentary highlights the article by Shi et al that identified centrosomal protein 70 as a key mediator of breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca; and the Salamanca Institute of Biomedical Research, Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
13
|
Discovery of Centrosomal Protein 70 as an Important Player in the Development and Progression of Breast Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:679-688. [PMID: 28063737 DOI: 10.1016/j.ajpath.2016.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022]
Abstract
Centrosome abnormalities have been implicated in the development and progression of breast cancer. However, the molecular players involved in the above processes remain largely uncharacterized. Herein, we identify centrosomal protein 70 (Cep70) as an important factor that mediates breast cancer growth and metastasis. Cep70 is up-regulated in breast cancer tissues and cell lines, and its expression is closely correlated with several clinicopathologic variables associated with breast cancer progression. Mechanistic studies reveal that the up-regulation of Cep70 in breast cancer occurs at the mRNA level and is independent of gene amplification. Cep70 promotes breast cancer cell proliferation and colony formation in vitro and increases tumor growth in mice. In addition, Cep70 stimulates breast cancer cell migration and invasion in vitro. Bioluminescence imaging analysis further shows that Cep70 enhances breast cancer lung metastasis in mice. Together, these results demonstrate a critical role for Cep70 in the development and progression of breast cancer and have important implications in the diagnosis and therapy of this malignancy.
Collapse
|
14
|
Ricolo D, Deligiannaki M, Casanova J, Araújo S. Centrosome Amplification Increases Single-Cell Branching in Post-mitotic Cells. Curr Biol 2016; 26:2805-2813. [DOI: 10.1016/j.cub.2016.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/22/2016] [Accepted: 08/03/2016] [Indexed: 01/02/2023]
|
15
|
Cep70 overexpression stimulates pancreatic cancer by inducing centrosome abnormality and microtubule disorganization. Sci Rep 2016; 6:21263. [PMID: 26893288 PMCID: PMC4759539 DOI: 10.1038/srep21263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/20/2016] [Indexed: 12/23/2022] Open
Abstract
The centrosome is crucial for mitotic fidelity, and centrosome aberrations are associated with genomic instability and tumorigenesis. The centrosomal protein Cep70 has been reported to play a role in various cellular activities. However, whether this protein is involved in pathological processes remains unknown. In this study, we demonstrate that Cep70 is highly expressed in pancreatic cancer tissues. Cep70 expression correlates with clinicopathological parameters of pancreatic cancer, including histological grade, pathological tumor node metastasis stage, lymph node metastasis, and carbohydrate antigen 19-9 level. Depletion of Cep70 significantly suppresses pancreatic cancer cell proliferation and promotes apoptotic cell death, and exogenous expression of Cep70 can rescue the above effects. Cep70 also stimulates colony formation in soft agar and enhances tumor growth in mice. Our data further show that ectopic expression of Cep70 in pancreatic cancer cells results in the mislocalization of centrosomal proteins, including γ-tubulin and pericentrin, and the formation of intracellular aggregates. In addition, Cep70 overexpression leads to microtubule disorganization and the formation of multipolar spindles during mitosis. Our study thus unravels a critical role for Cep70 in pancreatic cancer and suggests Cep70 as a potential biomarker and therapeutic target for this deadly disease.
Collapse
|
16
|
KLF5 promotes breast cancer proliferation, migration and invasion in part by upregulating the transcription of TNFAIP2. Oncogene 2015; 35:2040-51. [PMID: 26189798 DOI: 10.1038/onc.2015.263] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 05/17/2015] [Accepted: 06/05/2015] [Indexed: 12/31/2022]
Abstract
The Kruppel-like factor 5 (KLF5) transcription factor is highly expressed in high-grade and basal-like breast cancers. However, the mechanism by which KLF5 promotes cell migration and invasion is still not completely understood. In this study, we demonstrate that TNFAIP2, a tumor necrosis factor-α (TNFα)-induced gene, is a direct KLF5 target gene. The expression of TNFAIP2 is highly correlated with the expression of KLF5 in breast cancers. The manipulation of KLF5 expression positively alters TNFAIP2 expression levels. KLF5 directly binds to the TNFAIP2 gene promoter and activates its transcription. Functionally, KLF5 promotes cancer cell proliferation, migration and invasion in part through TNFAIP2. TNFAIP2 interacts with the two small GTPases Rac1 and Cdc42, thereby increasing their activities to change actin cytoskeleton and cell morphology. These findings collectively suggest that TNFAIP2 is a direct KLF5 target gene, and both KLF5 and TNFAIP2 promote breast cancer cell proliferation, migration and invasion through Rac1 and Cdc42.
