1
|
Konstantinidou P, Loubalova Z, Ahrend F, Friman A, Almeida MV, Poulet A, Horvat F, Wang Y, Losert W, Lorenzi H, Svoboda P, Miska EA, van Wolfswinkel JC, Haase AD. A comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals. Cell Rep 2024; 43:114777. [PMID: 39302833 DOI: 10.1016/j.celrep.2024.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs) play a crucial role in safeguarding genome integrity by silencing mobile genetic elements. From flies to humans, piRNAs originate from long single-stranded precursors encoded by genomic piRNA clusters. How piRNA clusters form to adapt to genomic invaders and evolve to maintain protection remain key outstanding questions. Here, we generate a roadmap of piRNA clusters across seven species that highlights both similarities and variations. In mammals, we identify transcriptional readthrough as a mechanism to generate piRNAs from transposon insertions (piCs) downstream of genes (DoG). Together with the well-known stress-dependent DoG transcripts, our findings suggest a molecular mechanism for the formation of piRNA clusters in response to retroviral invasion. Finally, we identify a class of dynamic piRNA clusters in humans, underscoring unique features of human germ cell biology. Our results advance the understanding of conserved principles and species-specific variations in piRNA biology and provide tools for future studies.
Collapse
Affiliation(s)
- Parthena Konstantinidou
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zuzana Loubalova
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Franziska Ahrend
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, TN, USA
| | - Aleksandr Friman
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Biophysics Graduate Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Axel Poulet
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA; Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Yuejun Wang
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, TN, USA; TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Hernan Lorenzi
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eric A Miska
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA; Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Astrid D Haase
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Nan GL, Teng C, Fernandes J, O'Connor L, Meyers BC, Walbot V. A cascade of bHLH-regulated pathways programs maize anther development. THE PLANT CELL 2022; 34:1207-1225. [PMID: 35018475 PMCID: PMC8972316 DOI: 10.1093/plcell/koac007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
The spatiotemporal development of somatic tissues of the anther lobe is necessary for successful fertile pollen production. This process is mediated by many transcription factors acting through complex, multi-layered networks. Here, our analysis of functional knockout mutants of interacting basic helix-loop-helix genes Ms23, Ms32, basic helix-loop-helix 122 (bHLH122), and bHLH51 in maize (Zea mays) established that male fertility requires all four genes, expressed sequentially in the tapetum (TP). Not only do they regulate each other, but also they encode proteins that form heterodimers that act collaboratively to guide many cellular processes at specific developmental stages. MS23 is confirmed to be the master factor, as the ms23 mutant showed the earliest developmental defect, cytologically visible in the TP, with the most drastic alterations in premeiotic gene expression observed in ms23 anthers. Notably, the male-sterile ms23, ms32, and bhlh122-1 mutants lack 24-nt phased secondary small interfering RNAs (phasiRNAs) and the precursor transcripts from the corresponding 24-PHAS loci, while the bhlh51-1 mutant has wild-type levels of both precursors and small RNA products. Multiple lines of evidence suggest that 24-nt phasiRNA biogenesis primarily occurs downstream of MS23 and MS32, both of which directly activate Dcl5 and are required for most 24-PHAS transcription, with bHLH122 playing a distinct role in 24-PHAS transcription.
Collapse
Affiliation(s)
- Guo-Ling Nan
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Chong Teng
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - John Fernandes
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Lily O'Connor
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- Department of Biology, Washington University, St Louis, Missouri 63130, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- The Division of Plant Science and Technology, University of Missouri–Columbia, Columbia, Missouri 65211, USA
- Authors for correspondence: (V.W.) and (B.C.M.)
