1
|
Ladurner M, Lindner AK, Rehder P, Tulchiner G. The influence of sex hormones on renal cell carcinoma. Ther Adv Med Oncol 2024; 16:17588359241269664. [PMID: 39175990 PMCID: PMC11339752 DOI: 10.1177/17588359241269664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/25/2024] [Indexed: 08/24/2024] Open
Abstract
Kidney cancer is a common malignancy that constitutes around 5% of all cancer cases. Males are twice as likely to acquire renal cell carcinoma (RCC) compared to females and experience a higher rate of mortality. These disparities indicate that sex hormone (SH)-dependent pathways may have an impact on the aetiology and pathophysiology of RCC. Examination of SH involvement in conventional signalling pathways, as well as genetics and genomics, especially the involvement of ribonucleic acid, reveal further insights into sex-related differences. An understanding of SHs and their influence on kidney cancer is essential to offer patients individualized medicine that would better meet their needs in terms of prevention, diagnosis and treatment. This review presents the understanding of sex-related differences in the clinical manifestation of kidney cancer patients and the underlying biological processes.
Collapse
Affiliation(s)
- Michael Ladurner
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Peter Rehder
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gennadi Tulchiner
- Department of Urology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| |
Collapse
|
2
|
Hao W, Zhang H, Hong P, Zhang X, Zhao X, Ma L, Qiu X, Ping H, Lu D, Yin Y. Critical role of VHL/BICD2/STAT1 axis in crystal-associated kidney disease. Cell Death Dis 2023; 14:680. [PMID: 37833251 PMCID: PMC10575931 DOI: 10.1038/s41419-023-06185-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Nephrolithiasis is highly prevalent and associated with the increased risk of kidney cancer. The tumor suppressor von Hippel-Lindau (VHL) is critical for renal cancer development, however, its role in kidney stone disease has not been fully elucidated until now. Here we reported VHL expression was upregulated in renal epithelial cells upon exposure to crystal. Utilizing Vhl+/mu mouse model, depletion of VHL exacerbated kidney inflammatory injury during nephrolithiasis. Conversely, overexpression of VHL limited crystal-induced lipid peroxidation and ferroptosis in a BICD2-depdendent manner. Mechanistically, VHL interacted with the cargo adaptor BICD2 and promoted itsd K48-linked poly-ubiquitination, consequently resulting in the proteasomal degradation of BICD2. Through promoting STAT1 nuclear translocation, BICD2 facilitated IFNγ signaling transduction and enhanced IFNγ-mediated suppression of cystine/glutamate antiporter system Xc-, eventually increasing cell sensitivity to ferroptosis. Moreover, we found that the BRAF inhibitor impaired the association of VHL with BICD2 through triggering BICD2 phosphorylation, ultimately causing severe ferroptosis and nephrotoxicity. Collectively, our results uncover the important role of VHL/BICD2/STAT1 axis in crystal kidney injury and provide a potential therapeutic target for treatment and prevention of renal inflammation and drug-induced nephrotoxicity.
Collapse
Affiliation(s)
- Wenyan Hao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China
| | - Hongxian Zhang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, PR China
| | - Peng Hong
- Department of Urology, Peking University Third Hospital, Beijing, 100191, PR China
| | - Xin Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, 100191, PR China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing Tongren Hospital, Beijing, 100730, PR China.
| | - Dan Lu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
3
|
Yu L, Yu P, Lu Y. Is hysterectomy associated with kidney cancer risk? A meta-analysis of cohort studies. Front Oncol 2023; 13:1181112. [PMID: 37546408 PMCID: PMC10397505 DOI: 10.3389/fonc.2023.1181112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Emerging evidence have suggested a potential relationship between hysterectomy and risk of kidney cancer with inconsistent results. We aimed to investigate the association of hysterectomy with kidney cancer risk based on a meta-analysis of all available cohort studies. Methods A comprehensive literature search was performed in the PubMed and Embase database, covering all the papers published by September 2022. The pooled relative risks (RRs) and 95% confidence intervals (CIs) were estimated using a DerSimonian and Laird random effects model. Results Overall, our meta-analysis included 10 cohorts from 9 studies with approximately 240 million participants. The pooled RR with its 95% CI showed a significantly positive association between hysterectomy and risk of kidney cancer (RR 1.30, 95% CI 1.19-1.41). No obvious heterogeneity was observed across the studies (P = 0.206 for heterogeneity; I2 = 25.9%). Conclusion Findings from this meta-analysis of cohort studies indicated that hysterectomy was positively associated with subsequent kidney cancer risk. Further large prospective studies with long-term follow-up are warranted to verify these findings.
Collapse
|
4
|
Li Y, Xin X, Song W, Zhang X, Chen S, Wang Q, Li A, Li Y. VHL syndrome without clear family history: A rare case report and literature review of Chinese patients. Front Neurol 2022; 13:951054. [PMID: 36324386 PMCID: PMC9618664 DOI: 10.3389/fneur.2022.951054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
Objective To analyze the clinical manifestations and imaging features of a hospitalized patient with intermittent headache who was finally diagnosed with von Hippel–Lindau (VHL) syndrome and to perform whole-exon gene detection to improve the understanding of the diagnosis and treatment strategies of the disease. Methods A case of suspected VHL syndrome in Shanxi Provincial People's Hospital was analyzed. Proband DNA was also extracted for whole exome sequencing and screened for causative mutation sites, which were validated by Sanger sequencing. The literature about VHL gene mutations in Chinese patients in the past 10 years were also reviewed. Results There is a heterozygous mutation site c.499C > G on the VHL gene on the short arm of chromosome 3 of the patient, which is a missense mutation. The mutation results in the substitution of arginine with glycine at amino acid 167 of the encoded protein, which may be primarily responsible for the disease in the patient with VHL syndrome. However, the mutation did not occur in other family members. Conclusion Early recognition and treatment of VHL syndrome can be available with genetic testing technology. Strengthening the understanding of this complex genetic disease and improving the diagnostic rate of VHL syndrome are helpful for the precise treatment of patients with this disease, which may help prolong the survival time of patients to a certain extent and improve their quality of life.
