1
|
Perucca P, Bassi E, Vetro M, Tricarico A, Prosperi E, Stivala LA, Cazzalini O. Epithelial-to-mesenchymal transition and NF-kB pathways are promoted by a mutant form of DDB2, unable to bind PCNA, in UV-damaged human cells. BMC Cancer 2024; 24:616. [PMID: 38773406 PMCID: PMC11110260 DOI: 10.1186/s12885-024-12368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND DNA-Damaged Binding protein 2 (DDB2) is a protein involved in the early step of Nucleotide Excision Repair. Recently, it has been reported that DDB2 is involved in epithelial-to-mesenchymal transition (EMT), key process in tumour invasiveness and metastasis formation. However, its role is not completely known. METHODS Boyden chamber and cell adhesion assays, and ICELLigence analysis were performed to detect HEK293 adhesion and invasion. Western blotting and gelatine zymography techniques were employed to assess the EMT protein levels and MMP enzymatic activity. Immunofluorescence analysis and pull-down assays facilitated the detection of NF-kB sub-cellular localization and interaction. RESULTS We have previously demonstrated that the loss of DDB2-PCNA binding favours genome instability, and increases cell proliferation and motility. Here, we have investigated the phenotypic and molecular EMT-like changes after UV DNA damage, in HEK293 clones stably expressing DDB2Wt protein or a mutant form unable to interact with PCNA (DDB2PCNA-), as well as in HeLa cells transiently expressing the same DDB2 constructs. Cells expressing DDB2PCNA- showed morphological modifications along with a reduced expression of E-cadherin, an increased activity of MMP-9 and an improved ability to migrate, in concomitance with a significant upregulation of EMT-associated Transcription Factors (TFs), whose expression has been reported to favour tumour invasion. We observed a higher expression of c-Myc oncogene, NF-kB, both regulating cell proliferation and metastatic process, as well as ZEB1, a TF significantly associated with tumorigenic potential and cell migratory ability. Interestingly, a novel interaction of DDB2 with NF-kB was detected and found to be increased in cells expressing the DDB2PCNA-, suggesting a direct modulation of NF-kB by DDB2. CONCLUSION These results highlight the role of DDB2-PCNA interaction in counteracting EMT since DDB2PCNA- protein induces in HEK293 transformed cells a gain of function contributing to the acquisition of a more aggressive phenotype.
Collapse
Affiliation(s)
- Paola Perucca
- Dipartimento di Medicina molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Elisabetta Bassi
- Dipartimento di Medicina molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Martina Vetro
- Dipartimento di Medicina molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Anna Tricarico
- Dipartimento di Medicina molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare (IGM) del CNR, Pavia, Italy
| | - Lucia Anna Stivala
- Dipartimento di Medicina molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy.
| | - Ornella Cazzalini
- Dipartimento di Medicina molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
2
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
3
|
Zanin A, Meneghetti G, Menilli L, Tesoriere A, Argenton F, Mognato M. Analysis of Radiation Toxicity in Mammalian Cells Stably Transduced with Mitochondrial Stat3. Int J Mol Sci 2023; 24:8232. [PMID: 37175941 PMCID: PMC10179518 DOI: 10.3390/ijms24098232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
A coordinated action between nuclear and mitochondrial activities is essential for a proper cellular response to genotoxic stress. Several nuclear transcription factors, including STAT3, translocate to mitochondria to exert mitochondrial function regulation; however, the role of mitochondrial STAT3 (mitoSTAT3) under stressed conditions is still poorly understood. In this study, we examined whether the stable expression of mitoSTAT3 wild-type or mutated at the conserved serine residue (Ser727), which is involved in the mitochondrial function of STAT3, can affect the DNA damage response to UVC radiation. To address this issue, we generated mammalian cells (NIH-3T3 and HCT-116 cells) stably transduced to express the mitochondrial-targeted Stat3 gene in its wild-type or Ser727 mutated forms. Our results show that cell proliferation is enhanced in mitoStat3-transduced cells under both non-stressed and stressed conditions. Once irradiated with UVC, cells expressing wild-type mitoSTAT3 showed the highest cell survival, which was associated with a significant decrease in cell death. Low levels of oxidative stress were detected in UVC-irradiated NIH-3T3 cells expressing mitoSTAT3 wild-type or serine-related dominant active form (Ser727D), confirming a role of mitochondrial STAT3 in minimizing oxidant cellular stress that provides an advantage for cell survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Maddalena Mognato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (A.Z.); (G.M.); (L.M.); (A.T.); (F.A.)