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Authors for correspondence: (V.W.) and (B.C.M.)
| |
Collapse
|
3
|
Zhang GW, Wang L, Chen H, Guan J, Wu Y, Zhao J, Luo Z, Huang W, Zuo F. Promoter hypermethylation of PIWI/piRNA pathway genes associated with diminished pachytene piRNA production in bovine hybrid male sterility. Epigenetics 2020; 15:914-931. [PMID: 32141383 DOI: 10.1080/15592294.2020.1738026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Hybrid male sterility (HMS) is a postzygotic reproductive isolation mechanism that enforces speciation. A bovine example of HMS is the yattle (also called dzo), an interspecies hybrid of taurine cattle (Bos taurus) and yak (Bos grunniens). The molecular mechanisms underlying HMS of yattle are not well understood. Epigenetic modifications of DNA methylation and P-element induced wimpy testis (PIWI)-interacting RNA (piRNAs) are important regulators in spermatogenesis. In this study, we investigated DNA methylation patterns and piRNA expression in adult testes in hybrid infertile yattle bulls and fertile cattle and yak bulls using whole genome bisulphite-seq and small RNA-seq. Promoter hypermethylation in yattle were associated with DNA methylation involved in gamete generation, piRNA metabolic processes, spermatogenesis, and spermatid development (P < 2.6 × 10-5). Male infertility in yattle was associated with the promoter hypermethylation-associated silencing of PIWI/piRNA pathway genes including PIWIL1, DDX4, PLD6, MAEL, FKBP6, TDRD1 and TDRD5. The downstream effects of silencing these genes were diminished production of 29- to 31- nucleotide pachytene piRNAs in yattle testes. Hypermethylation events at transposable element loci (LINEs, SINEs, and LTRs) were found in yattle. LINE-derived prepachytene piRNAs increased and SINE-derived prepachytene piRNAs were reduced in yattle testes. Our data suggests that DNA methylation affects the PIWI/piRNA pathway and is involved in gene expression and pachytene piRNA production during spermatogenesis in bovine HMS. DNA hypermethylation and disruption of piRNA production contributed to unsuccessful germ cell development that may drive bovine HMS.
Collapse
Affiliation(s)
- Gong-Wei Zhang
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Ling Wang
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Huiyou Chen
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Jiuqiang Guan
- Yak Research Institution, Sichuan Academy of Grassland Science , Chengdu, Sichuan, China
| | - Yuhui Wu
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Jianjun Zhao
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Zonggang Luo
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Wenming Huang
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| |
Collapse
|
4
|
Abstract
Abstract
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. This can be achieved by leveraging omics information for accurate molecular characterization of tumors. Tumor tissue biopsies are currently the main source of information for molecular profiling. However, biopsies are invasive and limited in resolving spatiotemporal heterogeneity in tumor tissues. Alternative non-invasive liquid biopsies can exploit patient’s body fluids to access multiple layers of tumor-specific biological information (genomes, epigenomes, transcriptomes, proteomes, metabolomes, circulating tumor cells, and exosomes). Analysis and integration of these large and diverse datasets using statistical and machine learning approaches can yield important insights into tumor biology and lead to discovery of new diagnostic, predictive, and prognostic biomarkers. Translation of these new diagnostic tools into standard clinical practice could transform oncology, as demonstrated by a number of liquid biopsy assays already entering clinical use. In this review, we highlight successes and challenges facing the rapidly evolving field of cancer biomarker research.
Lay Summary
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. The discovery of biomarkers for precision oncology has been accelerated by high-throughput experimental and computational methods, which can inform fine-grained characterization of tumors for clinical decision-making. Moreover, advances in the liquid biopsy field allow non-invasive sampling of patient’s body fluids with the aim of analyzing circulating biomarkers, obviating the need for invasive tumor tissue biopsies. In this review, we highlight successes and challenges facing the rapidly evolving field of liquid biopsy cancer biomarker research.