Collapse
Affiliation(s)
- Yaheng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Xiaohong Xin
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi University, Taiyuan, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
| | - Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xuan Zhang
- Department of Neurosurgery, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Shengli Chen
- Department of Neurosurgery, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qian Wang
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Aizhong Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi University, Taiyuan, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yafeng Li
| |
Collapse
|
5
|
Jehanno C, Le Goff P, Habauzit D, Le Page Y, Lecomte S, Lecluze E, Percevault F, Avner S, Métivier R, Michel D, Flouriot G. Hypoxia and ERα Transcriptional Crosstalk Is Associated with Endocrine Resistance in Breast Cancer. Cancers (Basel) 2022; 14:cancers14194934. [PMID: 36230857 PMCID: PMC9563995 DOI: 10.3390/cancers14194934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Hormone receptor positive breast cancer patients are treated with anti-hormone molecules as a standard of care. However, resistance frequently occurs, leading to hormone resistant metastatic relapses in foreign organs. Understanding the molecular mechanisms through which breast cancer cells evade therapeutic pressure is of paramount interest. Hypoxia, which refers to oxygen deprivation and is characterized by the activation of hypoxia inducible factors, is a common feature of the solid tumor microenvironment, yet its influence on estrogen receptor alpha activity remains elusive. Here, we investigate the consequence of hypoxia and the signaling of hypoxia inducible factors on hormone responsiveness in breast cancer cells and its clinical implications. Abstract Estrogen receptor-alpha (ERα) is the driving transcription factor in 70% of breast cancers and its activity is associated with hormone dependent tumor cell proliferation and survival. Given the recurrence of hormone resistant relapses, understanding the etiological factors fueling resistance is of major clinical interest. Hypoxia, a frequent feature of the solid tumor microenvironment, has been described to promote endocrine resistance by triggering ERα down-regulation in both in vitro and in vivo models. Yet, the consequences of hypoxia on ERα genomic activity remain largely elusive. In the present study, transcriptomic analysis shows that hypoxia regulates a fraction of ERα target genes, underlying an important regulatory overlap between hypoxic and estrogenic signaling. This gene expression reprogramming is associated with a massive reorganization of ERα cistrome, highlighted by a massive loss of ERα binding sites. Profiling of enhancer acetylation revealed a hormone independent enhancer activation at the vicinity of genes harboring hypoxia inducible factor (HIFα) binding sites, the major transcription factors governing hypoxic adaptation. This activation counterbalances the loss of ERα and sustains hormone-independent gene expression. We describe hypoxia in luminal ERα (+) breast cancer as a key factor interfering with endocrine therapies, associated with poor clinical prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Charly Jehanno
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S1085, Rennes University, 35000 Rennes, France
| | - Pascale Le Goff
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S1085, Rennes University, 35000 Rennes, France
| | - Denis Habauzit
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S1085, Rennes University, 35000 Rennes, France
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Toxicology of Contaminants Unit, 35300 Fougères, France
| | - Yann Le Page
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S1085, Rennes University, 35000 Rennes, France
| | - Sylvain Lecomte
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S1085, Rennes University, 35000 Rennes, France
| | - Estelle Lecluze
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S1085, Rennes University, 35000 Rennes, France
| | - Frédéric Percevault
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S1085, Rennes University, 35000 Rennes, France
| | - Stéphane Avner
- Institut de Génétique et Développement de Rennes, UMR 6290 CNRS, Université de Rennes, 35000 Rennes, France
| | - Raphaël Métivier
- Institut de Génétique et Développement de Rennes, UMR 6290 CNRS, Université de Rennes, 35000 Rennes, France
| | - Denis Michel
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S1085, Rennes University, 35000 Rennes, France
- Correspondence: (D.M.); (G.F.); Tel.: +33-2-2323-6131 (D.M.); +33-2-2323-6804 (G.F.)
| | - Gilles Flouriot
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S1085, Rennes University, 35000 Rennes, France
- Correspondence: (D.M.); (G.F.); Tel.: +33-2-2323-6131 (D.M.); +33-2-2323-6804 (G.F.)
| |
Collapse
|
6
|
Hudler P, Urbancic M. The Role of VHL in the Development of von Hippel-Lindau Disease and Erythrocytosis. Genes (Basel) 2022; 13:genes13020362. [PMID: 35205407 PMCID: PMC8871608 DOI: 10.3390/genes13020362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Von Hippel-Lindau disease (VHL disease or VHL syndrome) is a familial multisystem neoplastic syndrome stemming from germline disease-associated variants of the VHL tumor suppressor gene on chromosome 3. VHL is involved, through the EPO-VHL-HIF signaling axis, in oxygen sensing and adaptive response to hypoxia, as well as in numerous HIF-independent pathways. The diverse roles of VHL confirm its implication in several crucial cellular processes. VHL variations have been associated with the development of VHL disease and erythrocytosis. The association between genotypes and phenotypes still remains ambiguous for the majority of mutations. It appears that there is a distinction between erythrocytosis-causing VHL variations and VHL variations causing VHL disease with tumor development. Understanding the pathogenic effects of VHL variants might better predict the prognosis and optimize management of the patient.
Collapse
Affiliation(s)
- Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| | - Mojca Urbancic
- Eye Hospital, University Medical Centre Ljubljana, Grabloviceva ulica 46, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
7
|
Zhang L, Li M, Wang Z, Sun P, Wei S, Zhang C, Wu H, Bai H. Cardiovascular Risk After SARS-CoV-2 Infection Is Mediated by IL18/IL18R1/HIF-1 Signaling Pathway Axis. Front Immunol 2022; 12:780804. [PMID: 35069552 PMCID: PMC8766743 DOI: 10.3389/fimmu.2021.780804] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/16/2021] [Indexed: 01/10/2023] Open
Abstract
Objectives Currently, cardiovascular risk associated with COVID-19 has been brought to people's attention, but the mechanism is not clear. The aim of this study is to elucidate the mechanisms based on multiple omics data. Methodology Weighted gene co-expression network analysis (WGCNA) was used to identify key pathways. Combination analysis with aneurysm and atherosclerosis related pathways, hypoxia induced factor-1 (HIF-1) signaling were identified as key pathways of the increased cardiovascular risk associated with COVID-19. ScMLnet algorithm based on scRNA-seq was used to explore the regulation of HIF-1 pathway by intercellular communication. Proteomic analysis was used to detect the regulatory mechanisms between IL18 and HIF-1 signaling pathway. Pseudo time locus analysis was used to study the regulation of HIF1 signaling pathway in macrophages and vascular smooth muscle cells (VSMC) phenotypic transformation. The Virtual Inference of protein-activity by Enriched Regulon (VIPER) analysis was used to study the activity of regulatory proteins. Epigenetic analysis based on methylation revealed epigenetic changes in PBMC after SARS-CoV-2 infection. Potential therapeutic compounds were explored by using Cmap algorithm. Results HIF-1 signaling pathway is a common key pathway for aneurysms, atherosclerosis and SARS-CoV-2 infection. Intercellular communication analysis showed that macrophage-derived interleukin-18 (IL-18) activates the HIF-1 signaling pathway through IL18R1. Proteomic analysis showed that IL18/IL18R1 promote NF-κB entry into the nucleus, and activated the HIF-1 signaling pathway. Macrophage-derived IL18 promoted the M1 polarization of macrophages and the syntactic phenotype transformation of VSMCs. MAP2K1 mediates the functional regulation of HIF-1 signaling pathway in various cell types. Epigenetic changes in PBMC after COVID-19 infection are characterized by activation of the type I interferon pathway. MEK inhibitors are the promising compounds for the treatment of HIF-1 overactivation. Conclusions The IL18/IL18R1/HIF1A axis is expected to be an therapeutic target for cardiovascular protection after SARS-CoV-2 infection. MEK inhibitors may be an choice for cardiovascular protection after SARS-COV-2 infection.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingxing Li
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Wang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoliang Wu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| |
Collapse
|
8
|
Roles of RACK1 in centrosome regulation and carcinogenesis. Cell Signal 2021; 90:110207. [PMID: 34843916 DOI: 10.1016/j.cellsig.2021.110207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
Abstract
Receptor for activated C kinase 1 (RACK1) regulates various cellular functions and signaling pathways by interacting with different proteins. Recently, we showed that RACK1 interacts with breast cancer gene 1 (BRCA1), which regulates centrosome duplication. RACK1 localizes to centrosomes and spindle poles and is involved in the proper centrosomal localization of BRCA1. The interaction between RACK1 and BRCA1 is critical for the regulation of centrosome number. In addition, RACK1 contributes to centriole duplication by regulating polo-like kinase 1 (PLK1) activity in S phase. RACK1 binds directly to PLK1 and Aurora A, promoting the phosphorylation of PLK1 and activating the Aurora A/PLK1 signaling axis. Overexpression of RACK1 causes centrosome amplification, especially in mammary gland epithelial cells, inducing overactivation of PLK1 followed by premature centriole disengagement and centriole re-duplication. Other proteins, including hypoxia-inducible factor α, von Hippel-Lindau protein, heat-shock protein 90, β-catenin, and glycogen synthase kinase-3β, interact with RACK1 and play roles in centrosome regulation. In this review, we focus on the roles and underlying molecular mechanisms of RACK1 in centrosome regulation mediated by its interaction with different proteins and the modulation of their functions.