Collapse
|
17
|
Shi X, Yao Y, Wang Y, Zhang Y, Huang Q, Zhou J, Liu M, Li D. Cep70 regulates microtubule stability by interacting with HDAC6. FEBS Lett 2015; 589:1771-7. [PMID: 26112604 DOI: 10.1016/j.febslet.2015.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/25/2015] [Accepted: 06/04/2015] [Indexed: 02/02/2023]
Abstract
Microtubules, highly dynamic components of the cytoskeleton, are involved in mitosis, cell migration and intracellular trafficking. Our previous work has shown that the centrosomal protein Cep70 regulates microtubule organization and mitotic spindle orientation in mammalian cells. However, it remains elusive whether Cep70 is implicated in microtubule stability. Here we demonstrate that Cep70 enhances microtubule resistance to cold or nocodazole treatment. Our data further show that Cep70 promotes microtubule stability by regulating tubulin acetylation, and plays an important role in stabilizing microtubules. Mechanistic studies reveal that Cep70 interacts and colocalizes with histone deacetylase 6 (HDAC6) in the cytoplasm. These findings suggest that Cep70 promotes microtubule stability by interaction with HDAC6 and regulation of tubulin acetylation.
Collapse
Affiliation(s)
- Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | - Yanjun Yao
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Yujue Wang
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Yu Zhang
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Qinghai Huang
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Jun Zhou
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Min Liu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
18
|
He X, Liu Z, He Q, Qin J, Liu N, Zhang L, Li D, Zhou J, Shui W, Liu M. Identification of novel microtubule-binding proteins by taxol-mediated microtubule stabilization and mass spectrometry analysis. Thorac Cancer 2015; 6:649-54. [PMID: 26445615 PMCID: PMC4567012 DOI: 10.1111/1759-7714.12284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022] Open
Abstract
Microtubule-binding proteins (MBPs) are structurally and functionally diverse regulators of microtubule-mediated cellular processes. Alteration of MBPs has been implicated in the pathogenesis of human diseases, including cancer. MBPs can stabilize or destabilize microtubules or move along microtubules to transport various cargoes. In addition, MBPs can control microtubule dynamics through direct interaction with microtubules or coordination with other proteins. To better understand microtubule structure and function, it is necessary to identify additional MBPs. In this study, we isolated microtubules and MBPs from mammalian cells by a taxol-based method and then profiled a panel of MBPs by mass spectrometry. We discovered a number of previously uncharacterized MBPs, including several membrane-associated proteins and proteins involved in post-translational modifications, in addition to several structural components. These results support the notion that microtubules have a wide range of functions and may undergo more exquisite regulation than previously recognized.