Collapse
|
5
|
Xiao X, Zhu W, Liao B, Xu J, Gu C, Ji B, Yao Y, Peng L, Yang J. BPLLDA: Predicting lncRNA-Disease Associations Based on Simple Paths With Limited Lengths in a Heterogeneous Network. Front Genet 2018; 9:411. [PMID: 30459803 PMCID: PMC6232683 DOI: 10.3389/fgene.2018.00411] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, it has been increasingly clear that long noncoding RNAs (lncRNAs) play critical roles in many biological processes associated with human diseases. Inferring potential lncRNA-disease associations is essential to reveal the secrets behind diseases, develop novel drugs, and optimize personalized treatments. However, biological experiments to validate lncRNA-disease associations are very time-consuming and costly. Thus, it is critical to develop effective computational models. In this study, we have proposed a method called BPLLDA to predict lncRNA-disease associations based on paths of fixed lengths in a heterogeneous lncRNA-disease association network. Specifically, BPLLDA first constructs a heterogeneous lncRNA-disease network by integrating the lncRNA-disease association network, the lncRNA functional similarity network, and the disease semantic similarity network. It then infers the probability of an lncRNA-disease association based on paths connecting them and their lengths in the network. Compared to existing methods, BPLLDA has a few advantages, including not demanding negative samples and the ability to predict associations related to novel lncRNAs or novel diseases. BPLLDA was applied to a canonical lncRNA-disease association database called LncRNADisease, together with two popular methods LRLSLDA and GrwLDA. The leave-one-out cross-validation areas under the receiver operating characteristic curve of BPLLDA are 0.87117, 0.82403, and 0.78528, respectively, for predicting overall associations, associations related to novel lncRNAs, and associations related to novel diseases, higher than those of the two compared methods. In addition, cervical cancer, glioma, and non-small-cell lung cancer were selected as case studies, for which the predicted top five lncRNA-disease associations were verified by recently published literature. In summary, BPLLDA exhibits good performances in predicting novel lncRNA-disease associations and associations related to novel lncRNAs and diseases. It may contribute to the understanding of lncRNA-associated diseases like certain cancers.
Collapse
Affiliation(s)
- Xiaofang Xiao
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Wen Zhu
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Bo Liao
- College of Information Science and Engineering, Hunan University, Changsha, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Junlin Xu
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Changlong Gu
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Binbin Ji
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Jialiang Yang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Gainetdinov I, Skvortsova Y, Kondratieva S, Funikov S, Azhikina T. Two modes of targeting transposable elements by piRNA pathway in human testis. RNA (NEW YORK, N.Y.) 2017; 23:1614-1625. [PMID: 28842508 PMCID: PMC5648030 DOI: 10.1261/rna.060939.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
PIWI proteins and their partner small RNAs, termed piRNAs, are known to control transposable elements (TEs) in the germline. Here, we provide evidence that in humans this control is exerted in two different modes. On the one hand, production of piRNAs specifically targeting evolutionarily youngest TEs (L1HS, L1PA2-L1PA6, LTR12C, SVA) is present both at prenatal and postnatal stages of spermatogenesis and is performed without involvement of piRNA clusters. On the other hand, at postnatal stages, piRNAs deriving from pachytene clusters target "older" TEs and thus complement cluster-independent piRNA production to achieve relevant targeting of virtually all TEs expressed in postnatal testis. We also find that converging transcription of antisense-oriented genes contributes to the origin of genic postnatal prepachytene clusters. Finally, while a fraction of pachytene piRNAs was previously shown to arise from long intergenic noncoding RNAs (lincRNAs, i.e., pachytene piRNA cluster primary transcripts), we ascertain that these are a specific set of lincRNAs that both possess distinguishing epigenetic features and are expressed exclusively in testis.