| |
Collapse
|
4
|
Ticli G, Cazzalini O, Stivala LA, Prosperi E. Revisiting the Function of p21CDKN1A in DNA Repair: The Influence of Protein Interactions and Stability. Int J Mol Sci 2022; 23:ijms23137058. [PMID: 35806061 PMCID: PMC9267019 DOI: 10.3390/ijms23137058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
The p21CDKN1A protein is an important player in the maintenance of genome stability through its function as a cyclin-dependent kinase inhibitor, leading to cell-cycle arrest after genotoxic damage. In the DNA damage response, p21 interacts with specific proteins to integrate cell-cycle arrest with processes such as transcription, apoptosis, DNA repair, and cell motility. By associating with Proliferating Cell Nuclear Antigen (PCNA), the master of DNA replication, p21 is able to inhibit DNA synthesis. However, to avoid conflicts with this process, p21 protein levels are finely regulated by pathways of proteasomal degradation during the S phase, and in all the phases of the cell cycle, after DNA damage. Several lines of evidence have indicated that p21 is required for the efficient repair of different types of genotoxic lesions and, more recently, that p21 regulates DNA replication fork speed. Therefore, whether p21 is an inhibitor, or rather a regulator, of DNA replication and repair needs to be re-evaluated in light of these findings. In this review, we will discuss the lines of evidence describing how p21 is involved in DNA repair and will focus on the influence of protein interactions and p21 stability on the efficiency of DNA repair mechanisms.
Collapse
Affiliation(s)
- Giulio Ticli
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Lucia A. Stivala
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Ennio Prosperi
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-986267
| |
Collapse
|
5
|
Wu X, Yu M, Zhang Z, Leng F, Ma Y, Xie N, Lu F. DDB2 regulates DNA replication through PCNA-independent degradation of CDT2. Cell Biosci 2021; 11:34. [PMID: 33557942 PMCID: PMC7869461 DOI: 10.1186/s13578-021-00540-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/15/2021] [Indexed: 01/28/2023] Open
Abstract
Background Targeting ubiquitin-dependent proteolysis is one of the strategies in cancer therapy. CRLCDT2 and CRLDDB2 are two key E3 ubiquitin ligases involved in DNA replication and DNA damage repair. But CDT2 and DDB2 are opposite prognostic factors in kinds of cancers, and the underlining mechanism needs to be elucidated. Methods Small interfering RNAs were used to determine the function of target genes. Co-immunoprecipitation (Co-IP) was performed to detect the interaction between DDB2 and CDT2. Immunofluorescence assays and fluorescence activating cell sorting (FACS) were used to measure the change of DNA content. In vivo ubiquitination assay was carried out to clarify the ubiquitination of CDT2 mediated by DDB2. Cell synchronization was performed to arrest cells at G1/S and S phase. The mechanism involved in DDB2-mediated CDT2 degradation was investigated by constructing plasmids with mutant variants and measured by Western blot. Immunohistochemistry was performed to determine the relationship between DDB2 and CDT2. Paired two-side Student’s t-test was used to measure the significance of the difference between control group and experimental group. Results Knockdown of DDB2 stabilized CDT2, while over-expression of DDB2 enhanced ubiquitination of CDT2, and subsequentially degradation of CDT2. Although both DDB2 and CDT2 contain PIP (PCNA-interacting protein) box, PIP box is dispensable for DDB2-mediated CDT2 degradation. Knockdown of PCNA had negligible effects on the stability of CDT2, but promoted accumulation of CDT1, p21 and SET8. Silencing of DDB2 arrested cell cycle in G1 phase, destabilized CDT1 and reduced the chromatin loading of MCMs, thereby blocked the formation of polyploidy induced by ablation of CDT2. In breast cancer and ovarian teratoma tissues, high level of DDB2 was along with lower level of CDT2. Conclusions We found that CRL4DDB2 is the novel E3 ubiquitin ligases of CDT2, and DDB2 regulates DNA replication through indirectly regulates CDT1 protein stability by degrading CDT2 and promotes the assembly of pre-replication complex. Our results broaden the horizon for understanding the opposite function of CDT2 and DDB2 in tumorigenesis, and may provide clues for drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Min Yu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.,Research Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Zhuxia Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Feng Leng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Yue Ma
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, 518035, Shenzhen, China.
