1
|
Kaikaryte K, Gedvilaite G, Vilkeviciute A, Kriauciuniene L, Mockute R, Cebatoriene D, Zemaitiene R, Balciuniene VJ, Liutkeviciene R. SIRT1: Genetic Variants and Serum Levels in Age-Related Macular Degeneration. Life (Basel) 2022; 12:life12050753. [PMID: 35629418 PMCID: PMC9148058 DOI: 10.3390/life12050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The aim of this paper was to determine the frequency of SIRT1 rs3818292, rs3758391, rs7895833 single nucleotide polymorphism genotypes and SIRT1 serum levels associated with age-related macular degeneration (AMD) in the Lithuanian population. Methods: Genotyping of SIRT1 rs3818292, rs3758391 and rs7895833 was performed using RT-PCR. SIRT1 serum level was determined using the ELISA method. Results: We found that rs3818292 and rs7895833 were associated with an increased risk of developing exudative AMD. Additional sex-differentiated analysis revealed only rs7895833 was associated with an increased risk of developing exudative AMD in women after strict Bonferroni correction. The analysis also revealed that individuals carrying rs3818292, rs3758391 and rs7895833 haplotype G-T-G are associated with increased odds of exudative AMD. Still, the rare haplotypes were associated with the decreased odds of exudative AMD. After performing an analysis of serum SIRT1 levels and SIRT1 genetic variant, we found that carriers of the SIRT1 rs3818292 minor allele G had higher serum SIRT1 levels than the AA genotype. In addition, individuals carrying at least one SIRT1 rs3758391 T allele also had elevated serum SIRT1 levels compared with individuals with the wild-type CC genotype. Conclusions: Our study showed that the SIRT1 polymorphisms rs3818292 and rs7895833 and rs3818292-rs3758391-rs7895833 haplotype G-T-G could be associated with the development of exudative AMD. Also, two SNPs (rs3818292 and rs3758391) are associated with elevated SIRT1 levels.
Collapse
Affiliation(s)
- Kriste Kaikaryte
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Correspondence: ; Tel.: +370-6857-5999
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
| | - Alvita Vilkeviciute
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Ruta Mockute
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Dzastina Cebatoriene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Reda Zemaitiene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Vilma Jurate Balciuniene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| |
Collapse
|
2
|
Broussy S, Laaroussi H, Vidal M. Biochemical mechanism and biological effects of the inhibition of silent information regulator 1 (SIRT1) by EX-527 (SEN0014196 or selisistat). J Enzyme Inhib Med Chem 2021; 35:1124-1136. [PMID: 32366137 PMCID: PMC7241506 DOI: 10.1080/14756366.2020.1758691] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human sirtuin silent information regulator 1 (SIRT1) is a NAD+-dependent deacetylase enzyme. It deacetylates many protein substrates, including histones and transcription factors, thereby controlling many physiological and pathological processes. Several synthetic inhibitors and activators of SIRT1 have been developed, and some therapeutic applications have been explored. The indole EX-527 and its derivatives are among the most potent and selective SIRT1 inhibitors. EX-527 has been often used as a pharmacological tool to explore the effect of SIRT1 inhibition in various cell types. Its therapeutic potential has, therefore, been evaluated in animal models for several pathologies, including cancer. It has also been tested in phase II clinical trial for the treatment of Huntington’s disease (HD). In this review, we will provide an overview of the literature on EX-527, including its mechanism of inhibition and biological studies.
Collapse
Affiliation(s)
- Sylvain Broussy
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, Paris, France
| | - Hanna Laaroussi
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, Paris, France
| | - Michel Vidal
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, Paris, France.,Service biologie du médicament, toxicologie, AP-HP, Hôpital Cochin, Paris, France
| |
Collapse
|
3
|
Neuroprotective effects and mechanisms of action of nicotinamide mononucleotide (NMN) in a photoreceptor degenerative model of retinal detachment. Aging (Albany NY) 2020; 12:24504-24521. [PMID: 33373320 PMCID: PMC7803565 DOI: 10.18632/aging.202453] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/21/2020] [Indexed: 01/17/2023]
Abstract
Currently, no pharmacotherapy has been proven effective in treating photoreceptor degeneration in patients. Discovering readily available and safe neuroprotectants is therefore highly sought after. Here, we investigated nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD+), in a retinal detachment (RD) induced photoreceptor degeneration. NMN administration after RD resulted in a significant reduction of TUNEL+ photoreceptors, CD11b+ macrophages, and GFAP labeled glial activation; a normalization of protein carbonyl content (PCC), and a preservation of the outer nuclear layer (ONL) thickness. NMN administration significantly increased NAD+ levels, SIRT1 protein expression, and heme oxygenase-1 (HO-1) expression. Delayed NMN administration still exerted protective effects after RD. Mechanistic in vitro studies using 661W cells revealed a SIRT1/HO-1 signaling as a downstream effector of NMN-mediated protection under oxidative stress and LPS stimulation. In conclusion, NMN administration exerts neuroprotective effects on photoreceptors after RD and oxidative injury, suggesting a therapeutic avenue to treating photoreceptor degeneration.