Collapse
Affiliation(s)
- Xianfei He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Zhu Liu
- Department of Biochemistry, School of Basic Medical Sciences, Tianjin Medical University Tianjin, China
| | - Qianqian He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Juan Qin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Ningning Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Linlin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Wenqing Shui
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China ; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin, China
| | - Min Liu
- Department of Biochemistry, School of Basic Medical Sciences, Tianjin Medical University Tianjin, China
| |
Collapse
|
19
|
Ci X, Xing C, Zhang B, Zhang Z, Ni JJ, Zhou W, Dong JT. KLF5 inhibits angiogenesis in PTEN-deficient prostate cancer by attenuating AKT activation and subsequent HIF1α accumulation. Mol Cancer 2015; 14:91. [PMID: 25896712 PMCID: PMC4417294 DOI: 10.1186/s12943-015-0365-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/10/2015] [Indexed: 12/20/2022] Open
Abstract
Background KLF5 is a basic transcriptional factor that regulates multiple physiopathological processes. Our recent study showed that deletion of Klf5 in mouse prostate promotes tumorigenesis initiated by the deletion of Pten. While molecular characterization of Klf5-null tumors suggested that angiogenesis was partially responsible for tumor promotion, the precise function and mechanism of KLF5 deletion in prostate tumor angiogenesis remain unclear. Results Applying histological staining to Pten-null mouse prostates, we observed that deletion of Klf5 significantly increased the number of microvessels, accompanied by the upregulation of multiple angiogenesis-related genes based on microarray analysis with MetaCore software. In human umbilical vein endothelial cells (HuVECs), tube formation and migration, both of which are indicators of angiogenic activities, were decreased by conditioned media from PC-3 and DU 145 human prostate cancer cells with KLF5 overexpression, but increased by media from cells with KLF5 knockdown. HIF1α, a key angiogenesis inducer, was upregulated by KLF5 loss at the protein but not the mRNA level in both mouse tissues and human cell lines, as determined by immunohistochemical staining, real-time RT-PCR and Western blotting. Consistently, KLF5 loss also upregulated VEGF and PDGF, two pro-angiogenic mediators of HIF1α function, as analyzed by immunohistochemical staining in mouse tissues and ELISA in conditioned media. Mechanistically, AKT activity, which caused the accumulation of HIF1α, was increased by KLF5 knockout or knockdown but decreased by KLF5 overexpression. PI3K/AKT inhibitors consistently abolished the effects of KLF5 knockdown on angiogenic activity, HIF1α accumulation, and VEGF and PDGF expression. Conclusion KLF5 loss enhances tumor angiogenesis by attenuating PI3K/AKT signaling and subsequent accumulation of HIF1α in PTEN deficient prostate tumors. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0365-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinpei Ci
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. .,Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Changsheng Xing
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Baotong Zhang
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Zhiqian Zhang
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Jenny Jianping Ni
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. .,Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
Cohen H, Ben-Hamo R, Gidoni M, Yitzhaki I, Kozol R, Zilberberg A, Efroni S. Shift in GATA3 functions, and GATA3 mutations, control progression and clinical presentation in breast cancer. Breast Cancer Res 2014; 16:464. [PMID: 25410484 PMCID: PMC4303202 DOI: 10.1186/s13058-014-0464-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 10/14/2014] [Indexed: 02/03/2023] Open
Abstract
Introduction GATA binding protein 3 (GATA3) is a regulator of mammary luminal cell differentiation, and an estrogen receptor (ER) associated marker in breast cancer. Tumor suppressor functions of GATA3 have been demonstrated primarily in basal-like breast cancers. Here, we focused on its function in luminal breast cancer, where GATA3 is frequently mutated, and its levels are significantly elevated. Methods GATA3 target genes were identified in normal- and luminal cancer- mammary cells by ChIP-seq, followed by examination of the effects of GATA3 expressions and mutations on tumorigenesis-associated genes and processes. Additionally, mutations and expression data of luminal breast cancer patients from The Cancer Genome Atlas were analyzed to characterize genetic signatures associated with GATA3 mutations. Results We show that some GATA3 effects shift from tumor suppressing to tumor promoting during tumorigenesis, with deregulation of three genes, BCL2, DACH1, THSD4, representing major GATA3-controlled processes in cancer progression. In addition, we identify an altered activity of mutant GATA3, and distinct associated genetic signatures. These signatures depend on the functional domain mutated; and, for a specific subgroup, are shared with basal-like breast cancer patients, who are a clinical group with regard to considerations of mode of treatment. Conclusions The GATA3 dependent mechanisms may call for special considerations for proper prognosis and treatment of patients. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0464-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helit Cohen
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Rotem Ben-Hamo
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Moriah Gidoni
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Ilana Yitzhaki
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Renana Kozol
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Alona Zilberberg
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, 52900, Israel.