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.
| |
Collapse
|
6
|
Guardamagna I, Bassi E, Savio M, Perucca P, Cazzalini O, Prosperi E, Stivala LA. A functional in vitro cell-free system for studying DNA repair in isolated nuclei. J Cell Sci 2020; 133:jcs240010. [PMID: 32376788 DOI: 10.1242/jcs.240010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/19/2020] [Indexed: 12/31/2022] Open
Abstract
Assessment of DNA repair is an important endpoint measurement when studying the biochemical mechanisms of the DNA damage response and when investigating the efficacy of chemotherapy, which often uses DNA-damaging compounds. Numerous in vitro methods to biochemically characterize DNA repair mechanisms have been developed so far. However, such methods have some limitations, which are mainly due to the lack of chromatin organization in the DNA templates used. Here we describe a functional cell-free system to study DNA repair synthesis in vitro, using G1-phase nuclei isolated from human cells treated with different genotoxic agents. Upon incubation in the corresponding damage-activated cytosolic extracts, containing biotinylated dUTP, nuclei were able to initiate DNA repair synthesis. The use of specific DNA synthesis inhibitors markedly decreased biotinylated dUTP incorporation, indicating the specificity of the repair response. Exogenously added human recombinant PCNA protein, but not the sensors of UV-DNA damage DDB2 and DDB1, stimulated UVC-induced dUTP incorporation. In contrast, a DDB2PCNA- mutant protein, unable to associate with PCNA, interfered with DNA repair synthesis. Given its responsiveness to different types of DNA lesions, this system offers an additional tool to study DNA repair mechanisms.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Isabella Guardamagna
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Elisabetta Bassi
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Monica Savio
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Paola Perucca
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare 'Luigi Luca Cavalli-Sforza', CNR, 27100 Pavia, Italy
| | - Lucia A Stivala
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, 27100 Pavia, Italy
| |
Collapse
|
7
|
Bassi E, Perucca P, Guardamagna I, Prosperi E, Stivala LA, Cazzalini O. Exploring new potential role of DDB2 by host cell reactivation assay in human tumorigenic cells. BMC Cancer 2019; 19:1013. [PMID: 31664956 PMCID: PMC6819583 DOI: 10.1186/s12885-019-6258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Host Cell Reactivation assay (HCR) allows studying the DNA repair capability in different types of human cells. This assay was carried out to assess the ability in removing UV-lesions from DNA, thus verifying NER efficiency. Previously we have shown that DDB2, a protein involved in the Global Genome Repair, interacts directly with PCNA and, in human cells, the loss of this interaction affects DNA repair machinery. In addition, a mutant form unable to interact with PCNA (DDB2PCNA-), has shown a reduced ability to interact with a UV-damaged DNA plasmid in vitro. METHODS In this work, we have investigated whether DDB2 protein may influence the repair of a UV-damaged DNA plasmid into the cellular environment by applying the HCR method. To this end, human kidney 293 stable clones, expressing DDB2Wt or DDB2PCNA-, were co-transfected with pmRFP-N2 and UV-irradiated pEGFP-reported plasmids. Moreover, the co-localization between DDB2 proteins and different NER factors recruited at DNA damaged sites was analysed by immunofluorescence and confocal microscopy. RESULTS The results have shown that DDB2Wt recognize and repair the UV-induced lesions in plasmidic DNA transfected in the cells, whereas a delay in these processes were observed in the presence of DDB2PCNA-, as also confirmed by the different extent of co-localization of DDB2Wt and some NER proteins (such as XPG), vs the DDB2 mutant form. CONCLUSION The HCR confirms itself as a very helpful approach to assess in the cellular context the effect of expressing mutant vs Wt NER proteins on the DNA damage response. Loss of interaction of DDB2 and PCNA affects negatively DNA repair efficiency.
Collapse
Affiliation(s)
- Elisabetta Bassi
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Paola Perucca
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Isabella Guardamagna
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare (IGM) del CNR, Pavia, Italy.
| | - Lucia A Stivala
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy.