Collapse
|
4
|
Kerek EM, Yoon KH, Luo SY, Chen J, Valencia R, Julien O, Waskiewicz AJ, Hubbard BP. A conserved acetylation switch enables pharmacological control of tubby-like protein stability. J Biol Chem 2020; 296:100073. [PMID: 33187986 PMCID: PMC7948452 DOI: 10.1074/jbc.ra120.015839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/29/2022] Open
Abstract
Tubby-like proteins (TULPs) are characterized by a conserved C-terminal domain that binds phosphoinositides. Collectively, mammalian TULP1-4 proteins play essential roles in intracellular transport, cell differentiation, signaling, and motility. Yet, little is known about how the function of these proteins is regulated in cells. Here, we present the protein–protein interaction network of TULP3, a protein that is responsible for the trafficking of G-protein-coupled receptors to cilia and whose aberrant expression is associated with severe developmental disorders and polycystic kidney disease. We identify several protein interaction nodes linked to TULP3 that include enzymes involved in acetylation and ubiquitination. We show that acetylation of two key lysine residues on TULP3 by p300 increases TULP3 protein abundance and that deacetylation of these sites by HDAC1 decreases protein levels. Furthermore, we show that one of these sites is ubiquitinated in the absence of acetylation and that acetylation inversely correlates with ubiquitination of TULP3. This mechanism is evidently conserved across species and is active in zebrafish during development. Finally, we identify this same regulatory module in TULP1, TULP2, and TULP4 and demonstrate that the stability of these proteins is similarly modulated by an acetylation switch. This study unveils a signaling pathway that links nuclear enzymes to ciliary membrane receptors via TULP3, describes a dynamic mechanism for the regulation of all tubby-like proteins, and explores how to exploit it pharmacologically using drugs.
Collapse
Affiliation(s)
- Evan M Kerek
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin H Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Shu Y Luo
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jerry Chen
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Valencia
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Liutkeviciene R, Vilkeviciute A, Morkunaite G, Glebauskiene B, Kriauciuniene L. SIRT1 (rs3740051) role in pituitary adenoma development. BMC MEDICAL GENETICS 2019; 20:185. [PMID: 31747893 PMCID: PMC6868839 DOI: 10.1186/s12881-019-0892-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
Background Our purpose was to determine if SIRT1 (rs4746720, rs3740051) genotypes have an influence on the development of pituitary adenoma (PA). Methods The study group included 142 patients with pituitary adenoma (PA) and the control group consisted of 826 healthy people. The genotyping of SIRT1 (rs4746720, rs3740051) was carried out using the real-time polymerase chain reaction method. Results Statistically significant results were obtained in the analysis of SIRT1 rs3740051. Significant differences in genotype (G/G, G/A, A/A) distribution were obtained comparing patients with PA without recurrence and PA with recurrence (0, 17.9, 82.1% vs. 6.7, 6.7, 86.7%, respectively, p = 0.022). Also, statistically significant differences were observed when comparing the genotype (G/G, G/A, A/A) distribution in the non-invasive PA group and the invasive PA group (3.4, 25.9, 70.7% vs. 0, 8.3, 91.7%, respectively, p = 0.003), and allele G was less frequently observed in invasive PA, than in non-invasive PA (4.2% vs. 16.4%, p < 0,001). Further analysis revealed that G/A (OR = 0.261; 95% CI:0.099–0.689; p = 0.007) and each allele A (OR = 0.229; 95% CI:0.091–0.575; p = 0.002) were associated with lower odds of occurring an invasive PA. Conclusions Our study revealed that SIRT1 rs3740051 is associated with PA recurrence and invasiveness. The haplotype containing alleles C-A in rs12778366-rs3740051 was found to be associated with increased odds of PA development as well.