Collapse
|
9
|
Peired AJ, Campi R, Angelotti ML, Antonelli G, Conte C, Lazzeri E, Becherucci F, Calistri L, Serni S, Romagnani P. Sex and Gender Differences in Kidney Cancer: Clinical and Experimental Evidence. Cancers (Basel) 2021; 13:cancers13184588. [PMID: 34572815 PMCID: PMC8466874 DOI: 10.3390/cancers13184588] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Kidney cancer is a frequent malignant tumor that accounts for approximately 5% of all cancer incidences. It affects both males and females, but males are twice as likely to develop kidney cancer than females. Evidence shows that this discrepancy takes root in individual differences, such as genetics or pathologies that affect the patient. It is then reflected in the clinical characteristics of the tumors, as males have larger and more aggressive tumors. Understanding the sex- and gender-based differences in kidney cancer is essential to be able to offer patients individualized medicine that would better cover their needs in terms of prevention, diagnosis and treatment. Abstract Sex and gender disparities have been reported for different types of non-reproductive cancers. Males are two times more likely to develop kidney cancer than females and have a higher death rate. These differences can be explained by looking at genetics and genomics, as well as other risk factors such as hypertension and obesity, lifestyle, and female sex hormones. Examination of the hormonal signaling pathways bring further insights into sex-related differences. Sex and gender-based disparities can be observed at the diagnostic, histological and treatment levels, leading to significant outcome difference. This review summarizes the current knowledge about sex and gender-related differences in the clinical presentation of patients with kidney cancer and the possible biological mechanisms that could explain these observations. Underlying sex-based differences may contribute to the development of sex-specific prognostic and diagnostic tools and the improvement of personalized therapies.
Collapse
Affiliation(s)
- Anna Julie Peired
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.A.); (G.A.); (C.C.); (E.L.); (L.C.); (P.R.)
- Correspondence:
| | - Riccardo Campi
- Unit of Urological Robotic Surgery and Renal Transplantation, Careggi Hospital, University of Florence, 50134 Florence, Italy; (R.C.); (S.S.)
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Maria Lucia Angelotti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.A.); (G.A.); (C.C.); (E.L.); (L.C.); (P.R.)
| | - Giulia Antonelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.A.); (G.A.); (C.C.); (E.L.); (L.C.); (P.R.)
| | - Carolina Conte
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.A.); (G.A.); (C.C.); (E.L.); (L.C.); (P.R.)
| | - Elena Lazzeri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.A.); (G.A.); (C.C.); (E.L.); (L.C.); (P.R.)
| | - Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Linda Calistri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.A.); (G.A.); (C.C.); (E.L.); (L.C.); (P.R.)
| | - Sergio Serni
- Unit of Urological Robotic Surgery and Renal Transplantation, Careggi Hospital, University of Florence, 50134 Florence, Italy; (R.C.); (S.S.)
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.A.); (G.A.); (C.C.); (E.L.); (L.C.); (P.R.)
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| |
Collapse
|
10
|
Role of the androgen, estrogen, and progesterone receptors in adherent perinephric fat in robotic partial nephrectomy. J Robot Surg 2021; 16:143-148. [PMID: 33687664 DOI: 10.1007/s11701-021-01225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/04/2021] [Indexed: 10/22/2022]
Abstract
To determine whether androgen, estrogen, and/or progesterone signaling play a role in the pathophysiology of adherent perinephric fat (APF). We prospectively recruited patients undergoing robotic assisted partial nephrectomy during 2015-2017. The operating surgeon documented the presence or absence of APF. For those with clear cell renal cell carcinoma (ccRCC), representative sections of tumor and perinephric fat were immunohistochemically stained with monoclonal antibody to estrogen α, progesterone, and androgen receptors. Patient characteristics, operative data, and hormone receptor presence were compared between those with and without APF. Of 51 patients total, 18 (35.3%) and 33 (64.7%) patients did and did not have APF, respectively. APF was associated with history of diabetes mellitus (61.1% vs 24.2%, p = 0.009) and larger tumors (4.0 cm vs 3.0 cm, p = 0.017) but not with age, gender, BMI, Charleston comorbidity index, smoking, or preoperative estimated glomerular filtration rate. APF was not significantly associated with length of operation, positive margins, or 30-day postoperative complications but incurred higher estimated blood loss (236.5 mL vs 209.2 mL, p = 0.049). Thirty-two had ccRCC and completed hormone receptor staining. The majority of tumors and perinephric fat were negative for estrogen and progesterone while positive for androgen receptor expression. There was no difference in hormone receptor expression in either tumor or perinephric fat when classified by presence or absence of APF (p > 0.05). APF is more commonly present in patients with diabetes or larger tumors but was not associated with differential sex hormone receptor expression in ccRCC.
Collapse
|
11
|
Fan S, Wang J, Yu G, Rong F, Zhang D, Xu C, Du J, Li Z, Ouyang G, Xiao W. TET is targeted for proteasomal degradation by the PHD-pVHL pathway to reduce DNA hydroxymethylation. J Biol Chem 2020; 295:16299-16313. [PMID: 32963106 DOI: 10.1074/jbc.ra120.014538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/19/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-inducible factors are heterodimeric transcription factors that play a crucial role in a cell's ability to adapt to low oxygen. The von Hippel-Lindau tumor suppressor (pVHL) acts as a master regulator of HIF activity, and its targeting of prolyl hydroxylated HIF-α for proteasomal degradation under normoxia is thought to be a major mechanism for pVHL tumor suppression and cellular response to oxygen. Whether pVHL regulates other targets through a similar mechanism is largely unknown. Here, we identify TET2/3 as novel targets of pVHL. pVHL induces proteasomal degradation of TET2/3, resulting in reduced global 5-hydroxymethylcytosine levels. Conserved proline residues within the LAP/LAP-like motifs of these two proteins are hydroxylated by the prolyl hydroxylase enzymes (PHD2/EGLN1 and PHD3/EGLN3), which is prerequisite for pVHL-mediated degradation. Using zebrafish as a model, we determined that global 5-hydroxymethylcytosine levels are enhanced in vhl-null, egln1a/b-double-null, and egln3-null embryos. Therefore, we reveal a novel function for the PHD-pVHL pathway in regulating TET protein stability and activity. These data extend our understanding of how TET proteins are regulated and provide new insight into the mechanisms of pVHL in tumor suppression.