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy.
| |
Collapse
|
8
|
Gilson P, Drouot G, Witz A, Merlin JL, Becuwe P, Harlé A. Emerging Roles of DDB2 in Cancer. Int J Mol Sci 2019; 20:ijms20205168. [PMID: 31635251 PMCID: PMC6834144 DOI: 10.3390/ijms20205168] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023] Open
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was originally identified as a DNA damage recognition factor that facilitates global genomic nucleotide excision repair (GG-NER) in human cells. DDB2 also contributes to other essential biological processes such as chromatin remodeling, gene transcription, cell cycle regulation, and protein decay. Recently, the potential of DDB2 in the development and progression of various cancers has been described. DDB2 activity occurs at several stages of carcinogenesis including cancer cell proliferation, survival, epithelial to mesenchymal transition, migration and invasion, angiogenesis, and cancer stem cell formation. In this review, we focus on the current state of scientific knowledge regarding DDB2 biological effects in tumor development and the underlying molecular mechanisms. We also provide insights into the clinical consequences of DDB2 activity in cancers.
Collapse
Affiliation(s)
- Pauline Gilson
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Guillaume Drouot
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Andréa Witz
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Philippe Becuwe
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Alexandre Harlé
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| |
Collapse
|
9
|
Aleksandrov R, Dotchev A, Poser I, Krastev D, Georgiev G, Panova G, Babukov Y, Danovski G, Dyankova T, Hubatsch L, Ivanova A, Atemin A, Nedelcheva-Veleva MN, Hasse S, Sarov M, Buchholz F, Hyman AA, Grill SW, Stoynov SS. Protein Dynamics in Complex DNA Lesions. Mol Cell 2019; 69:1046-1061.e5. [PMID: 29547717 DOI: 10.1016/j.molcel.2018.02.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/26/2017] [Accepted: 02/09/2018] [Indexed: 12/13/2022]
Abstract
A single mutagen can generate multiple different types of DNA lesions. How different repair pathways cooperate in complex DNA lesions, however, remains largely unclear. Here we measured, clustered, and modeled the kinetics of recruitment and dissociation of 70 DNA repair proteins to laser-induced DNA damage sites in HeLa cells. The precise timescale of protein recruitment reveals that error-prone translesion polymerases are considerably delayed compared to error-free polymerases. We show that this is ensured by the delayed recruitment of RAD18 to double-strand break sites. The time benefit of error-free polymerases disappears when PARP inhibition significantly delays PCNA recruitment. Moreover, removal of PCNA from complex DNA damage sites correlates with RPA loading during 5'-DNA end resection. Our systematic study of the dynamics of DNA repair proteins in complex DNA lesions reveals the multifaceted coordination between the repair pathways and provides a kinetics-based resource to study genomic instability and anticancer drug impact.
Collapse
Affiliation(s)
- Radoslav Aleksandrov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Anton Dotchev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Ina Poser
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Dragomir Krastev
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Georgi Georgiev
- Faculty of Mathematics and Informatics, Sofia University, St. Kliment Ohridski, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Greta Panova
- Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA
| | - Yordan Babukov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria; Faculty of Mathematics and Informatics, Sofia University, St. Kliment Ohridski, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Georgi Danovski
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Teodora Dyankova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Lars Hubatsch
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Aneliya Ivanova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Aleksandar Atemin
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Marina N Nedelcheva-Veleva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Susanne Hasse
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Frank Buchholz
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany; Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Stephan W Grill
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Stoyno S Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria.