Collapse
Affiliation(s)
- Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eivenių 2, LT-50161, Kaunas, Lithuania.,Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, LT-50161, Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eivenių 2, LT-50161, Kaunas, Lithuania.
| | - Greta Morkunaite
- Lithuanian University of Health Sciences, Medical Academy, LT-50161, Kaunas, Lithuania
| | - Brigita Glebauskiene
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, LT-50161, Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eivenių 2, LT-50161, Kaunas, Lithuania.,Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, LT-50161, Kaunas, Lithuania
| |
Collapse
|
6
|
Engin AB, Engin A, Gonul II. The effect of adipocyte-macrophage crosstalk in obesity-related breast cancer. J Mol Endocrinol 2019; 62:R201-R222. [PMID: 30620711 DOI: 10.1530/jme-18-0252] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Adipose tissue is the primary source of many pro-inflammatory cytokines in obesity. Macrophage numbers and pro-inflammatory gene expression are positively associated with adipocyte size. Free fatty acid and tumor necrosis factor-α involve in a vicious cycle between adipocytes and macrophages aggravating inflammatory changes. Thereby, M1 macrophages form a characteristic 'crown-like structure (CLS)' around necrotic adipocytes in obese adipose tissue. In obese women, CLSs of breast adipose tissue are responsible for both increase in local aromatase activity and aggressive behavior of breast cancer cells. Interlinked molecular mechanisms between adipocyte-macrophage-breast cancer cells in obesity involve seven consecutive processes: Excessive release of adipocyte- and macrophage-derived inflammatory cytokines, TSC1-TSC2 complex-mTOR crosstalk, insulin resistance, endoplasmic reticulum (ER) stress and excessive oxidative stress generation, uncoupled respiration and hypoxia, SIRT1 controversy, the increased levels of aromatase activity and estrogen production. Considering elevated risks of estrogen receptor (E2R)-positive postmenopausal breast cancer growth in obesity, adipocyte-macrophage crosstalk is important in the aforementioned issues. Increased mTORC1 signaling in obesity ensures the strong activation of oncogenic signaling in E2Rα-positive breast cancer cells. Since insulin and insulin-like growth factors have been identified as tumor promoters, hyperinsulinemia is an independent risk factor for poor prognosis in breast cancer despite peripheral insulin resistance. The unpredictable effects of adipocyte-derived leptin-estrogen-macrophage axis, and sirtuin 1 (SIRT1)-adipose-resident macrophage axis in obese postmenopausal patients with breast cancer are unresolved mechanistic gaps in the molecular links between the tumor growth and adipocytokines.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ipek Isik Gonul
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
Sun M, Du M, Zhang W, Xiong S, Gong X, Lei P, Zha J, Zhu H, Li H, Huang D, Gu X. Survival and Clinicopathological Significance of SIRT1 Expression in Cancers: A Meta-Analysis. Front Endocrinol (Lausanne) 2019; 10:121. [PMID: 30930849 PMCID: PMC6424908 DOI: 10.3389/fendo.2019.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Silent information regulator 2 homolog 1 (SIRT1) is an evolutionarily conserved enzymes with nicotinamide adenine dinucleotide (NAD)+-dependent deacetylase activity. SIRT1 is involved in a large variety of cellular processes, such as genomic stability, energy metabolism, senescence, gene transcription, and oxidative stress. SIRT1 has long been recognized as both a tumor promoter and tumor suppressor. Its prognostic role in cancers remains controversial. Methods: A meta-analysis of 13,138 subjects in 63 articles from PubMed, EMBASE, and Cochrane Library was performed to evaluate survival and clinicopathological significance of SIRT1 expression in various cancers. Results: The pooled results of meta-analysis showed that elevated expression of SIRT1 implies a poor overall survival (OS) of cancer patients [Hazard Ratio (HR) = 1.566, 95% CI: 1.293-1.895, P < 0.0001], disease free survival (DFS) (HR = 1.631, 95% CI: 1.250-2.130, P = 0.0003), event free survival (EFS) (HR = 2.534, 95% CI: 1.602-4.009, P = 0.0001), and progress-free survival (PFS) (HR = 3.325 95% CI: 2.762-4.003, P < 0.0001). Elevated SIRT1 level was associated with tumor stage [Relative Risk (RR) = 1.299, 95% CI: 1.114-1.514, P = 0.0008], lymph node metastasis (RR = 1.172, 95% CI: 1.010-1.360, P = 0.0363), and distant metastasis (RR = 1.562, 95% CI: 1.022-2.387, P = 0.0392). Meta-regression and subgroup analysis revealed that ethnic background has influence on the role of SIRT1 expression in predicting survival and clinicopathological characteristics of cancers. Overexpression of SIRT1 predicted a worse OS and higher TNM stage and lymphatic metastasis in Asian population especially in China. Conclusion: Our data suggested that elevated expression of SIRT1 predicted a poor OS, DFS, EFS, PFS, but not for recurrence-free survival (RFS) and cancer-specific survival (CCS). SIRT1 overexpression was associated with higher tumor stage, lymph node metastasis, and distant metastasis. SIRT1-mediated molecular events and biological processes could be an underlying mechanism for metastasis and SIRT1 is a therapeutic target for inhibiting metastasis, leading to good prognosis.