| |
Collapse
|
21
|
Yang Y, Ran J, Liu M, Li D, Li Y, Shi X, Meng D, Pan J, Ou G, Aneja R, Sun SC, Zhou J. CYLD mediates ciliogenesis in multiple organs by deubiquitinating Cep70 and inactivating HDAC6. Cell Res 2014; 24:1342-53. [PMID: 25342559 DOI: 10.1038/cr.2014.136] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/14/2014] [Accepted: 09/22/2014] [Indexed: 11/09/2022] Open
Abstract
Cilia are hair-like organelles extending from the cell surface with important sensory and motility functions. Ciliary defects can result in a wide range of human diseases known as ciliopathies. However, the molecular mechanisms controlling ciliogenesis remain poorly defined. Here we show that cylindromatosis (CYLD), a tumor suppressor protein harboring deubiquitinase activity, plays a critical role in the assembly of both primary and motile cilia in multiple organs. CYLD knockout mice exhibit polydactyly and various ciliary defects, such as failure in basal body anchorage and disorganization of basal bodies and axenomes. The ciliary function of CYLD is partially attributed to its deconjugation of the polyubiquitin chain from centrosomal protein of 70 kDa (Cep70), a requirement for Cep70 to interact with γ-tubulin and localize at the centrosome. In addition, CYLD-mediated inhibition of histone deacetylase 6 (HDAC6), which promotes tubulin acetylation, constitutes another mechanism for the ciliary function of CYLD. Small-molecule inhibitors of HDAC6 could partially rescue the ciliary defects in CYLD knockout mice. These findings highlight the importance of protein ubiquitination in the modulation of ciliogenesis, identify CYLD as a crucial regulator of this process, and suggest the involvement of CYLD deficiency in ciliopathies.
Collapse
Affiliation(s)
- Yunfan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Ran
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Min Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xingjuan Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Meng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangshuo Ou
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Tala, Xie S, Sun X, Sun X, Ran J, Zhang L, Li D, Liu M, Bao G, Zhou J. Microtubule-associated protein Mdp3 promotes breast cancer growth and metastasis. Theranostics 2014; 4:1052-61. [PMID: 25161703 PMCID: PMC4143944 DOI: 10.7150/thno.9727] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most prevalent cancer in women worldwide with a high mortality rate, and the identification of new biomarkers and targets for this disease is greatly needed. Here we present evidence that microtubule-associated protein (MAP) 7 domain-containing protein 3 (Mdp3) is highly expressed in clinical samples and cell lines of breast cancer. The expression of Mdp3 correlates with clinicopathological parameters indicating breast cancer malignancy. In addition, Mdp3 promotes breast cancer cell proliferation and motility in vitro and stimulates breast cancer growth and metastasis in mice. Mechanistic studies reveal that γ-tubulin interacts with and recruits Mdp3 to the centrosome and that the centrosomal localization of Mdp3 is required for its activity to promote breast cancer cell proliferation and motility. These findings suggest a critical role for Mdp3 in the growth and metastasis of breast cancer and may have important implications for the management of this disease.
Collapse
|
23
|
Xie S, Chen M, Yan B, He X, Chen X, Li D. Identification of a role for the PI3K/AKT/mTOR signaling pathway in innate immune cells. PLoS One 2014; 9:e94496. [PMID: 24718556 PMCID: PMC3981814 DOI: 10.1371/journal.pone.0094496] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/16/2014] [Indexed: 01/08/2023] Open
Abstract
The innate immune system is the first line of host defense against infection and involves several different cell types. Here we investigated the role of the phosphatidylinositol 3 kinase (PI3K) signaling pathway in innate immune cells. By blocking this pathway with pharmacological inhibitors, we found that the production of proinflammatory cytokines was drastically suppressed in monocytes and macrophages. Further study revealed that the suppression was mainly related to the mammalian target of rapamycin (mTOR)/p70S6K signaling. In addition, we found that the PI3K pathway was involved in macrophage motility and neovascularization. Our data provide a rationale that inhibition of the PI3K signaling pathway could be an attractive approach for the management of inflammatory disorders.