| |
Collapse
|
10
|
Di Francesco S, Savio M, Bloise N, Borroni G, Stivala LA, Borroni RG. Red grape (Vitis vinifera L.) flavonoids down-regulate collagen type III expression after UV-A in primary human dermal blood endothelial cells. Exp Dermatol 2018; 27:973-980. [PMID: 29742305 DOI: 10.1111/exd.13682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2018] [Indexed: 12/01/2022]
Abstract
Red grape (Vitis vinifera L.) flavonoids including flavan-3-ols (eg, catechin and epicatechin), flavonols (eg, quercetin) and anthocyanins (eg, malvidin) exert anti-inflammatory and antioxidant activities. In the skin they also have a photoprotective action, and their effects have been extensively investigated in keratinocytes, melanocytes and fibroblasts. Despite their known effects also on blood vasculature, little is known on their activities on human dermal blood endothelial cells (HDBECs), which are critically involved in skin homeostasis as well as in the pathogenesis of neoplastic and inflammatory skin diseases. We sought to study the biological effects of selected red grape flavonoids in preventing the consequences of ultraviolet (UV)-A irradiation in vitro. Our results show that red grape flavonoids prevent UV-A-induced sICAM-1 release in HDBECs, suggesting that this cell type could represent an additional target of the anti-inflammatory activity of flavonoids. In addition, flavonoids effectively inhibited UV-A-induced synthesis of collagen type III at both RNA and protein level, indicating that dermal blood microvasculature could be actively involved in ECM remodelling as a consequence of skin photo-ageing, and that this can be prevented by red grape flavonoids.
Collapse
Affiliation(s)
- Serena Di Francesco
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Monica Savio
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Nora Bloise
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.,Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Giovanni Borroni
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università di Pavia, Pavia, Italy.,Dermatology, Fondazione I.R.C.C.S. Policlinico "San Matteo", Pavia, Italy
| | - Lucia Anna Stivala
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Riccardo G Borroni
- Dermatology, Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
11
|
Perucca P, Mocchi R, Guardamagna I, Bassi E, Sommatis S, Nardo T, Prosperi E, Stivala LA, Cazzalini O. A damaged DNA binding protein 2 mutation disrupting interaction with proliferating-cell nuclear antigen affects DNA repair and confers proliferation advantage. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:898-907. [PMID: 29604309 DOI: 10.1016/j.bbamcr.2018.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
Abstract
In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2Wt and DDB2PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity.
Collapse
Affiliation(s)
- Paola Perucca
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Roberto Mocchi
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Isabella Guardamagna
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Elisabetta Bassi
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Sabrina Sommatis
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Tiziana Nardo
- Istituto di Genetica Molecolare (IGM) del CNR, Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare (IGM) del CNR, Pavia, Italy.
| | - Lucia Anna Stivala
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy.
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy.
| |
Collapse
|
12
|
Zhu Q, Wei S, Sharma N, Wani G, He J, Wani AA. Human CRL4 DDB2 ubiquitin ligase preferentially regulates post-repair chromatin restoration of H3K56Ac through recruitment of histone chaperon CAF-1. Oncotarget 2017; 8:104525-104542. [PMID: 29262658 PMCID: PMC5732824 DOI: 10.18632/oncotarget.21869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/30/2017] [Indexed: 11/25/2022] Open
Abstract
Acetylated histone H3 lysine 56 (H3K56Ac) diminishes in response to DNA damage but is restored following DNA repair. Here, we report that CRL4DDB2 ubiquitin ligase preferentially regulates post-repair chromatin restoration of H3K56Ac through recruitment of histone chaperon CAF-1. We show that H3K56Ac accumulates at DNA damage sites. The restoration of H3K56Ac but not H3K27Ac, H3K18Ac and H3K14Ac depends on CAF-1 function, whereas all these acetylations are mediated by CBP/p300. The CRL4DDB2 components, DDB1, DDB2 and CUL4A, are also required for maintaining the H3K56Ac and H3K9Ac level in chromatin, and for restoring H3K56Ac following induction of DNA photolesions and strand breaks. Depletion of CUL4A decreases the recruitment of CAF-1 p60 and p150 to ultraviolet radiation- and phleomycin-induced DNA damage. Neddylation inhibition renders CRL4DDB2 inactive, decreases H3K56Ac level, diminishes CAF-1 recruitment and prevents H3K56Ac restoration. Mutation in the PIP box of DDB2 compromises its capability to elevate the H3K56Ac level but does not affect XPC ubiquitination. These results demonstrated a function of CRL4DDB2 in differential regulation of histone acetylation in response to DNA damage, suggesting a novel role of CRL4DDB2 in repair-driven chromatin assembly.