Collapse
Affiliation(s)
- Sijia Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China; Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dawei Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Juan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China; Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China; Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
12
|
Ye T, He F, Lu L, Miao H, Sun D, Zhang M, Yang H, Zhang J, Qiu J, Zhao H, Ma Z, Yu S. The effect of oestrogen on mandibular condylar cartilage via hypoxia-inducible factor-2α during osteoarthritis development. Bone 2020; 130:115123. [PMID: 31678498 DOI: 10.1016/j.bone.2019.115123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 02/05/2023]
Abstract
Oestrogen and hypoxia inducible factor-2α (HIF2α) are key regulators in the pathogenesis of osteoarthritis (OA). However, the cellular interaction between oestrogen and HIF2α in articular cartilage during OA process remains unknown. Our previous study has revealed that high-physiological level of oestrogen aggravates the degradation of condylar cartilage in the early stage of temporomandibular joint osteoarthritis (TMJ OA). Here, we hypothesize that HIF2α involves the effect of oestrogen on mandibular condylar cartilage in the progression of TMJ OA. Our experiment in vivo found that the degeneration of condylar cartilage caused by unilateral anterior crossbite (UAC) model, characterized by obvious degenerative morphology, loss of cartilage extracellular matrix, up-regulation of TNF-α, HIF2α and its' down-stream OA-related cytokines (MMP-13, VEGF and Col X), could be alleviated by lack of oestrogen while aggravated by high level of oestrogen in rats. Meanwhile, our in vitro study found that 17β-estradiol stimulation resulted in the loss of extracellular matrix, increased expression of TNF-α, IL-1, HIF2α and its' down-stream OA-related cytokines (MMP-13, VEGF and Col X) in primary condylar chondrocytes via oestrogen receptor beta (ERβ), which could be reversed by ER antagonist, selective estrogen receptor modulators (SERMs) and HIF2α translation inhibitor. Our results reveal that high level of oestrogen can aggravate the degenerative changes of mandibular condylar cartilage, while lack of oestrogen can alleviate it via oestrogen-ERβ-HIF2α pathway during TMJ OA progression.
Collapse
Affiliation(s)
- Tao Ye
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Feng He
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Lei Lu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Hui Miao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Dongliang Sun
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China; Military Health Team of 61213 Troops of the Chinese People's Liberation Army, Linfei, Shanxi 041000, PR China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Hongxu Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Jing Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Jun Qiu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Haidan Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Zhaofeng Ma
- Department of Stomatology, Shunyi Hospital, Capital Medical University, Beijing 101300, PR China.
| | - Shibin Yu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
13
|
Dewadas HD, Kamarulzaman NS, Yaacob NS, Che Has AT, Mokhtar NF. The role of HIF-1α, CBP and p300 in the regulation of Nav1.5 expression in breast cancer cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Whitman NA, Lin ZW, Kenney RM, Albertini L, Lockett MR. Hypoxia differentially regulates estrogen receptor alpha in 2D and 3D culture formats. Arch Biochem Biophys 2019; 671:8-17. [PMID: 31163125 PMCID: PMC6688900 DOI: 10.1016/j.abb.2019.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
Hypoxia is a common feature in solid tumors. Clinical samples show a positive correlation between the expression of the hypoxia-inducible factor HIF-1α and estrogen receptor alpha (ERα) and a negative correlation between HIF-1α and hormone sensitivity. Results from monolayer cultures are in contention with clinical observations, showing that ER (+) cell lines no longer express ERα under hypoxic conditions (1% O2). Here, we compared the impact of hypoxia on the ERα signaling pathway for T47D cells in a 2D and 3D culture format. In the 2D format, the cells were cultured as monolayers. In the 3D format, paper-based scaffolds supported cells suspended in a collagen matrix. Using ELISA, Western blot, and immunofluorescence measurements, we show that hypoxia differentially regulates ERα protein levels in a culture environment-dependent manner. In the 2D format, the protein levels are significantly decreased in hypoxia. In the 3D format, the protein levels are maintained in hypoxia. Hypoxia reduced ERα transcriptional activation in both culture formats. These results highlight the importance of considering tissue dimensionality for in vitro studies. They also show that ERα protein levels in hypoxia are not an accurate indicator of ERα transcriptional activity, and confirm that a positive stain for ERα in a clinical sample may not necessarily indicate hormone sensitivity.
Collapse
Affiliation(s)
- Nathan A Whitman
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Zhi-Wei Lin
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Rachael M Kenney
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Leonardo Albertini
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC, 27599-7295, USA.
| |
Collapse
|
15
|
Qin L, Liu Y, Li M, Pu X, Guo Y. The landscape of miRNA-related ceRNA networks for marking different renal cell carcinoma subtypes. Brief Bioinform 2018; 21:73-84. [PMID: 30452527 DOI: 10.1093/bib/bby101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023] Open
Abstract
We know that different types of cancers usually have different responses to the same treatment. Therefore, it is important to understand the similarities and differences across subtypes of cancers, so as to provide a basis for the individualized treatments. Until now, no comprehensive investigation on competing endogenous RNAs (ceRNAs) has been reported for the three main subtypes of renal cell carcinoma (RCC), so the regulation characteristics of ceRNAs in three subtypes are not well revealed. This paper firstly describes a comparative analysis of ceRNA-ceRNA interaction networks for all the three subtypes of RCC based on differential microRNAs (miRNAs). We comprehensively summarized all miRNA and messenger RNAdata of RCC from 126 matched tumor-normal tissues in The Cancer Genome Atlas, systematically analyzed a total of more than 80 000 ceRNA interactions and highlighted the common and specific properties among them, aiming to identify critical genes to classify them for providing supplementary help in the precise diagnosis of RCC. From three aspects, including common or specific ceRNAs, upregulated or downregulated and classifications across the three subtypes, we highlighted the common and specific properties for the three subtypes and also explored the classification of RCC by combining the specific ceRNAs with differential regulations. Moreover, for the most major subtype of clear cell renal cell carcinoma (KIRC), three critical genes were screened out from KIRC ceRNA network and further demonstrated to be the potential biomarkers of KIRC by performing biological experiments at the transcriptional level.