Collapse
Affiliation(s)
- Ildar Gainetdinov
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Yulia Skvortsova
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sofia Kondratieva
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sergey Funikov
- Department of Structural, Functional and Evolutionary Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Tatyana Azhikina
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
7
|
Gu C, Liao B, Li X, Cai L, Li Z, Li K, Yang J. Global network random walk for predicting potential human lncRNA-disease associations. Sci Rep 2017; 7:12442. [PMID: 28963512 PMCID: PMC5622075 DOI: 10.1038/s41598-017-12763-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022] Open
Abstract
There is more and more evidence that the mutation and dysregulation of long non-coding RNA (lncRNA) are associated with numerous diseases, including cancers. However, experimental methods to identify associations between lncRNAs and diseases are expensive and time-consuming. Effective computational approaches to identify disease-related lncRNAs are in high demand; and would benefit the detection of lncRNA biomarkers for disease diagnosis, treatment, and prevention. In light of some limitations of existing computational methods, we developed a global network random walk model for predicting lncRNA-disease associations (GrwLDA) to reveal the potential associations between lncRNAs and diseases. GrwLDA is a universal network-based method and does not require negative samples. This method can be applied to a disease with no known associated lncRNA (isolated disease) and to lncRNA with no known associated disease (novel lncRNA). The leave-one-out cross validation (LOOCV) method was implemented to evaluate the predicted performance of GrwLDA. As a result, GrwLDA obtained reliable AUCs of 0.9449, 0.8562, and 0.8374 for overall, novel lncRNA and isolated disease prediction, respectively, significantly outperforming previous methods. Case studies of colon, gastric, and kidney cancers were also implemented, and the top 5 disease-lncRNA associations were reported for each disease. Interestingly, 13 (out of the 15) associations were confirmed by literature mining.
Collapse
Affiliation(s)
- Changlong Gu
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Bo Liao
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
| | - Xiaoying Li
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Lijun Cai
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Zejun Li
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.,School of Computer and Information Science, Hunan Institute of Technology, Hengyang, 412002, China
| | - Keqin Li
- Department of Computer Science, State University of New York, New Paltz, New York, 12561, USA
| | - Jialiang Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| |
Collapse
|
8
|
Shoji K, Suzuki Y, Sugano S, Shimada T, Katsuma S. Artificial "ping-pong" cascade of PIWI-interacting RNA in silkworm cells. RNA (NEW YORK, N.Y.) 2017; 23:86-97. [PMID: 27777367 PMCID: PMC5159652 DOI: 10.1261/rna.058875.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/15/2016] [Indexed: 05/19/2023]
Abstract
PIWI-interacting RNAs (piRNAs) play essential roles in the defense system against selfish elements in animal germline cells by cooperating with PIWI proteins. A subset of piRNAs is predicted to be generated via the "ping-pong" cascade, which is mainly controlled by two different PIWI proteins. Here we established a cell-based artificial piRNA production system using a silkworm ovarian cultured cell line that is believed to possess a complete piRNA pathway. In addition, we took advantage of a unique silkworm sex-determining one-to-one ping-pong piRNA pair, which enabled us to precisely monitor the behavior of individual artificial piRNAs. With this novel strategy, we successfully generated artificial piRNAs against endogenous protein-coding genes via the expected back-and-forth traveling mechanism. Furthermore, we detected "primary" piRNAs from the upstream region of the artificial "ping-pong" site in the endogenous gene. This artificial piRNA production system experimentally confirms the existence of the "ping-pong" cascade of piRNAs. Also, this system will enable us to identify the factors involved in both, or each, of the "ping" and "pong" cascades and the sequence features that are required for efficient piRNA production.