Collapse
Affiliation(s)
- Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Shengcai Wei
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Nidhi Sharma
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Gulzar Wani
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Jinshan He
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, 43210, OH.,Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, 43210, OH.,James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, 43210, OH
| |
Collapse
|
13
|
Dutto I, Cazzalini O, Stivala LA, Prosperi E. An improved method for the detection of nucleotide excision repair factors at local UV DNA damage sites. DNA Repair (Amst) 2017; 51:79-84. [PMID: 28185850 DOI: 10.1016/j.dnarep.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
Abstract
Among different DNA repair processes that cells use to face with DNA damage, nucleotide excision repair (NER) is particularly important for the removal of a high variety of lesions, including those generated by some antitumor drugs. A number of factors participating in NER, such as the TFIIH complex and the endonuclease XPG are also involved in basal processes, e.g. transcription. For this reason, localization of these factors at DNA damage sites may be difficult. Here we have applied a mild digestion of chromatin with DNase I to improve the in situ extraction necessary to detect chromatin-bound proteins by immunofluorescence. We have compared this method with different extraction protocols and investigated its application on different cell types, and with different antibodies. Our results show that a short DNase I treatment before the immunoreaction, enhances the fluorescence signal of NER proteins, such as XPG, DDB2 and XPC. In addition, our findings indicate that the antibody choice is a critical factor for accurate localization of DNA repair proteins at DNA damage sites. In conclusion, a mild DNA digestion with DNase I improves the immunofluorescence detection of the recruitment of NER factors at local DNA damage sites by enhancing accessibility to the antibodies, independently of the cell type.
Collapse
Affiliation(s)
- Ilaria Dutto
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Lucia Anna Stivala
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
14
|
Perucca P, Sommatis S, Mocchi R, Prosperi E, Stivala LA, Cazzalini O. A DDB2 mutant protein unable to interact with PCNA promotes cell cycle progression of human transformed embryonic kidney cells. Cell Cycle 2016; 14:3920-8. [PMID: 26697842 DOI: 10.1080/15384101.2015.1120921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DNA damage binding protein 2 (DDB2) is a protein involved in the early step of DNA damage recognition of the nucleotide excision repair (NER) process. Recently, it has been suggested that DDB2 may play a role in DNA replication, based on its ability to promote cell proliferation. We have previously shown that DDB2 binds PCNA during NER, but also in the absence of DNA damage; however, whether and how this interaction influences cell proliferation is not known. In this study, we have addressed this question by using HEK293 cell clones stably expressing DDB2(Wt) protein, or a mutant form (DDB2(Mut)) unable to interact with PCNA. We report that overexpression of the DDB2(Mut) protein provides a proliferative advantage over the wild type form, by influencing cell cycle progression. In particular, an increase in the number of S-phase cells, together with a reduction in p21(CDKN1A) protein level, and a shorter cell cycle length, has been observed in the DDB2(Mut) cells. These results suggest that DDB2 influences cell cycle progression thanks to its interaction with PCNA.
Collapse
Affiliation(s)
- Paola Perucca
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Sabrina Sommatis
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Roberto Mocchi
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Ennio Prosperi
- b Istituto di Genetica Molecolare (IGM) del CNR ; Pavia , Italy
| | - Lucia Anna Stivala
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Ornella Cazzalini
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| |
Collapse
|
15
|
Lim KH, Song MH, Baek KH. Decision for cell fate: deubiquitinating enzymes in cell cycle checkpoint. Cell Mol Life Sci 2016; 73:1439-55. [PMID: 26762302 PMCID: PMC11108577 DOI: 10.1007/s00018-015-2129-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/03/2015] [Accepted: 12/30/2015] [Indexed: 09/29/2022]
Abstract
All organs consisting of single cells are consistently maintaining homeostasis in response to stimuli such as free oxygen, DNA damage, inflammation, and microorganisms. The cell cycle of all mammalian cells is regulated by protein expression in the right phase to respond to proliferation and apoptosis signals. Post-translational modifications (PTMs) of proteins by several protein-editing enzymes are associated with cell cycle regulation by their enzymatic functions. Ubiquitination, one of the PTMs, is also strongly related to cell cycle regulation by protein degradation or signal transduction. The importance of deubiquitinating enzymes (DUBs), which have a reversible function for ubiquitination, has recently suggested that the function of DUBs is also important for determining the fate of proteins during cell cycle processing. This article reviews and summarizes the diverse roles of DUBs, including DNA damage, cell cycle processing, and regulation of histone proteins, and also suggests the possibility for therapeutic targets.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea
| | - Myoung-Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea.