Collapse
Affiliation(s)
- Liu Qin
- College of Chemistry, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yanhong Liu
- College of Chemistry, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
16
|
Padró M, Louie RJ, Lananna BV, Krieg AJ, Timmerman LA, Chan DA. Genome-independent hypoxic repression of estrogen receptor alpha in breast cancer cells. BMC Cancer 2017; 17:203. [PMID: 28320353 PMCID: PMC5358051 DOI: 10.1186/s12885-017-3140-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/15/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND About 75-80% of breast tumors express the estrogen receptor alpha (ER-α) and are treated with endocrine-target therapeutics, making this the premier therapeutic modality in the breast cancer clinic. However, acquired resistance is common and about 20% of resistant tumors loose ER-α expression via unknown mechanisms. Inhibition of ER-α loss could improve endocrine therapeutic efficacy, benefiting a significant number of patients. Here we test whether tumor hypoxia might commonly produce ER-α loss. METHODS Using standard molecular and cellular biological assays and a work station/incubator with controllable oxygen levels, we analyze the effects of hypoxia on ER-α protein, mRNA, and transcriptional activity in a panel of independently-derived ER-α positive cell lines. These lines were chosen to represent the diverse genetic backgrounds and mutations commonly present in ER-α positive tumors. Using shRNA-mediated knockdown and overexpression studies we also elucidate the role of hypoxia-inducible factor 1-alpha (HIF-1α) in the hypoxia-induced decrease in ER-α abundance. RESULTS We present the first comprehensive overview of the effects of bona fide low environmental oxygen (hypoxia) and HIF-1α activity on ER-α abundance and transcriptional activity. We find that stabilized HIF-1α induces rapid loss of ER-α protein in all members of our diverse panel of breast cancer cell lines, which involves proteolysis rather than transcriptional repression. Reduced ER-α severely attenuates ER-α directed transcription, and inhibits cell proliferation without overt signs of cell death in the cell lines tested, despite their varying genomic backgrounds. CONCLUSIONS These studies reveal a common hypoxia response that produces reduced ER-α expression and cell cycle stalling, and demonstrate a common role for HIF-1α in ER-α loss. We hypothesize that inhibitors of HIF-1α or the proteasome might stabilize ER-α expression in breast tumors in vivo, and work in combination with endocrine therapies to reduce resistance. Our data also suggests that disease re-occurrence in patients with ER-α positive tumors may arise from tumor cells chronically resident in hypoxic environments. We hypothesize that these non-proliferating cells may survive undetected until conditions change to oxygenate the environment, or cells eventually switch to proliferation via other signaling pathways.
Collapse
Affiliation(s)
- Mercè Padró
- Department of Radiation Oncology, University of California, San Francisco, CA 94115 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| | - Raymond J. Louie
- Department of Radiation Oncology, University of California, San Francisco, CA 94115 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| | - Brian V. Lananna
- Department of Radiation Oncology, University of California, San Francisco, CA 94115 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| | - Adam J. Krieg
- Department of Obstetrics and Gynecology, Kansas University Medical Center, Kansas City, KS 66160 USA
| | - Luika A. Timmerman
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| | - Denise A. Chan
- Department of Radiation Oncology, University of California, San Francisco, CA 94115 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| |
Collapse
|
17
|
Gajulapalli VNR, Malisetty VL, Chitta SK, Manavathi B. Oestrogen receptor negativity in breast cancer: a cause or consequence? Biosci Rep 2016; 36:e00432. [PMID: 27884978 PMCID: PMC5180249 DOI: 10.1042/bsr20160228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023] Open
Abstract
Endocrine resistance, which occurs either by de novo or acquired route, is posing a major challenge in treating hormone-dependent breast cancers by endocrine therapies. The loss of oestrogen receptor α (ERα) expression is the vital cause of establishing endocrine resistance in this subtype. Understanding the mechanisms that determine the causes of this phenomenon are therefore essential to reduce the disease efficacy. But how we negate oestrogen receptor (ER) negativity and endocrine resistance in breast cancer is questionable. To answer that, two important approaches are considered: (1) understanding the cellular origin of heterogeneity and ER negativity in breast cancers and (2) characterization of molecular regulators of endocrine resistance. Breast tumours are heterogeneous in nature, having distinct molecular, cellular, histological and clinical behaviour. Recent advancements in perception of the heterogeneity of breast cancer revealed that the origin of a particular mammary tumour phenotype depends on the interactions between the cell of origin and driver genetic hits. On the other hand, histone deacetylases (HDACs), DNA methyltransferases (DNMTs), miRNAs and ubiquitin ligases emerged as vital molecular regulators of ER negativity in breast cancers. Restoring response to endocrine therapy through re-expression of ERα by modulating the expression of these molecular regulators is therefore considered as a relevant concept that can be implemented in treating ER-negative breast cancers. In this review, we will thoroughly discuss the underlying mechanisms for the loss of ERα expression and provide the future prospects for implementing the strategies to negate ER negativity in breast cancers.
Collapse
Affiliation(s)
- Vijaya Narasihma Reddy Gajulapalli
- Department of Biochemistry, Molecular and Cellular Oncology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | - Suresh Kumar Chitta
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh 515002, India
| | - Bramanandam Manavathi
- Department of Biochemistry, Molecular and Cellular Oncology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
18
|
Distinct breast cancer stem/progenitor cell populations require either HIF1α or loss of PHD3 to expand under hypoxic conditions. Oncotarget 2016; 6:31721-39. [PMID: 26372732 PMCID: PMC4741635 DOI: 10.18632/oncotarget.5564] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/10/2015] [Indexed: 12/26/2022] Open
Abstract
The heterogeneous nature of breast cancer is a result of intrinsic tumor complexity and also of the tumor microenvironment, which is known to be hypoxic. We found that hypoxia expands different breast stem/progenitor cell populations (cells with increased aldehyde dehydrogenase activity (Aldefluor+), high mammosphere formation capacity and CD44+CD24−/low cells) both in primary normal epithelial and tumor cells. The presence of the estrogen receptor (ER) limits hypoxia-dependent CD44+CD24−/low cell expansion. We further show that the hypoxia-driven cancer stem-like cell enrichment results from a dedifferentiation process. The enhanced mammosphere formation and Aldefluor+ cell content observed in breast cancer cells relies on hypoxia-inducible factor 1α (HIF1α). In contrast, the CD44+CD24−/low population expansion is HIF1α independent and requires prolyl hydroxylase 3 (PHD3) downregulation, which mimics hypoxic conditions, leading to reduced CD24 expression through activation of NFkB signaling. These studies show that hypoxic conditions expand CSC populations through distinct molecular mechanisms. Thus, potential therapies that combine current treatments for breast cancer with drugs that target CSC should take into account the heterogeneity of the CSC subpopulations.