Collapse
Affiliation(s)
- Keisuke Shoji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
9
|
Detection of piRNAs in whitespotted bamboo shark liver. Gene 2016; 590:51-6. [PMID: 27267405 DOI: 10.1016/j.gene.2016.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/20/2016] [Accepted: 06/03/2016] [Indexed: 01/12/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are 26 to 31-nt small non-coding RNAs that have been reported mostly in germ-line cells and cancer cells. However, the presence of piRNAs in the whitespotted bamboo shark liver has not yet been reported. In a previous study of microRNAs in shark liver, some piRNAs were detected from small RNAs sequenced by Solexa technology. A total of 4857 piRNAs were predicted and found in shark liver. We further selected 17 piRNAs with high and significantly differential expression between normal and regenerative liver tissues for subsequent verification by Northern blotting. Ten piRNAs were further identified, and six of these were matched to known piRNAs in piRNABank. The actual expression of six known and four novel piRNAs was validated by qRT-PCR. In addition, a total of 401 target genes of the 10 piRNAs were predicted by miRanda. Through GO and pathway function analyses, only five piRNAs could be annotated with eighteen GO annotations. The results indicated that the identified piRNAs are involved in many important biological responses, including immune inflammation, cell-specific differentiation and development, and angiogenesis. This manuscript provides the first identification of piRNAs in the liver of whitespotted bamboo shark using Solexa technology as well as further elucidation of the regulatory role of piRNAs in whitespotted bamboo shark liver. These findings may provide a useful resource and may facilitate the development of therapeutic strategies against liver damage.
Collapse
|
10
|
Lin X, Han M, Cheng L, Chen J, Zhang Z, Shen T, Wang M, Wen B, Ni T, Han C. Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells. RNA Biol 2016; 13:1011-1024. [PMID: 27560004 DOI: 10.1080/15476286.2016.1218588] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Among all tissues of the metazoa, the transcritpome of testis displays the highest diversity and specificity. However, its composition and dynamics during spermatogenesis have not been fully understood. Here, we have identified 20,639 message RNAs (mRNAs), 7,168 long non-coding RNAs (lncRNAs) and 15,101 circular RNAs (circRNAs) in mouse spermatogenic cells, and found many of them were specifically expressed in testes. lncRNAs are significantly more testis-specific than mRNAs. At all stages, mRNAs are generally more abundant than lncRNAs, and linear transcripts are more abundant than circRNAs. We showed that the productions of circRNAs and piRNAs were highly regulated instead of random processes. Based on the results of a small-scale functional screening experiment using cultured mouse spermatogonial stem cells, many evolutionarily conserved lncRNAs are likely to play roles in spermatogenesis. Typical classes of transcription factor binding sites are enriched in the promoters of testis-specific m/lncRNA genes. Target genes of CREM and RFX2, 2 key TFs for spermatogenesis, were further validated by using ChIP-chip assays and RNA-seq on RFX2-knockout spermatogenic cells. Our results contribute to the current understanding of the transcriptomic complexity of spermatogenic cells and provide a valuable resource from which many candidate genes may be selected for further functional studies.
Collapse
Affiliation(s)
- Xiwen Lin
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Miao Han
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China
| | - Lu Cheng
- c Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai , China
| | - Jian Chen
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,d Graduate University of Chinese Academy of Sciences , Beijing , China
| | - Zhuqiang Zhang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,d Graduate University of Chinese Academy of Sciences , Beijing , China
| | - Ting Shen
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China
| | - Min Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Bo Wen
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China.,c Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai , China
| | - Ting Ni
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China
| | - Chunsheng Han
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
11
|
Martinez VD, Vucic EA, Thu KL, Hubaux R, Enfield KSS, Pikor LA, Becker-Santos DD, Brown CJ, Lam S, Lam WL. Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci Rep 2015; 5:10423. [PMID: 26013764 PMCID: PMC4444957 DOI: 10.1038/srep10423] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Human PIWI-interacting RNAs (piRNAs) are known to be expressed in germline cells, functionally silencing LINEs and SINEs. Their expression patterns in somatic tissues are largely uncharted. We analyzed 6,260 human piRNA transcriptomes derived from non-malignant and tumour tissues from 11 organs. We discovered that only 273 of the 20,831 known piRNAs are expressed in somatic non-malignant tissues. However, expression patterns of these piRNAs were able to distinguish tissue-of-origin. A total of 522 piRNAs are expressed in corresponding tumour tissues, largely distinguishing tumour from non-malignant tissues in a cancer-type specific manner. Most expressed piRNAs mapped to known transcripts, contrary to “piRNA clusters” reported in germline cells. We showed that piRNA expression can delineate clinical features, such as histological subgroups, disease stages, and survival. PiRNAs common to many cancer types might represent a core gene-set that facilitates cancer growth, while piRNAs unique to individual cancer types likely contribute to cancer-specific biology.