Collapse
Affiliation(s)
- Songbo Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Miao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xianfei He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiwen Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail: (DL); (XC)
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail: (DL); (XC)
| |
Collapse
|
24
|
Li D, Sun X, Zhang L, Yan B, Xie S, Liu R, Liu M, Zhou J. Histone deacetylase 6 and cytoplasmic linker protein 170 function together to regulate the motility of pancreatic cancer cells. Protein Cell 2014; 5:214-23. [PMID: 24474193 PMCID: PMC3967059 DOI: 10.1007/s13238-013-0010-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/05/2013] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer is a devastating disease with the worst prognosis among all the major human malignancies. The propensity to rapidly metastasize contributes significantly to the highly aggressive feature of pancreatic cancer. The molecular mechanisms underlying this remain elusive, and proteins involved in the control of pancreatic cancer cell motility are not fully characterized. In this study, we find that histone deacetylase 6 (HDAC6), a member of the class II HDAC family, is highly expressed at both protein and mRNA levels in human pancreatic cancer tissues. HDAC6 does not obviously affect pancreatic cancer cell proliferation or cell cycle progression. Instead, it significantly promotes the motility of pancreatic cancer cells. Further studies reveal that HDAC6 interacts with cytoplasmic linker protein 170 (CLIP-170) and that these two proteins function together to stimulate the migration of pancreatic cancer cells. These findings provide mechanistic insight into the progression of pancreatic cancer and suggest HDAC6 as a potential target for the management of this malignancy.
Collapse
Affiliation(s)
- Dengwen Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Xie S, Dong B, Sun X, Tala, He X, Zhou J, Liu M, Li D. Identification of a cytoplasmic linker protein as a potential target for neovascularization. Atherosclerosis 2014; 233:403-409. [PMID: 24530770 DOI: 10.1016/j.atherosclerosis.2014.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/02/2013] [Accepted: 01/02/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Atherosclerosis and other cardiovascular diseases are serious threats to human health and become the leading cause of death in the world. Emerging evidence reveals that inhibition of plaque neovascularization could be an effective approach for the treatment of atherosclerosis. This study was conducted to identify cytoplasmic linker protein 170 as a potential target for cardiovascular diseases through modulation of neovascularization. METHODS AND RESULTS Immunofluorescence microscopy revealed that cytoplasmic linker protein 170 was ubiquitously expressed in mouse kidney, liver, lung, normal non-atherosclerotic aorta, and atherosclerotic aorta and was partly localized in the vascular endothelium. siRNAs were introduced to human umbilical vein endothelial cells (HUVECs) and the effect of knockdown was confirmed by Western blotting. Vascularization study was assessed with matrigel-based capillary assembly, branching, and in vivo matrigel plug assays. The data showed that siRNA-mediated knockdown of the cytoplasmic linker protein remarkably compromised the assembly and branching of capillary-like blood vessels and neovascularization in vivo. Cell motility and polarity properties were then analyzed using scratch wound repair, boyden chamber, and immunofluorescence assays, and the results revealed that the cytoplasmic linker protein was critical for the motility abilities of HUVECs through its actions on cell polarity. CONCLUSION Both in vitro and in vivo studies demonstrate the significance of the cytoplasmic linker protein for blood vessel formation. Mechanistic investigation reveals that its effect on neovascularization is orchestrated through its regulation of vascular endothelial cell polarity and motility. These findings provide the basis for exploring effective approaches to regulate neovascularization in cardiovascular diseases.