Collapse
|
19
|
Higashimura Y, Kitakaze T, Harada N, Inui H, Nakano Y, Yamaji R. pVHL-mediated degradation of HIF-2α regulates estrogen receptor α expression in normoxic breast cancer cells. FEBS Lett 2016; 590:2690-9. [DOI: 10.1002/1873-3468.12265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Yasuki Higashimura
- Department of Food Science; Ishikawa Prefectural University; Nonoichi Ishikawa Japan
- Molecular Gastroenterology and Hepatology; Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Tomoya Kitakaze
- Division of Applied Biological Chemistry; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Osaka Japan
| | - Naoki Harada
- Division of Applied Biological Chemistry; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Osaka Japan
| | - Hiroshi Inui
- Division of Clinical Nutrition; Graduate School of Comprehensive Rehabilitation; Osaka Prefecture University; Habikino Osaka Japan
| | - Yoshihisa Nakano
- Center of Research and Development of Bioresources; Osaka Prefecture University; Sakai Osaka Japan
| | - Ryoichi Yamaji
- Division of Applied Biological Chemistry; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Osaka Japan
| |
Collapse
|
20
|
CZARNECKA ANNAM, NIEDZWIEDZKA MAGDALENA, PORTA CAMILLO, SZCZYLIK CEZARY. Hormone signaling pathways as treatment targets in renal cell cancer (Review). Int J Oncol 2016; 48:2221-35. [DOI: 10.3892/ijo.2016.3460] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/14/2016] [Indexed: 11/06/2022] Open
|
21
|
Abstract
In this study, Kim et al. identified WD repeat and SOCS box-containing protein 1 (WSB1) as a novel regulator of pVHL through WSB1's E3 ligase activity. These findings provide important new insights into the understanding of misregulation of the pVHL–HIF pathway in cancer cell invasion and metastasis. The von Hippel-Lindau tumor suppressor pVHL is an E3 ligase that targets hypoxia-inducible factors (HIFs). Mutation of VHL results in HIF up-regulation and contributes to processes related to tumor progression such as invasion, metastasis, and angiogenesis. However, very little is known with regard to post-transcriptional regulation of pVHL. Here we show that WD repeat and SOCS box-containing protein 1 (WSB1) is a negative regulator of pVHL through WSB1's E3 ligase activity. Mechanistically, WSB1 promotes pVHL ubiquitination and proteasomal degradation, thereby stabilizing HIF under both normoxic and hypoxic conditions. As a consequence, WSB1 up-regulates the expression of HIF-1α’s target genes and promotes cancer invasion and metastasis through its effect on pVHL. Consistent with this, WSB1 protein level negatively correlates with pVHL level and metastasis-free survival in clinical samples. This work reveals a new mechanism of pVHL's regulation by which cancer acquires invasiveness and metastatic tendency.
Collapse
|
22
|
Jung YS, Chun HY, Yoon MH, Park BJ. Elevated estrogen receptor-α in VHL-deficient condition induces microtubule organizing center amplification via disruption of BRCA1/Rad51 interaction. Neoplasia 2015; 16:1070-81. [PMID: 25499220 PMCID: PMC4309251 DOI: 10.1016/j.neo.2014.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 01/04/2023] Open
Abstract
Since loss of VHL is frequently detected early phase genetic event in human renal cell carcinoma, pVHL is assumed to be indispensable for suppression of tumor initiation step. However, induction of HIF-1α, target of pVHL E3 ligase, is more adequate to angiogenesis step after tumor mass formation. Concerning this, it has been reported that pVHL is involved in centrosome location during metaphase and regulates ER-α signaling. Here, we provide the evidences that pVHL-mediated ER-α suppression is critical for microtubule organizing center (MTOC) maintaining and elevated ER-α promotes MTOC amplification through disruption of BRCA1-Rad51 interaction. In fact, numerous MTOC in VHL- or BRCA1-deficient cells are reduced by Fulvestrant, inhibitor of ER-α expression as well as antagonist. In addition, we reveal that activation of ER signaling can increase γ-tubulin, core factor of TuRC and render the resistance to Taxol. Thus, Fulvestrant but not Tamoxifen, antagonist against ER-α, can restore the Taxol sensitivity in VHL- or BRCA1-deficient cells. Our results suggest that pVHL-mediated ER-α suppression is important for regulation of MTOC as well as drug resistance.
Collapse
Affiliation(s)
- Youn-Sang Jung
- Department of Molecular Biology, College of Natural Science, Department of Integrated Biological Science, graduated school, Pusan National University, Busan, Republic of Korea
| | - Ho-Young Chun
- Department of Molecular Biology, College of Natural Science, Department of Integrated Biological Science, graduated school, Pusan National University, Busan, Republic of Korea
| | - Min-Ho Yoon
- Department of Molecular Biology, College of Natural Science, Department of Integrated Biological Science, graduated school, Pusan National University, Busan, Republic of Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Department of Integrated Biological Science, graduated school, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
23
|
Du J, Zhang D, Zhang W, Ouyang G, Wang J, Liu X, Li S, Ji W, Liu W, Xiao W. pVHL Negatively Regulates Antiviral Signaling by Targeting MAVS for Proteasomal Degradation. THE JOURNAL OF IMMUNOLOGY 2015; 195:1782-90. [PMID: 26179906 DOI: 10.4049/jimmunol.1500588] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/16/2015] [Indexed: 12/25/2022]
Abstract
The von Hippel-Lindau (VHL) gene is a well-defined tumor suppressor linked to human heredity cancer syndromes. As a component of the VHL-elongin B/C E3 ligase complex, pVHL performs its tumor function by targeting proteins for proteasomal degradation. It is largely unknown whether pVHL functions in antiviral immunity. In this article, we identify that pVHL negatively regulates innate antiviral immunity, which acts mainly by inducing degradation of mitochondrial antiviral-signaling protein (MAVS, also known as Cardif, IPS-1, or VISA). Overexpression of pVHL abrogated the cellular response to viral infection, whereas knockdown of pVHL exerted the opposite effect. pVHL targeted the K420 residue of MAVS to catalyze the formation of K48-linked polyubiquitin chains, leading to proteasomal degradation of MAVS. After viral infection, Mavs levels remained low in wild type zebrafish embryos but became much higher in vhl-deficient (vhl(-/-)) zebrafish embryos. Higher MAVS levels correlated with a greatly exaggerated antiviral response. In this work, we demonstrate that pVHL exhibits a previously unknown role in innate antiviral immunity.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Dawei Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Wei Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Gang Ouyang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Jing Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Xing Liu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Shun Li
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Wei Ji
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Wuhan Xiao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| |
Collapse
|
24
|
Wang Q, Zhang W, Yang J, Liu YL, Yan ZX, Guo ZJ, Li YJ, Bian XW. High ERα36 Expression Level and Membrane Location Predict Poor Prognosis in Renal Cell Carcinoma. Medicine (Baltimore) 2015; 94:e1048. [PMID: 26131816 PMCID: PMC4504609 DOI: 10.1097/md.0000000000001048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Estrogen receptor alpha 36 (ERα36), a truncated variant of ERα, is located in cytoplasm and membrane that is different from other nuclear receptors of ERα family. ERα36 is involved in progression and treatment resistance of a variety of carcinomas. However, the clinical and prognostic significance of ERα36 in renal tumors have not been fully elucidated.Here, renal tumor tissues from 125 patients were collected and immunohistochemical stained with ERα36 antibody. ERα36 expression level and location in these cases were analyzed for their correlations with clinical characteristics. The differential diagnosis value was also assessed for benign and malignant renal tumors, as well as its prognostic value.The results showed that membrane ERα36 expression was rarely detected in benign tumors but predominantly observed in malignant renal tumors. Kaplan-Meier analysis indicated that significant correlations of high ERα36 level and ERα36 membrane expression were correlated with both poor disease-free survival and overall survival. Univariate and multivariate analysis confirmed that both ERα36 high expression and membrane location can serve as unfavorable prognostic indicators for renal cell carcinoma.It is thus concluded that membrane ERα36 expression is valuable for differential diagnosis of malignant renal tumors from benign ones. Both ERα36 high expression and membrane location indicate poor prognosis in renal cell carcinoma.