Collapse
Affiliation(s)
- Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengyu Du
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wenhua Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Sisi Xiong
- School of Nursing, Hubei University of Medicine, Shiyan, China
| | - Xingrui Gong
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peijie Lei
- The First Clinical School, Hubei University of Medicine, Shiyan, China
| | - Jin Zha
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongrui Zhu
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Heng Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dong Huang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Dong Huang
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Xinsheng Gu
| |
Collapse
|
8
|
Role and Possible Mechanisms of Sirt1 in Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8596903. [PMID: 29643977 PMCID: PMC5831942 DOI: 10.1155/2018/8596903] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 12/28/2022]
Abstract
Depression is a common, devastating illness. Due to complicated causes and limited treatments, depression is still a major problem that plagues the world. Silent information regulator 1 (Sirt1) is a deacetylase at the consumption of NAD+ and is involved in gene silencing, cell cycle, fat and glucose metabolism, cellular oxidative stress, and senescence. Sirt1 has now become a critical therapeutic target for a number of diseases. Recently, a genetic study has received considerable attention for depression and found that Sirt1 is a potential gene target. In this short review article, we attempt to present an up-to-date knowledge of depression and Sirt1 of the sirtuin family, describe the different effects of Sirt1 on depression, and further discuss possible mechanisms of Sirt1 including glial activation, neurogenesis, circadian control, and potential signaling molecules. Thus, it will open a new avenue for clinical treatment of depression.
Collapse
|
9
|
Sirtuins Expression and Their Role in Retinal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3187594. [PMID: 28197299 PMCID: PMC5288547 DOI: 10.1155/2017/3187594] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023]
Abstract
Sirtuins have received considerable attention since the discovery that silent information regulator 2 (Sir2) extends the lifespan of yeast. Sir2, a nicotinamide adenine dinucleotide- (NAD-) dependent histone deacetylase, serves as both a transcriptional effector and energy sensor. Oxidative stress and apoptosis are implicated in the pathogenesis of neurodegenerative eye diseases. Sirtuins confer protection against oxidative stress and retinal degeneration. In mammals, the sirtuin (SIRT) family consists of seven proteins (SIRT1–SIRT7). These vary in tissue specificity, subcellular localization, and enzymatic activity and targets. In this review, we present the current knowledge of the sirtuin family and discuss their structure, cellular location, and biological function with a primary focus on their role in different neuroophthalmic diseases including glaucoma, optic neuritis, and age-related macular degeneration. The potential role of certain therapeutic targets is also described.
Collapse
|
10
|
Waks Z, Weissbrod O, Carmeli B, Norel R, Utro F, Goldschmidt Y. Driver gene classification reveals a substantial overrepresentation of tumor suppressors among very large chromatin-regulating proteins. Sci Rep 2016; 6:38988. [PMID: 28008934 PMCID: PMC5180091 DOI: 10.1038/srep38988] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
Compiling a comprehensive list of cancer driver genes is imperative for oncology diagnostics and drug development. While driver genes are typically discovered by analysis of tumor genomes, infrequently mutated driver genes often evade detection due to limited sample sizes. Here, we address sample size limitations by integrating tumor genomics data with a wide spectrum of gene-specific properties to search for rare drivers, functionally classify them, and detect features characteristic of driver genes. We show that our approach, CAnceR geNe similarity-based Annotator and Finder (CARNAF), enables detection of potentially novel drivers that eluded over a dozen pan-cancer/multi-tumor type studies. In particular, feature analysis reveals a highly concentrated pool of known and putative tumor suppressors among the <1% of genes that encode very large, chromatin-regulating proteins. Thus, our study highlights the need for deeper characterization of very large, epigenetic regulators in the context of cancer causality.