Collapse
Affiliation(s)
- Songbo Xie
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Bin Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaodong Sun
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Tala
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xianfei He
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jun Zhou
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Min Liu
- Department of Biochemistry, Basic Medical College, Tianjin Medical University, Tianjin 300070, China.
| | - Dengwen Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
26
|
Li D, Sun X, Zhang L, Yan B, Xie S, Liu R, Liu M, Zhou J. Histone deacetylase 6 and cytoplasmic linker protein 170 function together to regulate the motility of pancreatic cancer cells. Protein Cell 2013. [PMID: 24264142 DOI: 10.1007/s13238-013-3098-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/06/2013] [Indexed: 11/24/2022] Open
Abstract
Pancreatic cancer is a devastating disease with the worst prognosis among all the major human malignancies. The propensity to rapidly metastasize contributes significantly to the highly aggressive feature of pancreatic cancer. The molecular mechanisms underlying this remain elusive, and proteins involved in the control of pancreatic cancer cell motility are not fully characterized. In this study, we find that histone deacetylase 6 (HDAC6), a member of the class II HDAC family, is highly expressed at both protein and mRNA levels in human pancreatic cancer tissues. HDAC6 does not obviously affect pancreatic cancer cell proliferation or cell cycle progression. Instead, it significantly promotes the motility of pancreatic cancer cells. Further studies reveal that HDAC6 interacts with cytoplasmic linker protein 170 (CLIP-170) and that these two proteins function together to stimulate the migration of pancreatic cancer cells. These findings provide mechanistic insight into the progression of pancreatic cancer and suggest HDAC6 as a potential target for the management of this malignancy.
Collapse
Affiliation(s)
- Dengwen Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang J, Zou F, Tang J, Zhang Q, Gong Y, Wang Q, Shen Y, Xiong L, Breyer RM, Lazarus M, Funk CD, Yu Y. Cyclooxygenase-2-derived prostaglandin E₂ promotes injury-induced vascular neointimal hyperplasia through the E-prostanoid 3 receptor. Circ Res 2013; 113:104-14. [PMID: 23595951 DOI: 10.1161/circresaha.113.301033] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Vascular smooth muscle cell (VSMC) migration and proliferation are the hallmarks of restenosis pathogenesis after angioplasty. Cyclooxygenase (COX)-derived prostaglandin (PG) E₂ is implicated in the vascular remodeling response to injury. However, its precise molecular role remains unknown. OBJECTIVE This study investigates the impact of COX-2-derived PGE₂ on neointima formation after injury. METHODS AND RESULTS Vascular remodeling was induced by wire injury in femoral arteries of mice. Both neointima formation and the restenosis ratio were diminished in COX-2 knockout mice as compared with controls, whereas these parameters were enhanced in COX-1>COX-2 mice, in which COX-1 is governed by COX-2 regulatory elements. PG profile analysis revealed that the reduced PGE₂ by COX-2 deficiency, but not PGI2, could be rescued by COX-1 replacement, indicating COX-2-derived PGE₂ enhanced neointima formation. Through multiple approaches, the EP3 receptor was identified to mediate the VSMC migration response to various stimuli. Disruption of EP3 impaired VSMC polarity for directional migration by decreasing small GTPase activity and restricted vascular neointimal hyperplasia, whereas overexpression of EP3α and EP3β aggravated neointima formation. Inhibition or deletion of EP3α/β, a Gαi protein-coupled receptor, activated the cAMP/protein kinase A pathway and decreased activation of RhoA in VSMCs. PGE₂ could stimulate phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase3β signaling in VSMCs through Gβγ subunits on EP3α/β activation. Ablation of EP3 suppressed phosphatidylinositol 3-kinase signaling and reduced GTPase activity in VSMCs and altered cell polarity and directional migration. CONCLUSIONS COX-2-derived PGE₂ facilitated the neointimal hyperplasia response to injury through EP3α/β-mediated cAMP/protein kinase A and phosphatidylinositol 3-kinase pathways, indicating EP3 inhibition may be a promising therapeutic strategy for percutaneous transluminal coronary angioplasty.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Regulation of tumor angiogenesis by the microtubule-binding protein CLIP-170. Protein Cell 2013; 4:266-76. [PMID: 23549612 DOI: 10.1007/s13238-013-3007-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 03/01/2013] [Indexed: 01/28/2023] Open