Collapse
Affiliation(s)
- Qiang Wang
- From the Institute of Pathology and Southwest Cancer Center (QW, JY, Z-XY, Z-JG, X-WB), Southwest Hospital, Third Military Medical University, Chongqing; Department of Pathology (QW, WZ); Department of Clinical Laboratory (Y-LL), The 401st People's Liberation Army Hospital; and Department of Pathology (Y-JL), Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Helzer KT, Hooper C, Miyamoto S, Alarid ET. Ubiquitylation of nuclear receptors: new linkages and therapeutic implications. J Mol Endocrinol 2015; 54:R151-67. [PMID: 25943391 PMCID: PMC4457637 DOI: 10.1530/jme-14-0308] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/25/2022]
Abstract
The nuclear receptor (NR) superfamily is a group of transcriptional regulators that control multiple aspects of both physiology and pathology and are broadly recognized as viable therapeutic targets. While receptor-modulating drugs have been successful in many cases, the discovery of new drug targets is still an active area of research, because resistance to NR-targeting therapies remains a significant clinical challenge. Many successful targeted therapies have harnessed the control of receptor activity by targeting events within the NR signaling pathway. In this review, we explore the role of NR ubiquitylation and discuss how the expanding roles of ubiquitin could be leveraged to identify additional entry points to control receptor function for future therapeutic development.
Collapse
Affiliation(s)
- Kyle T Helzer
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Christopher Hooper
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Elaine T Alarid
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
26
|
Czarnecka AM, Kornakiewicz A, Lian F, Szczylik C. Future perspectives for mTOR inhibitors in renal cell cancer treatment. Future Oncol 2015; 11:801-17. [DOI: 10.2217/fon.14.303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ABSTRACT Everolimus is a mTOR inhibitor that demonstrates antitumor and antiangiogenic activities. In a randomized Phase III trial, patients with metastatic renal cell carcinoma who progressed on sunitinib/sorafenib were treated with everolimus and showed significant improvement in progression-free survival compared with best supportive care. Novel approaches in treatment are expected to ensure less toxic therapies and increase efficacy of everolimus. To provide a new perspective for mTOR inhibitor research and therapy, we discuss renal cell carcinoma cancer stem cells as a potential target for mTOR inhibitors and present new concepts on emerging antiangiogenic therapies. Finally, we point why systems biology approach with reverse molecular engineering may also contribute to the field of drug discovery in renal cell carcinoma.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Anna Kornakiewicz
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Fei Lian
- Emory School of Medicine Atlanta, GA 30322, USA
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| |
Collapse
|
27
|
Yu X, Chen S, Hou P, Wang M, Chen Y, Guo D. VHL negatively regulates SARS coronavirus replication by modulating nsp16 ubiquitination and stability. Biochem Biophys Res Commun 2015; 459:270-276. [PMID: 25732088 PMCID: PMC7092858 DOI: 10.1016/j.bbrc.2015.02.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/18/2015] [Indexed: 11/04/2022]
Abstract
Eukaryotic cellular and most viral RNAs carry a 5′-terminal cap structure, a 5′-5′ triphosphate linkage between the 5′ end of the RNA and a guanosine nucleotide (cap-0). SARS coronavirus (SARS-CoV) nonstructural protein nsp16 functions as a methyltransferase, to methylate mRNA cap-0 structure at the ribose 2′-O position of the first nucleotide to form cap-1 structures. However, whether there is interplay between nsp16 and host proteins was not yet clear. In this report, we identified several potential cellular nsp16-interacting proteins from a human thymus cDNA library by yeast two-hybrid screening. VHL, one of these proteins, was proven to interact with nsp16 both in vitro and in vivo. Further studies showed that VHL can inhibit SARS-CoV replication by regulating nsp16 ubiquitination and promoting its degradation. Our results have revealed the role of cellular VHL in the regulation of SARS-CoV replication. Several host proteins were identified to interact with SARS-CoV nsp16 by yeast two-hybrid screening. VHL was found to interact with SARS-CoV nsp16 and promotes nsp16 degradation. VHL involves in regulating nsp16 ubiquination and stability, and modulating SARS-CoV replication.
Collapse
Affiliation(s)
- Xiao Yu
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University Wuhan, 430072, PR China
| | - Panpan Hou
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University Wuhan, 430072, PR China
| | - Yu Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Deyin Guo
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China; School of Basic Medical Sciences, Wuhan University Wuhan, 430072, PR China.
| |
Collapse
|
28
|
Czarnecka AM, Kornakiewicz A, Kukwa W, Szczylik C. Frontiers in clinical and molecular diagnostics and staging of metastatic clear cell renal cell carcinoma. Future Oncol 2015; 10:1095-111. [PMID: 24941992 DOI: 10.2217/fon.13.258] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The last few years have brought advances in the understanding of the molecular biology of metastatic clear cell renal cell carcinoma (RCC). Both preclinical research and clinical trials brought together results from the latest advancements in RCC diagnostic and staging. Understanding of the complex molecular alterations involved in the development and progression of RCC enables development of immunohistochemical and genetic diagnostic tools and is also opening the doors for experimental targeted therapies. At the same time, improvements of medical and molecular imaging improves the sensitivity and specificity of metastatic disease diagnosis. Moreover, independent validation of molecular profiles across high-throughput platforms, methods, laboratories and cancer populations has recently been successfully performed in RCC. Generation of informative, clinical diagnostic tools is likely to contribute to development of novel personalized diagnostic and treatment protocols and ensure prolonged survival of RCC patient in the near future.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141 Warsaw, Poland
| | | | | | | |
Collapse
|
29
|
Ortona E, Pierdominici M, Berstein L. Autoantibodies to estrogen receptors and their involvement in autoimmune diseases and cancer. J Steroid Biochem Mol Biol 2014; 144 Pt B:260-7. [PMID: 25038321 DOI: 10.1016/j.jsbmb.2014.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 02/07/2023]
Abstract
The involvement of estrogens, which influence many physiologic processes, has been shown in the development or progression of several diseases including some cancers, most notably breast cancer, and autoimmune disorders. Estrogenic signal is transferred via estrogen receptors (ER) which have dual localization, predominantly intracellular but also in plasma membrane. The discovery of membrane-associated ER (mER) has greatly expanded our understanding of estrogen action; upon ligand binding, mER rapidly activate different signaling pathways inducing downstream transcription factors. Some target genes of the mER pathway may be activated independently of the intracellular ER. Additionally, intracellular ER action can be modulated by mER-initiated signaling. Most notably, the identification of autoantibodies reacting with ER (ERAB) and their possible pathogenic role in autoimmunity and cancer have opened a new path for the research in the estrogen-related receptor activity. In this review, we briefly recapitulate the localization and function of ER and mostly discuss the possible role of ERAB as novel potential prognostic and/or predictive tools in autoimmunity and cancer.