Collapse
Affiliation(s)
- Zeev Waks
- Machine Learning for Healthcare and Life Sciences, IBM Research - Haifa, Mount Carmel Campus, Israel
| | - Omer Weissbrod
- Machine Learning for Healthcare and Life Sciences, IBM Research - Haifa, Mount Carmel Campus, Israel
| | - Boaz Carmeli
- Machine Learning for Healthcare and Life Sciences, IBM Research - Haifa, Mount Carmel Campus, Israel
| | - Raquel Norel
- Computational Biology Center, IBM T. J. Watson Research, Yorktown Heights, NY 10598, USA
| | - Filippo Utro
- Computational Biology Center, IBM T. J. Watson Research, Yorktown Heights, NY 10598, USA
| | - Yaara Goldschmidt
- Machine Learning for Healthcare and Life Sciences, IBM Research - Haifa, Mount Carmel Campus, Israel
| |
Collapse
|
11
|
Clark-Knowles KV, Dewar-Darch D, Jardine KE, McBurney MW. Modulation of tumorigenesis by dietary intervention is not mediated by SIRT1 catalytic activity. PLoS One 2014; 9:e112406. [PMID: 25380034 PMCID: PMC4224430 DOI: 10.1371/journal.pone.0112406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022] Open
Abstract
The protein deacetylase SIRT1 is involved in the regulation of a large number of cellular processes that are thought to be required for cancer initiation and progression. Both SIRT1 activity and tumorigenesis can be influenced by dietary fat and polyphenolics. We set out to determine whether dietary modulations of tumorigenesis are mediated by SIRT1 catalytic functions. We introduced a mammary gland tumor-inducing transgene, MMTV-PyMT, into stocks of mice bearing a H355Y point mutation in the Sirt1 gene that abolishes SIRT1 catalytic activity. Tumor latency was reduced in animals fed a high fat diet but this effect was not dependent on SIRT1 activity. Resveratrol had little effect on tumor formation except in animals heterozygous for the mutant Sirt1 gene. We conclude that the effects of these dietary interventions on tumorigenesis are not mediated by modulation of SIRT1 catalytic activity.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antineoplastic Agents, Phytogenic/pharmacology
- Biocatalysis
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Diet, High-Fat
- Heterozygote
- Male
- Mammary Neoplasms, Experimental/diet therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Tumor Virus, Mouse/genetics
- Mice, Transgenic
- Point Mutation
- Resveratrol
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Stilbenes/pharmacology
- Tumor Burden/drug effects
- Tumor Burden/genetics
Collapse
Affiliation(s)
| | - Danielle Dewar-Darch
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Karen E. Jardine
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael W. McBurney
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Seo DB, Jeong HW, Lee SJ, Lee SJ. Coumestrol induces mitochondrial biogenesis by activating Sirt1 in cultured skeletal muscle cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4298-4305. [PMID: 24712520 DOI: 10.1021/jf404882w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The mitochondrion is a central organelle in cellular energy homeostasis; thus, reduced mitochondrial activity has been associated with aging and metabolic disorders. This paper provides biological evidence that coumestrol, which is a natural isoflavone, activates mitochondrial biogenesis. In cultured myocytes, coumestrol activated the silent information regulator two ortholog 1 (Sirt1) through the elevation of the intracellular NAD(+)/NADH ratio. Coumestrol also increased the mitochondrial contents and induced the expression of key proteins in the mitochondrial electron transfer chain in cultured myocytes. A Sirt1 inhibitor and Sirt1-targeting siRNAs abolished the effect of coumestrol on mitochondrial biogenesis. Similar to an increase in mitochondrial content, coumestrol improved myocyte function with increased ATP concentration. Taken together, the data suggest that coumestrol is a novel inducer of mitochondrial biogenesis through the activation of Sirt1.