| |
Collapse
|
16
|
Gao L, Yang S, Zhu Y, Zhang J, Zhuo M, Miao M, Tang X, Liu Y, Wang S. The tomato DDI2, a PCNA ortholog, associating with DDB1-CUL4 complex is required for UV-damaged DNA repair and plant tolerance to UV stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:101-10. [PMID: 25900570 DOI: 10.1016/j.plantsci.2015.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 05/05/2023]
Abstract
CULLIN 4 (CUL4)-DAMAGED DNA binding protein 1 (DDB1)-based ubiquitin E3 ligase modulates diverse cellular processes including repair of damaged genomic DNA. In this study, an uncharacterized gene termed as DDB1-Interacting protein 2 (DDI2) was identified in yeast two-hybrid screening with bait gene DDB1. The co-immunoprecipitation (co-IP) assays further demonstrated that DDI2 is associated with tomato DDB1-CUL4 complex in vivo. It appears that DDI2 encodes an ortholog of proliferating cell nuclear antigen (PCNA). Confocal microscope observation indicated that DDI2-GFP fusion protein was localized in nuclei. The expression of DDI2 gene is constitutive but substantially enhanced by UV-C irradiation. The transgenic tomato plants with overexpression or knockdown of DDI2 gene displayed the increased or decreased tolerance, respectively, to UV-C stress and chemical mutagen cisplatin. The quantitative analysis of UV-induced DNA lesions indicated that the dark repair of DNA damage was accelerated in DDI2 overexpression lines but delayed in knockdown lines. Conclusively, tomato DDI2 gene is required for UV-induced DNA damage repair and plant tolerance to UV stress. In addition, fruits of DDI2 transgenic plants are indistinguishable from that of wild type, regarding fresh weight and nutrient quality. Therefore, overexpression of DDI2 offers a suitable strategy for genetic manipulation of enhancing plant tolerance to UV stress.
Collapse
Affiliation(s)
- Lanyang Gao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Shuzhang Yang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Yunye Zhu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junfang Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Ming Zhuo
- Institute of Flower, Sichuan Academy of Botanical Engineering, Zizhong 641200, China
| | - Ming Miao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China; School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Songhu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
17
|
Kroker AJ, Bruning JB. p21 Exploits Residue Tyr151 as a Tether for High-Affinity PCNA Binding. Biochemistry 2015; 54:3483-93. [PMID: 25972089 DOI: 10.1021/acs.biochem.5b00241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proliferating cell nuclear antigen (PCNA, processivity factor, sliding clamp) is a ring-shaped protein that tethers proteins to DNA in processes, including DNA replication, DNA repair, and cell-cycle control. Often used as a marker for cell proliferation, PCNA is overexpressed in cancer cells, making it an appealing pharmaceutical target. PCNA interacts with proteins through a PCNA interacting protein (PIP)-box, an eight-amino acid consensus sequence; different binding partners display a wide range of affinities based on function. Of all biological PIP-boxes, p21 has the highest known affinity for PCNA, allowing for inhibition of DNA replication and cell growth under cellular stress. As p21 is one of the few PIP-box sequences to contain a tyrosine rather than a phenylalanine in the eighth conserved position, we probed the significance of the hydroxyl group at this position using a mutational approach. Here we present the cocrystal structure of PCNA bound to a mutant p21 PIP-box peptide, p21Tyr151Phe, with associated isothermal titration calorimetry data. The p21Tyr151Phe peptide showed a 3-fold difference in affinity, as well as differences in entropy and enthalpy of binding. These differences can be attributed to a loss of hydrogen bonding capacity, as well as structural plasticity in the PCNA interdomain connector loop and the hydrophobic cavity of PCNA to which p21 binds. Thus, the hydroxyl group of Tyr151 in p21 acts as a tethering point for ideal packing and surface recognition of the peptide interface, increasing the binding affinity of p21 for PCNA.
Collapse
Affiliation(s)
- Alice J Kroker
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
18
|
Biology of the cell cycle inhibitor p21CDKN1A: molecular mechanisms and relevance in chemical toxicology. Arch Toxicol 2014; 89:155-78. [DOI: 10.1007/s00204-014-1430-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
|