Collapse
Affiliation(s)
- Elena Ortona
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy; Istituto San Raffaele Sulmona, L'Aquila, Italy
| | - Marina Pierdominici
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | - Lev Berstein
- Laboratory of Oncoendocrinology, N.N. Petrov Research Institute of Oncology, St. Petersburg, Russia
| |
Collapse
|
30
|
Yuan F, Shi M, Ji J, Shi H, Zhou C, Yu Y, Liu B, Zhu Z, Zhang J. KRAS and DAXX/ATRX gene mutations are correlated with the clinicopathological features, advanced diseases, and poor prognosis in Chinese patients with pancreatic neuroendocrine tumors. Int J Biol Sci 2014; 10:957-65. [PMID: 25210493 PMCID: PMC4159686 DOI: 10.7150/ijbs.9773] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/12/2014] [Indexed: 12/31/2022] Open
Abstract
Background and Aim: Pancreatic neuroendocrine tumor (pNET) is a clinically rare and heterogeneous group of tumors; its pharmacogenetic characteristics are not fully understood. This study was designed to examine the relationship between key gene variations and disease development and prognosis among Chinese patients with pNET. Methods: Various pNET associated genes such as DAXX/ATRX, KRAS, MEN1, PTEN, TSC2, SMAD4/DPC, TP53 and VHL were analyzed in high-throughput sequencing. The links between the gene mutations and the clinicopathological features and prognosis of the patients were determined. Results: The somatic mutation frequencies of the DAXX/ATRX, KRAS, MEN1, mTOR pathway genes (PTEN and TSC2), SMAD4/DPC, TP53, and VHL in Chinese pNET patients were 54.05%, 10.81%, 35.14%, 54.05%, 2.70%, 13.51%, and 40.54%, respectively, while the same figures in Caucasians pNET patients were 43%, 0%, 44%, 15%, 0%, 3%, and 0%, respectively. The numbers of mutated genes were from 0 to 6; 4 patients with more than 3 mutated genes had higher proliferation (Ki-67) index or nerve vascular invasion or organ involvement, but only 9 of 27 patients with 3 or few mutated genes had such features. Mutations in KRAS and DAXX/ATRX, but not other genes analyzed, were associated with a shortened survival. Conclusion: The mutation rates of these genes in Chinese pNET patients are different from those in Caucasians. A higher number of gene mutations and the DAXX/ATRX and KRAS gene mutations are correlated with a poor prognosis of patients with pNET.
Collapse
Affiliation(s)
- Fei Yuan
- 3. Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Min Shi
- 1. Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Jun Ji
- 1. Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Hailong Shi
- 1. Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Chenfei Zhou
- 1. Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Yingyan Yu
- 1. Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Bingya Liu
- 1. Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Zhenggang Zhu
- 1. Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China; ; 2. Department of Clinical Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Jun Zhang
- 1. Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China; ; 2. Department of Clinical Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| |
Collapse
|
31
|
Jung YS, Lee SJ, Lee SH, Chung JY, Jung YJ, Hwang SH, Ha NC, Park BJ. Loss of VHL promotes progerin expression, leading to impaired p14/ARF function and suppression of p53 activity. Cell Cycle 2014; 12:2277-90. [PMID: 24067370 DOI: 10.4161/cc.25371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Renal cell carcinomas (RCCs) are frequently occurring genitourinary malignancies in the aged population. A morphological characteristic of RCCs is an irregular nuclear shape, which is used to index cancer grades. Other features of RCCs include the genetic inactivation of the von Hippel-Lindau gene, VHL, and p53 genetic-independent inactivation. An aberrant nuclear shape or p53 suppression has not yet been demonstrated. We examined the effect of progerin (an altered splicing product of the LMNA gene linked to Hutchinson Gilford progeria syndrome; HGPS) on the nuclear deformation of RCCs in comparison to that of HGPS cells. In this study, we showed that progerin was suppressed by pVHL and was responsible for nuclear irregularities as well as p53 inactivation. Thus, progerin suppression can ameliorate nuclear abnormalities and reactivate p53 in response to genotoxic addition. Furthermore, we found that progerin was a target of pVHL E3 ligase and suppressed p53 activity by p14/ARF inhibition. Our findings indicate that the elevated expression of progerin in RCCs results from the loss of pVHL and leads to p53 inactivation through p14/ARF suppression. Interestingly, we showed that progerin was expressed in human leukemia and primary cell lines, raising the possibility that the expression of this LMNA variant may be a common event in age-related cancer progression.
Collapse
Affiliation(s)
- Youn-Sang Jung
- Department of Molecular Biology; College of Natural Science, Pusan National University; Busan, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang J, Zhang W, Ji W, Liu X, Ouyang G, Xiao W. The von hippel-lindau protein suppresses androgen receptor activity. Mol Endocrinol 2014; 28:239-48. [PMID: 24422631 DOI: 10.1210/me.2013-1258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The androgen receptor (AR) plays a pivotal role in prostate homeostasis and prostate cancer development. To understand the mechanism underlying the regulation of the AR holds a promise for developing novel therapeutic approaches for prostate cancer. Here, we show that the Von Hippel-Lindau gene product, pVHL, physically interacts with AR and inhibits AR transcription activity but does not induce AR turnover. Moreover, pVHL also suppresses androgen-induced cell proliferation, implicating a physiological role of pVHL in androgen-induced signaling pathway. In addition, we provide evidence to show that pVHL actually enhanced AR de-ubiquitination instead of inducing AR ubiquitination, uncovering a noncanonical role of pVHL in the ubiquitin proteasome pathway. Our data reveal a novel function of pVHL in the regulation of AR transcription activity, which may expand the scope of pVHL in tumor suppression and provide mechanistic insight into prostate cancer initiation and progression.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Regulation of the transcriptional activation of the androgen receptor by the UXT-binding protein VHL. Biochem J 2013; 456:55-66. [PMID: 23961993 DOI: 10.1042/bj20121711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Loss and/or inactivation of the VHL (von Hippel-Lindau) tumour suppressor causes various tumours. Using a yeast two-hybrid system, we have identified the AR (androgen receptor) co-activator UXT (ubiquitously expressed transcript), as a VHL-interacting protein. GST pull-down and co-immunoprecipitation assays show that UXT interacts with VHL. In addition, UXT recruits VHL to the nucleus. VHL associates with the DBD (DNA-binding domain) and hinge domains of the AR and induces AR ubiquitination. Moreover, VHL interaction with the AR activates AR transactivation upon DHT (dihydrotestosterone) treatment. VHL knockdown inhibits AR ubiquitination and decreases transcriptional activation of the AR. Our data suggest that the VHL-UXT interaction and VHL-induced ubiquitination of AR regulate transcriptional activation of the AR.
Collapse
|