Collapse
Affiliation(s)
- Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Emily A Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Kelsie L Thu
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Katey S S Enfield
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Larissa A Pikor
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Daiana D Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Carolyn J Brown
- 1] Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada [2] Department of Medical Genetics, University of British Columbia, Vancouver, B. C. V6T 1Z3 Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| |
Collapse
|
12
|
St Laurent G, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. Trends Genet 2015; 31:239-51. [PMID: 25869999 DOI: 10.1016/j.tig.2015.03.007] [Citation(s) in RCA: 836] [Impact Index Per Article: 92.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 12/12/2022]
Abstract
Advances in the depth and quality of transcriptome sequencing have revealed many new classes of long noncoding RNAs (lncRNAs). lncRNA classification has mushroomed to accommodate these new findings, even though the real dimensions and complexity of the noncoding transcriptome remain unknown. Although evidence of functionality of specific lncRNAs continues to accumulate, conflicting, confusing, and overlapping terminology has fostered ambiguity and lack of clarity in the field in general. The lack of fundamental conceptual unambiguous classification framework results in a number of challenges in the annotation and interpretation of noncoding transcriptome data. It also might undermine integration of the new genomic methods and datasets in an effort to unravel the function of lncRNA. Here, we review existing lncRNA classifications, nomenclature, and terminology. Then, we describe the conceptual guidelines that have emerged for their classification and functional annotation based on expanding and more comprehensive use of large systems biology-based datasets.
Collapse
Affiliation(s)
- Georges St Laurent
- St. Laurent Institute, 317 New Boston St., Suite 201, Woburn, MA 01801 USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136 USA.
| | - Philipp Kapranov
- Institute of Genomics, School of Biomedical Sciences, Huaqiao Univerisity, 668 Jimei Road, Xiamen, China 361021; St. Laurent Institute, 317 New Boston St., Suite 201, Woburn, MA 01801 USA.
| |
Collapse
|
13
|
Castañeda J, Genzor P, van der Heijden GW, Sarkeshik A, Yates JR, Ingolia NT, Bortvin A. Reduced pachytene piRNAs and translation underlie spermiogenic arrest in Maelstrom mutant mice. EMBO J 2014; 33:1999-2019. [PMID: 25063675 DOI: 10.15252/embj.201386855] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pachytene piRNAs are a class of Piwi-interacting small RNAs abundant in spermatids of the adult mouse testis. They are processed from piRNA primary transcripts by a poorly understood mechanism and, unlike fetal transposon-derived piRNAs, lack complementary targets in the spermatid transcriptome. We report that immunopurified complexes of a conserved piRNA pathway protein Maelstrom (MAEL) are enriched in MIWI (Piwi partner of pachytene piRNAs), Tudor-domain proteins and processing intermediates of pachytene piRNA primary transcripts. We provide evidence of functional significance of these complexes in Mael129 knockout mice that exhibit spermiogenic arrest with acrosome and flagellum malformation. Mael129-null mutant testes possess low levels of piRNAs derived from MAEL-associated piRNA precursors and exhibit reduced translation of numerous spermiogenic mRNAs including those encoding acrosome and flagellum proteins. These translation defects in haploid round spermatids are likely indirect, as neither MAEL nor piRNA precursors associate with polyribosomes, and they may arise from an imbalance between pachytene piRNAs and MIWI.
Collapse
Affiliation(s)
- Julio Castañeda
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Pavol Genzor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | | | - Ali Sarkeshik
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas T Ingolia
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| |
Collapse
|