Collapse
Affiliation(s)
- Dae-Bang Seo
- College of Life and Environmental Sciences, Division of Food Science, Korea University , Seoul 136-713, Republic of Korea
| | | | | | | |
Collapse
|
13
|
Hubbard BP, Loh C, Gomes AP, Li J, Lu Q, Doyle TL, Disch JS, Armour SM, Ellis JL, Vlasuk GP, Sinclair DA. Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism. Cell Cycle 2014; 12:2233-40. [PMID: 23892437 DOI: 10.4161/cc.25268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SIRT1 is an NAD (+) -dependent deacetylase that counteracts multiple disease states associated with aging and may underlie some of the health benefits of calorie restriction. Understanding how SIRT1 is regulated in vivo could therefore lead to new strategies to treat age-related diseases. SIRT1 forms a stable complex with DBC1, an endogenous inhibitor. Little is known regarding the biochemical nature of SIRT1-DBC1 complex formation, how it is regulated and whether or not it is possible to block this interaction pharmacologically. In this study, we show that critical residues within the catalytic core of SIRT1 mediate binding to DBC1 via its N-terminal region, and that several carboxamide SIRT1 inhibitors, including EX-527, can completely block this interaction. We identify two acetylation sites on DBC1 that regulate its ability to bind SIRT1 and suppress its activity. Furthermore, we show that DBC1 itself is a substrate for SIRT1. Surprisingly, the effect of EX-527 on SIRT1-DBC1 binding is independent of DBC1 acetylation. Together, these data show that protein acetylation serves as an endogenous regulatory mechanism for SIRT1-DBC1 binding and illuminate a new path to developing small-molecule modulators of SIRT1.
Collapse
Affiliation(s)
- Basil P Hubbard
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Na HK, Surh YJ. Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic Biol Med 2014; 67:353-65. [PMID: 24200599 DOI: 10.1016/j.freeradbiomed.2013.10.819] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 10/26/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component of cellular defense against a vast variety of endogenous and exogenous insults, including oxidative stress. Nrf2 acts as a master switch in the circuits upregulating the expression of various stress-response proteins, especially heme oxygenase-1 (HO-1). Paradoxically, however, recent studies have demonstrated oncogenic functions of Nrf2 and its major target protein HO-1. Levels of Nrf2 and HO-1 are elevated in many different types of human malignancies, which may facilitate the remodeling of the tumor microenvironment making it advantageous for the autonomic growth of cancer cells, metastasis, angiogenesis, and tolerance to chemotherapeutic agents and radiation and photodynamic therapy. In this context, the cellular stress response or cytoprotective signaling mediated via the Nrf2-HO-1 axis is hijacked by cancer cells for their growth advantage and survival of anticancer treatment. Therefore, Nrf2 and HO-1 may represent potential therapeutic targets in the management of cancer. This review highlights the roles of Nrf2 and HO-1 in proliferation of cancer cells, their tolerance/resistance to anticancer treatments, and metastasis or angiogenesis in tumor progression.
Collapse
Affiliation(s)
- Hye-Kyung Na
- Department of Food & Nutrition, College of Human Ecology, Sungshin Women's University, Seoul 142-732, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea; Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, South Korea; Cancer Research Institute, Seoul National University, Seoul 110-744, South Korea.
| |
Collapse
|
15
|
The role of SIRT1 in ocular aging. Exp Eye Res 2013; 116:17-26. [PMID: 23892278 DOI: 10.1016/j.exer.2013.07.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 12/27/2022]
Abstract
The sirtuins are a highly conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases that helps regulate the lifespan of diverse organisms. The human genome encodes seven different sirtuins (SIRT1-7), which share a common catalytic core domain but possess distinct N- and C-terminal extensions. Dysfunction of some sirtuins have been associated with age-related diseases, such as cancer, type II diabetes, obesity-associated metabolic diseases, neurodegeneration, and cardiac aging, as well as the response to environmental stress. SIRT1 is one of the targets of resveratrol, a polyphenolic SIRT1 activator that has been shown to increase the lifespan and to protect various organs against aging. A number of animal studies have been conducted to examine the role of sirtuins in ocular aging. Here we review current knowledge about SIRT1 and ocular aging. The available data indicate that SIRT1 is localized in the nucleus and cytoplasm of cells forming all normal ocular structures, including the cornea, lens, iris, ciliary body, and retina. Upregulation of SIRT1 has been shown to have an important protective effect against various ocular diseases, such as cataract, retinal degeneration, optic neuritis, and uveitis, in animal models. These results suggest that SIRT1 may provide protection against diseases related to oxidative stress-induced ocular damage, including cataract, age-related macular degeneration, and optic nerve degeneration in glaucoma patients.
Collapse
|