Abstract
Angiogenesis, the expansion of preexisting blood vessels, is a complex process required for tumor growth and metastasis. Although current antiangiogenic strategies have shown promising results in several cancer types, identification of additional antiangiogenic targets is required to improve the therapeutic response. Herein, we show that the microtubule-binding protein CLIP-170 (cytoplasmic linker protein of 170 kDa) is highly expressed in breast tumor samples and correlates positively with blood vessel density. Depletion of CLIP-170 significantly impaired vascular endothelial tube formation and sprouting in vitro and inhibited breast tumor growth in mice by decreasing tumor vascularization. Our data further show that CLIP-170 is important for the migration but not the proliferation of vascular endothelial cells. In addition, CLIP-170 promotes the polarization of endothelial cells in response to the angiogenic stimulus. These findings thus demonstrate a critical role for CLIP-170 in tumor angiogenesis and suggest its potential as a novel antiangiogenic target.
Collapse
|
29
|
Sun X, Liu M, Hao J, Li D, Luo Y, Wang X, Yang Y, Li F, Shui W, Chen Q, Zhou J. Parkin deficiency contributes to pancreatic tumorigenesis by inducing spindle multipolarity and misorientation. Cell Cycle 2013; 12:1133-41. [PMID: 23470638 DOI: 10.4161/cc.24215] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Parkin, an E3 ubiquitin ligase well known for its role in the pathogenesis of juvenile Parkinson disease, has been considered as a candidate tumor suppressor in certain types of cancer. It remains unknown whether parkin is involved in the development of pancreatic cancer, the fourth leading cause of cancer-related deaths worldwide. Herein, we demonstrate the downregulation and copy number loss of the parkin gene in human pancreatic cancer specimens. The expression of parkin negatively correlates with clinicopathological parameters indicating the malignancy of pancreatic cancer. In addition, knockdown of parkin expression promotes the proliferation and tumorigenic properties of pancreatic cancer cells both in vitro and in mice. We further find that parkin deficiency increases the proportion of cells with spindle multipolarity and multinucleation. Parkin-depleted cells also show a significant increase in spindle misorientation. These findings indicate crucial involvement of parkin deficiency in the pathogenesis of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaodong Sun
- Key Laboratory of Protein Science and Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
CYLD regulates RhoA activity by modulating LARG ubiquitination. PLoS One 2013; 8:e55833. [PMID: 23405219 PMCID: PMC3566121 DOI: 10.1371/journal.pone.0055833] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/02/2013] [Indexed: 01/24/2023] Open
Abstract
Rho family guanosine triphosphatases (GTPases), such as RhoA, Cdc42, and Rac1, play a fundamental role in various cellular processes. The activation of Rho proteins is catalyzed by guanine nucleotide-exchange factors (GEFs), which promote the exchange of GDP for GTP. The precise mechanisms regulating the activation of Rho proteins are not fully understood. Herein, we demonstrate that RhoA activity is regulated by cylindromatosis (CYLD), a deubiquitinase harboring multiple functions. In addition, we find that RhoA-mediated cytoskeletal rearrangement, chromosome separation, and cell polarization are altered in CYLD-depleted cells. Mechanistically, CYLD does not interact with RhoA; instead, it interacts with and deubiquitinates leukemia-associated RhoGEF (LARG). Our data further show that CYLD-mediated deubiquitination of LARG enhances its ability to stimulate the GDP/GTP exchange on RhoA. These data thus identify LARG as a new substrate of CYLD and provide novel insights into the regulation of RhoA activation. Our results also suggest that the LARG-RhoA signaling pathway may play a role in diverse CYLD-mediated cellular events.
Collapse
|